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Analytic expressions are derived for the elements or the trace of generalized cyclic matrix
functions. Application to the representation of the linear difference operators with constant
coefficients and periodic boundary conditions is considered, in order to express functions of such

operators in closed form.

I. INTRODUCTION

Much attention is paid nowadays to physical theories
based on lattice models. Not to mention solid state theory,
problems ind dimensions (d > 3, up to infinity) are currently
studied in lattice statistics, and increasing use is also made of
lattices in field theory to approximate the continuum. The
most natural tool for handling such problems is offered by
generalized cyclic matrices (i.e., multiple direct products of
cylic matrices), and in fact the solutions of many lattice prob-
lems are just given by some element or the trace of a general-
ized cyclic matrix function. Although some interesting
methods of calculation for special cases have been pro-
posed '~ earlier, to my knowledge, no general theory of such
functions had been presented yet.

The lattices to be considered have two fundamental
properties: infinite size and periodicity. Both properties have
to be fully exploited to guarantee an exact solution to lattice
problems. The well-known property of cyclic matrices to
admit the primitive roots of unity as eigenvalues allows us, in
some simple cases, to diagonalize the finite matrix variable
by means of a finite unitary matrix, and then to take the limit
over an infinite number of lattice sites. Although this proce-
dure may be correct for some matrix functions, for more
reliability and generality, the thermodynamical limit in lat-
tice statistics or the continuum limit in lattice field theory
should be obtained from the infinite matrix properties, as
will be shown in Sec. II of this paper. In some cases, much
simpler analytical expressions of the matrix functions’ ele-
ments are obtained by taking advantage of the orthogonal
properties of Chebyshev polynomials; application of those
results to express the resolvent or other functions of a linear
difference operator are considered in the last section.

Ii. PERIODIC LATTICES AND CYCLIC MATRICES

Let us consider a d-dimensional simple cubic lattice Z ¢,
of side v, with periodic boundary conditions. A finite sXs
matrix a , is assigned to each one of the N = v# sites located
atk = (k,, ky, . . . ,k;), k€ z. Next we introduce the follow-
ing sN X sN generalized cyclic matrix

A=Ym, em o - @M, @4a,. (2.1)
kek

Here, m; is the topological vXv cyclic matrix of order i,
defined by

©m,|7) = (O|m,|v — 1) = 8(i,]), (2.2)
where & (i,/) is the Kronecker symbol and / is the column’s
index varying from O to v — 1. The matrix m, has a single
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nonzero element in each row, and as for any cyclic matrix we
shall always refer to the entries of the line O, the entries of the
other lines being obtained by cyclic permutation. The sum-
mation in Eq. (2.1) is made over a finite subset of neighbors of
the site 0 at the origin: K = {k:|k|<n} CZ"“.

For application in solid state physics, the points of the
lattice can be thought of as equilibrium locations of the
atoms in a crystal. Then the matrix A can stand for a real
space dynamical matrix, the representation of a tight-bind-
ing or a Heisenberg Hamiltonian, etc.; so that the entries of
a, can represent couplings between sites 0 and k, e.g., force
constants, hopping integrals between orbitals, exchange in-
tegrals between localized spins, etc. The value of s is fixed by
the nature of the interaction and the number of interacting
species associated with each lattice site; » is the range of
interaction.

For application to classical fields the lattice Z? is just an
approximation to the continuum R?, where the partial dif-
ferential operators take the discretized form of lattice opera-
tors. In this case the g, ’s are scalars, whose values are deter-
mined by the derivative’s order and the lattice spacings in
each coordinate direction; a precise definition will be given
in Sec. V. [See Egs. (5.7) and (5.8).] In this case the value of n
depends on the differential operator’s order.

The J; entries of the sv7 X 517 generalized cyclic matrix
Aaresv? ! xsv¥ ! generalized cyclic matrices, whose en-
tries /; are sv* ~ % X sv” ~ 2 generalized cyclic matrices, etc. It
is then convenient to use the components of the vector
1=/, 1, ...,;)tolabel the s X s noncyclic matrices, which
are the entries of A, in the form (0. - -O|A|/;- - I;) or more
concisely (0]A|D).

It is worth pointing out that the definition (2.1) where
the sum is taken over all the elements of K, concerns the
simple hypercubical lattice; but restrictions on the k,’s al-
lowed values lead to the whole class of hypercubical lattices.
For example, in the case d = 3, a fcc lattice with second-
neighbor interactions corresponds to the set K = {(0, 0, 0),
(£1L £1,0,(0, £1, £1),(£1,0, +1),(£2,0,0)(0,

+2,0),(0,0, +2)}.

Now we summarize the topological matrices’ proper-
ties to be used in this article. The v X v matrices m; are com-
mutative and satisfy the following identities:

Mg=m, =1, (2.3
mm, =mym, =m,, ;, (2.4)
(my =m,,. 2:5)

Hereafter, we start by considering the general or aniso-
tropic case, where the components a, of the matrix A in Eq.
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(2.1) vary with the bond direction k (an example is offered by
the hopping integrals between p or d orbitals, in the matrix
representation of a tight-binding Hamiltonian). In Sec. IV
we study the isotropic case, where a, = a, (corresponding
to s orbitals in the previous example); use of the obtained
results is made in Sec. V to treat scalar difference operators.

Ili. ANISOTROPIC CASE

To proceed with the derivation of the elements of some
matrix function f(A), we need to estimate first the matrix A?,
for a positive integer p. Repeated use of the rules (2.4) and
(2.5) gives

AP = m ®-- (3.1)

Epk=p gklpk

em_ e [

gkdpk kekK

where, by convention, the overlined factor represents the
sum of products in all possible orders. For instance,
ata, =ala, + a,a? +a,a,3,. (3.2)

Recalling the relation (2.2) and the direct product prop-
erties, the matrix element 1 can be written as

A = 3 8Tked) T[S

Spy=p keX

(3.3)

To proceed, we replace the Kronecker symbol by its
Fourier representation

(2m) _"Jj"exp[ - i(.g,(p“k — l)-ﬂ] do= S(kak,l),

(3.4)
in terms of the d-dimensional vector
0=0,,0,...,6,), (3.5)
and obtain

> JJlace P

T Epy ., kek

oy ==+ [
Xeil~0 d 0

= (2m) “’Jﬂ (a@)ye'®do  (p<v/n),
- (3.6)
where

ae) = Y ae (3.7)

Equation (3.6) is valid provided that p < v/n; otherwise in the
summation (3.1) some topological cyclic matrix would be-
come a unit matrix, because, according to Egs. (2.3)}2.5), if

p=v/nwehave(m,f =1,.
Hence, for any function expressible as a power series

f(A) = 2,“”’*’"

the matrices A? can be evaluated using (3.6) only if ¥— 0, a
necessary condition to assure the validity of (3.6). Then the
following result holds.
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Theorem 1: Let A be the sv* X sv* matrix (2.1) and a(6)
the s X s matrix (3.7); then, in the limit v— oo, the block ele-
ment | of the matrix function f(A) is given by the Fourier
transform of the matrix f(a):

lim (O[f(A)|1) = 27)~¢ | fl(a(®))e™®d0. (3.8)
Upon setting I = 0, we obtain corollary 1.

Corollary 1: The trace of the matrix f(A) in the limit
v— oo is given by the Fourier transform of the trace of the
matrix f(a):

lim v=? Trf(A)=(2m)~¢| Trf(a(0)d0. (3.9)

Note that the traces in the above expression are those of
an infinite and finite matrix, respectively. Having considered
an infinite lattice from start, the results are expressed in
terms of the continuous variable 0. This vector can be consid-
ered as the continuous limit of the reciprocal vector associat-
ed with a finite lattice, taking only discrete values inside the
Brillouin zone, to use the solid state physics’ language. But it
is necessary to now make an important and somewhat subtle
remark, in order to enlighten a point which is rather obscure
in the classical treatments of the translational symmetry,
based on Bloch’s theorem (i.e., their ability to deal with any
function defined on an infinite lattice). As stressed above, in
the power series expansion of the function f(A), the elements
(0| A? |1) are dependent on v for large p values, and it is in the
limit v— oo only that this dependence vanishes, yielding the
simple results of Egs. (3.8) and (3.9). Here the advantage of
the lattice’s infinite size has been properly taken into ac-
count.

Use of Theorem 1 can be made to evaluate the elements
of some generalized cyclic matrix functions of physical inter-
est. All results are valid in the limit N— 0, as understood.
The inverse of the matrix (2.1) follows readily from (3.8) as

OATII) =(2m) 9] (a(0) 'e™d0. (3.10)
The resolvent matrix, defined by

Giz)=@Ez—-A"} (3.11)
is also straightforward to derive from (3.8} as

O|GZ) =27)~¢| (z—a(0) 'e*®de. (3.12)

-
Paramount interest is offered by the spectral density, which
is obtained from the relation

nE)=(wN)"! TrIm G(E — i0*),
by using Eq. (3.9) as
n(E)=2-4m = ”zfﬂn Im(E — 0" — a(8))d 6,
(3.14)

(3.13)

which can be put in the form

T

nE)=2m =Y | 8E—4,0)d0, (3.15)

where 4,(0) are the eigenvalues of the a(8) matrix. -

The determinant of the matrix (2.1) follows readily from
the well-known relation
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log det{A) = Tr log(A). (3.16)
Making use of Eq. (3.9) we have
N ~'logdet A= (2m)~ "f log(det a(8))d0.  (3.17)

IV. ISOTROPIC CASE

Now we consider the most common situation, where
the interaction between the lattice sites k and 0, expressed by
the matrix a,, is only |k|-dependent, i.e., isotropic in space.
New interesting analytical expressions for the matrix func-
tion elements will be derived in this case. So let us now dis-
cuss matrices in the form

B=>(1+ 8:,) My, @ @(14+68,)7'M,, @8,
e (4.1)

where 8, denotes the Kronecker symbol §,, = & (0,k;); now
the components of the k vectors are non-negative integers
keN" and the v X v symmetric topological matrix of order /
is defined by

Mi=m,+m_, 4.2)
and obeys the relation’
C,M)= Mp, (4.3)

where C, (x) is the pth-order Chebyshev polynomial of the
second kind. Those polynomials satisfy the identity®

C,(2 cos ) =2 cos pb, (4.4)

and they are orthogonal with respect to an inner product
defined by

)Gy x)

=(2m(1+6, ))-lf_ l(1 —x3)~ 12 (2x)C, (2x)dx  (4.5)

=(ml+86, ))“J:f(Z cos 8 Jcos pd db. (4.6)

Now taking advantage of the relation (4.4), we define
from B, according to the prescription (3.7} and the relation
a, = ay, the following matrix:

b() = 3 (1+8) (" +e~®)

kekK
c{l 4 8, ) (€ 4 e 9,

= Y (1+48,,)7'Cy (2 cos 8))

keK

o1+ 8,)7'Cy (2 cos 6,)ay. 4.7)
Then applying Theorem 1, we have
Of BNy =@2m) | f(b(6)e™*d8, (4.8)

but b(8) being an eve_ndfunction in 8; (V,) the last expression
can be rewritten as

OBy =7—¢ L”f(b (8))cos 1,6,- - «cos 1,6, d O

= m)~* [ 76 O)C, (2005 6)
++Cy(2cos 8)d 0 (4.9)
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and by generalization of the inner product (4.5) to d dimen-
sions, making a change of variables, we have the following
theorem.

Theorem 2: Let B be the symmetric sv* X sv¥ matrix
(4.1); and for x = (x,, X,, . . . , X7)ER % let b(x) be the sXs
matrix given by

bix) = ¥ (1+8,,)7'Cy,(x))

keK

s 1 48,)7'C xa)ay, (4.10)

then the block element 1 of the matrix function f(B)is givenin
the limit v—> o0 by the scalar product:

d
tim OB = (7ot [[1+8,)Cy6x). (411
V>0 j=1
Then obviously we have Corollary 2.
Corollary 2: The trace of the matrix function f(B) is giv-
en by

‘Em v=9 Trf(B) =2 <Trf(b(x)), ﬁ Colx; )>. (4.12)

=1

Functions of matrices are generally defined as infinite
power series expansions in terms of the matrix variable. Con-
sideration of the orthogonal properties of Chebyshev poly-
nomials allows much easier calculation of matrix elements
by using Theorem 2; especially taking into account the prop-
erty

(xP, C,x)) =0, forg>p (4.13)
reduces calculations to the evaluation of matrix polynomi-
als, whose degree does not exceed some finite values fixed by
land X.

V.CYCLIC MATRIX REPRESENTATION OF LATTICE
OPERATORS

To define variables at the sites of a lattice, actually exist-
ing or acting as an approximation to the continuum R?,
yields a discretization of partial differential equations and
associated operators. We will discuss now the representation
of d-dimensional linear equations with constant coefficients
and periodic boundary conditions in terms of generalized
cyclic matrices, and the possibility to obtain closed expres-
sions for the associated lattice resolvent operators by virtue
of the above properties of functions of infinite generalized
cyclic matrices.

Let ¢(x) be some discontinuous function defined on the
(discrete) sites x of an infinite d-dimensional toroidal lattice
T*, with a spacing h = (h,, . . . ,h,) which is finite though
small. Alternatively the value of ¥(x), x = =¢_ L h,eT?,
1,€eZ canbelabeled ¢(/,, . . . ,I;). A d-dimensional difference
equation obeyed by the variable ¥ is obtained by replacing
each derivative in the partial differential equation by a finite-
difference approximation, so that an infinite set of simulta-
neous algebraic equations involving the values of ¢ at the
lattice points can be written down in accordance with the
following prescriptions.

The forward lattice first derivative in the ath-coordi-
nate direction is defined by®

AxPly . d)=h W . L +1,...,0)

Y/ BN N ) ! (5.1)
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the matrix representation, in the # basis set, of this operator
is the direct product of d infinite matrices

oy =h,'1® --0(m —1)®---1) (5.2)
Similarly, the backward lattice first derivative
A W, .. ) =hg Wl ey ulg)
— Wl =1, L), (53)
has the matrix representation
o, =h;'(1®---8(1—=m_})®---1). (5.4)

Likewise, a symmetric lattice gradient can be defined by

AUy, ... L) =(2h,) Wy, - e + 1,0 )
— .. A, =1, ), (5.5)
and represented by
=Q2h,) 1@ ---®@mM —m_)e---®1). (5.6

Then from the previous expressions higher-order differ-
ence derivative operators easily follow, namely

@ P@s ) =hethg®---0(m —1)

& --®(1l—m_)e el (5.7)
@ PO ) =hs?*MNe---0m — 1)
X(A—m_)fg .ol (5.8)

Using those basic formulas any linear lattice operator with
constant coefficients can be readily obtained. For example,
the lattice Laplace operator which is defined to be

P gy P,
ax2 +on x, Ix, +om ax2 +o ax,

+5,9 L cp=o, (5.11)
ax,
can be approximated by the set of algebraic equations writ-

ten as
(@nh %M, —21)@ 1 + ayylhyh,) " (my — 1)
®(1—m_,) +ayh; %

@M, —21)+bh '(m, —1)

®1+bh,1em, —1)+clel)jp=0,
in matrix notation.

Now the previous prescriptions yield the generalized
cyclic matrix representation of any linear operator with con-
stant coefficients L, it is then straightforward to obtain the
lattice resolvent operator G = L™! in closed form by using
Theorem 1 or 2, according as L is nonsymmetric or symmet-
ric.

As an example we consider the two-dimensional bihar-
monic equation’

VY + Eyp=0; (5.13)

from Eq. (5.10), assuming unit lattice spacing, we have for
the matrix representation of the lattice biharmonic operator

Ly = (M, —21)2®1+2(M, —21)® (M, —21)
+1eM,—212+Elel.

(5.12)

(5.14)

A= i 9t o, (5.9) So that application of Theorem 2 gives the resolvent in the
a=1 form
has the mau;i): ::pres;ltati:n 1 (00|L; |1,Ly)
A=hi M- 2ljetd o] b = (148, )1 + 8, )(6r2 — 2P + 266, — e, —2)
+h;Me---® (M, —21). (5.10) . o
Similarly the general two-dimensional second-order partial + 0 = 21" + E) TG, (x1)C, (o)), (5.15)
differential equation which, by using Eq. (4.6), takes the form
]
1,0, cos 1,0, d6, d6
00|L; Y1) = —Zf Cos 10, 20, a0, ao,
QO[5 1tz = o Jo (2cos 6, — 2 + 2(2 cos 6, — 2)(2 cos 6, — 2) + (2 cos 6, — 2 + E
_zf”f” cos 1,0, cos 1,0, d6, do, (5.16)
o Jo 16(sin? (8,/2) + sin? (6,/2)) + E
. . r
For applications in quantum and statistical mechanics L, ,
one often has to evaluate the exponential of some differential = H exp( — M, (Bh ), (5.17)

operator H; if H can be put in cyclic matrix form, closed
expressions are readily derivable for the matrix elements of
exp(BH)(B is a scalar). A trivial example is offered by the case
H = A, which corresponds to the d-dimensional propagator
for a free particle.® By virtue of Egs. (5.10), (4.10), (4.11), and
{4.6) the matrix elements can be written

(0lexp(BA/2)|1)

=7 J:. . .J:exp(ﬁlzlh ~cos 6, — 1))

Xcos 1,0, - -cos 1,6, db,- - -d6,

d T
=74 Hf exp{Bh . *(cosf, — 1))cos 1,6, d6,
0

i=1
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i=1
which is simply the product of d one-dimensional propaga-
tors expressed in terms of the modified Bessel® functions
L,(2).

!P. O. Léwdin, R. Pauncz, and J. de Heer, J. Math. Phys. 1, 461 (1960).
2T. L. Gilbert, J. Math. Phys. 3, 107 (1962).

°P. B. Abraham and G. Weiss, J. Math. Phys. 3, 340 (1962).

*J. L. Calais and K. Appel, J. Math. Phys. 5, 1001 (1964).

*M. Abramowitz and J. Stegun, Handbook of Mathematical Functions (Do-
ver, New York, 1970).

G. D. Smith, Numerical Solution of Partial Differential Equations: Finite
Difference Methods (Oxford U. P., London, 1978).

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw—
Hill, New York, 1953), p. 1786.

8L. 8. Schulman, Technigues and Applications of Path Integration (Wiley,
New York, 1981), p. 4.

Philippe Audit 364



On the integrability of certain symmetric representations of the Lie algebra

of SO¢(4,1)
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A proof of the existence of an essentially self-adjoint extension of a symmetric SOy(4,1) Nelson
operator, which is constructed out of the generators of a positive mass, arbitrary spin unitary
irreducible representation of the Poincaré group, is presented. Our analysis of SO,(4,1) and its Lie
algebra provides us with an example of an observation of Harish-Chandra: Fhere exist subspaces
of the space of differentiable vectors of a representation of a noncompact group which are
invariant under the Lie algebra, but the closures of the subspaces are not invariant under the

group. The chief results of this paper should hold true for SOy(n,1). In particular, we should have
a realization of an arbitrary principal series irreducible unitary representation of SOg(n,1) on the
direct sum of two identical unitary irreducible representation spaces of the motion group in an n-
dimensional Minkowski space, which has one timelike dimension.

I. INTRODUCTION

It was first pointed out by Harish-Chandra that there
are subspaces of the set of differentiable vectors of a repre-
sentation of a noncompact Lie group which are invariant
under the Lie algebra, but the closures of the subspaces are
not invariant under the group.' This unexpected behavior
seems largely to have remained unnoticed by most theoreti-
cal physicists; they usually assume that if we are given a
representation of a Lie algebra by symmetric operators in a
linear space ¢, which is dense in a Hilbert space #° (dense
with respect to the topology given by the inner product), then
there exists a unitary representation of the associated Lie
group in #°. We present here an example of Harish-Chan-
dra’s remark that should be of interest to both mathemati-
cians and mathematical physicists: We describe representa-
tions of the Lie algebra of the Poincaré group Z on the space
of differentiable vectors @ (m,s; 1 ) of an irreducible unitary
Poincaré group representation,> and we construct on this
space a representation of the Lie algebra of SO,(4,1)—the
simply connected covering group of the de Sitter group—by
symmetric operators. We show that the closure of the space
@ (m,s; +) does not furnish us with a representation of

SO,(4,1). However, we are able to show that the direct sum

of two identical spaces of differentiable vectors, @ (m,s; + )
e @ (m,s; + ) for irreducible unitary Poincaré group repre-
sentations does furnish us with a representation of SO,(4,1)
on its closure, the direct sum of two identical unitary irredu-
cible representation (UIR) spaces of P
Hm,s; + ) o H(m.s; + ). [#(m,s, + ) denotes the space of
a positive mass,” arbitrary spin, positive or negative energy
UIR of Z.] We are able to realize all of the principal series
UIR’s of SO,(4,1) in this manner.

Before we state our results for the general case we de-
scribe those representations of SQO,(4,1) which are realized
as equivalent multiplier representations on either the three-
sphere or on the two-sheeted three-dimensional (compacti-
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fied) hyperboloid,** and prove our claims for those cases.
First, however, we discuss some important results on infi-
nite-dimensional group representations, which we will need
later on.

The description of the SOy(4,1) multiplier representa-
tions on the three-sphere or on the compactified hyperboloid
shows the geometrical origin behind the noninvariance of
the closure of the space of differentiable vectors of a Poincaré
group representation under the SO,(4,1) representation:
The vector fields defined on each branch of the hyperboloid,
which are associated with the SQgy(4,1) Lie algebra genera-
tors, are not complete,® and the action of SO,(4,1) on each
branch of the (noncompactified) hyperboloid must be de-
fined as the action of a local Lie group.®

We now make a few remarks concerning notation.
Lowercase Roman indices generally run from 1,2, 3 0r0, 1,
2, 3, 4, and Greek ones run from 0, 1, 2, 3. The metric tensor
of Minkowski space M, is 77, = diag(l, — 1, —1, —1)
and n,, = diag(l, — 1, — 1, — 1, — 1) is the metric tensor
of a (4 + 1)-dimensional Minkowski space, M, ;. The trans-
lation generatorsin M, |, are denoted by a four-vector opera-
tor P* = (E °?,P°?) and the contravariant four-momentum
vector is p* = (E,p). The position operator acting on .%*(RY),
where R* is the character space of the four-dimensional abe-
lian translation group (momentum space), is given by

or= —i9 - —(1—3—,—1-v )

ap, GE i *
Il. THE SPACE OF DIFFERENTIABLE VECTORS

Let G be a Lie group and denote its Lie algebra by &.
Let (U(G),¥°) be a bounded continuous representation of G
in a Hilbert space #°. We say that ve¥” is a C © vector for
the representation U if g—U (g)v is of class C © on G (geG).
Obviously the C = vectors form a vector subspace of 7#°; we
denote the subspace by & (U (G ), or simply by & * when
no confusion arises.
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We have the following well-known result.”

Theorem 2.1: Let (U(G,5°)) be a bounded continuous
representation of the Lie group G on a Hilbert space 5#°. For
Xe¥ define the linear map dU (X ) on & = (U (G ) into 57 by

tX

idU X =lim L0 =2

t—0 t
Then each dU (X ) leaves & =(U (G )) stable and i dU (X )isa
representation of 4 on Z (U (G )).

By the theorem, since i dU furnishes us with a represen-
tation of & on & =(U(G)), i dU extends to a representation
of the universal enveloping algebra #(¥) on Z=(U(G))
withidU(1)=I®

We now state the following important result due to
Goodman.®

Lemma 2.1: Let X;---X,, be a basis for %; suppose that
ve# lies in the domain of JJ=dU(X,)"

=dU(X,dUX,)-dU(X,) for m =1, 2, ... and 1<a<n,
then veZ =.

The following result characterizes & =(U(G)) as the
largest subspace of 7 which is stabilized by dU (¥). This
theorem will be very important later on. The characteriza-
tion was stated to our knowledge first by Nagel,'® but not
proved. However, it certainly seems to be known by other
researchers in the field,'* and is a straightforward conse-
quence of Goodman’s result.

Theorem 2.2: &~ is the largest subspace of #” such
that

§D=C n DU,

i)J, I~ Cc I=
Since the proof does not seem to appear elsewhere, we pre-
sent it in Appendix A.

We remark that &= is dense in the representation
space #. This follows from Garding’s theorem on the den-
sity of the Garding subspace ® (Ref. 12) and also Nelson’s
theorem that  C g =."?

For symmetric elements of & (%) and U unitary we ob-
tain the following.

Theorem 2.3: Let the representation U (G ) on 7% be uni-
tary. Then the representation dU(¥) of ¥ on & = is sym-
metric, i.e., all of the operators dU (X ) (Xe ¥ ) are symmetric
operators in 7. If Me# (¥ ) is a real symmetric polynomial
function in the variables X,---X,,

M=MX,X,)
= Y Coa, P, X, ) (C, ., €R),

for each ala = 1,...n).

where

PX, !

. Xa,.) =—
N ofa(l))ola(n)

and the representation dU (%) on & = is symmetric, then
(w]|dU M ) = (w|dU (M ).

That is to say, dU (M) is a symmetric operator.

Note: A Lie algebra representation is always a map from
the Lie algebra into skew-symmetric operators, if the corre-
sponding representation of the group is unitary. Thus, we
have the appearance of the factor 7 in the above. We do not
always make this trivial distinction between the “mathemat-

XO(a(l)) '"Xa(a('l))

1
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ical” and “physical” representations, and sometimes we call
a mapping of the Lie algebra into symmetric operators a
representation, as we did in Theorem 2.3.

HI. MULTIPLIER REPRESENTATIONS OF SO((4,1) ON
ZLaT?3)
We now describe certain multiplier representations of
SO,(4,1). First we recall some facts about local (global) ac-
tions of Lie groups on manifolds and multiplier representa-
tions, 413
Definition 3.1: Let G be an m-dimensional Lie group, V
a neighborhood of the identity in G, and let U be an open set
inR" containing zero. A local action (@, V') of the Lie group G
on UCR" is an analytic mapping @: V X U—R” such that
(i) for all xeU, @ (e,x) =ex =x
(e is identity in G );
(ii) for every g, heV with @(gx)=gxeU(xeU),
P (h, P (g.x)) = P (hg,x) = (hg)x.
From (i) and (ii) it follows that &, = ® (g, ):x—gx is locally
one-to-one for fixed g.'¢
Let exp Xt, Xe ¥ (Lie algebra of G ) be a one-parameter
group in G. If x,cU we call the curve x(t) = (exp Xt )x,
= @ (exp Xt,x,) the trajectory of x° under exp Xz.
Next we define a local multiplier representation T, of G
on theset & = & (U)of all complex-valued functions on R”,
which are analytic in a neighborhood containing zero, which
is contained in a set U on which a local group action is de-
fined.
Definition 3.2: Let Gbe a Lie group, (?,V') alocal action
of G on UCR” (U an open subset of R” containing zero). A
local multiplier representation 7, of G on ./ with multiplier
v, consists of a mapping T, (g) of & onto 7 defined for geV,
feo, by

[T,(g)f 1(x) = vig.x)f (gx), x€U, (3.1)
where v(g,x) is a complex-valued analytic function of g and x
and satisfies

(1) viex) =1, VxeU,
(2) V(g182%) = Vg1, XV(82:81%),
81:82818:€V, xeU.
From (2) follows a local homomorphism condition
[T.(g:&.) )
= [T, 8T, (&) ]x) (81828186 ).

Now we define the so-called generalized Lie derivative
for a local multiplier representation.'*

Definition 3.3: The generalized Lie derivative D, f of a
function fiU—C, feo/ under the one-parameter group
exp Xt:U—R" (¢ sufficiently small so that exp XreV') is the
analytic function

[Dx£169) =< [T, (exp X0) 1] o)
o P, o
_jgl iglej 3gj v ),X)|8=e Ix; )
+ 3 X, Pixif(x). 32)
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Here the g;’s are the coordinates in a parameter space of the
group: g = (8,82----&= JEV, and the functions P;(x) are de-
fined by the differential equations

S X Plx) =< v (expXtr)] o (33)

d
j=1 dt
[X = (X,,X,,..X,,) withg;(t) = exp(X;¢)]. This set of all gen-
eralized Lie derivatives form a Lie algebra which is a homo-
morphic image of ¥. We call such an action of & on U a
generalized infinitesimal action. The operations, are, of
course, addition and Lie product of Lie derivatives. The gen-
eralization to these local multiplier representations of the
converse of Lie’s second fundamental theorem'” is the fol-
lowing.'®
Theorem 3.1: Let y*™'(U) denote the space of all analytic
differential operators on U. Let ¢: & —y*™(U) be a general-
ized infinitesimal action of & on U, an open set in R” con-
taining zero. Let all ¢ (X ) (Xe¥) be of the form

$)= 5 aDyix)

where
X=2 a
ji=1
(the I, are a basis for &) and where
d a
D)= Y Pylx) =+ Bylx) =4 )
i=1 axi
are a set of m linearly independent differential operators de-
fined and analytic in UCR”, which are the images of a basis
for the Lie algebra &. Then the set of all the ¢ (X )’s is the
algebra of generalized Lie derivatives for a local multiplier
representation T, of a group G whose Lie algebrais &. If G
is simply connected, the local multiplier representation of G
is unique except for the possible choice of VC G.
The action of G on x°eU is obtained by solving the dif-

ferential equations

Ge=3 o B,

0

x0)=x7 (i=1,.,n),

% viexp Xtx,) = viexp Xtxo) 3 a; Pyfxit)

ex’) =1),

where x(t) = exp Xt x, (Xe¥). Specifically its action is given
by

[T, (exp Xz) f](xo) = viexp Xt,x,) f (exp X7 xo),

where v(exp Xt,x,) and x(¢) are the solutions of the above
differential equations.

Obviously the local definitions which we have made in
the above can be applied to a manifold M if we consider U to
be the image of a subset of M in a chart on M.

Definition 3.4: An infinitesimal & action on a manifold
M is defined to be a homomorphism ¢ of & into the Lie
algebra of all differential vector fields on M.'°

We define a global G action on a manifold M as fol-
lows'?:
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Definition 3.5: Let G be a Lie group and let M be a
manifold. Let £ (M) denote the group of all diffeomor-
phisms of M into itself. A global G action @ on M is a map &:
G X M—M withg—®, a homeomorphism of Ginto Z (M ).
If the map @ is one-to-one the action is said to be essential.
[P, (x) =gxeM.]

We would like to know when an infinitesimal & -action
on a manifold M generates a unique global action of G on the
manifold. For M compact we have the following theorem
due to Palais.?®

Theorem 3.2: If G is simply connected and M is a com-
pact Hausdorff manifold, then every infinitesimal & -action
¢ on M, generates a unique global action @ of G on M.

Next we define a multiplier representation T, of G on
M.

Definition 3.6: Let G be a Lie group and let & be a global
action of G on a manifold M. Let .¥*(M,u) be the Hilbert
space completion of the space of all complex-valued func-
tions on M which are square integrable with respect to a
measure ¢ defined on M. A multiplier representation 7', of G
with multiplier v is a bounded, continuous representation
T,(G)of Gon L (M) with T, (g):. L *(M,u)—.L*(Mu) de-
fined for geG and fc.¥"*(M,u) by

[T.(8) 1(x) = vig.x)flgx) (xeM.gx =P (gx)), (3.4)
where @ is a global action of G, on M, and v{g,x) is a complex-

valued, a.e. (almost everywhere) continuously differentiable
function in x and g such that

) vex)=1, VxeM,

(i) (g 182x) = V(g1,X)V(g2:81X),
21:8,€G, xeM.

Just as in the local case we may show that the homomor-
phism property

[7. 882l 100) = [T (@)T. (ga))f ](x) (3-3)
follows from (ii) combined with the action @ of G on M.

The analog of the Lie derivative of an analytic function f
onM [ feo/(M ), where o7 (M ) denotes the space of all analyt-
ic functions on M ] is the generalized Lie derivative.

Definition 3.7: The generalized Lie derivative D, f of
feo/ (M) with respect to the vector field ¢(X)(X

= 3", a;I,€¥) associated with the one-parameter group

D) = Peyp x :M—M is the analytic function

(Dx £l =2 [T, fexp X 1) -

Computation in a Euclidean coordinate system ¥,( p)
= (x4( p)sXo( P)s--sX, ( P)) (¢ is a differentiable map from an
open subset U of M into R", whose n components ¢, we
denote by x;) yields

(Dx fo ¥~ ")x)
_ R 5 oy 9Pxglt)| HSfoyT)
- jgl i;l % og; g=e ox; ¥

+ 5 5 nere 90, 3.9

where &;(x,g) = ;(gx) and where the functions P;(x) are de-
fined, as in the local case, by the differential equation
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L d
3 X, Byx) = viexp Xtx) | —o.
j=1

The set of all generalized Lie derivatives of a multiplier rep-
resentation of a Lie group form a Lie algebra which is a
homomorphic image of &. The operations are, of course,
addition and Lie product of Lie derivatives.

Next we describe certain representations of the de Sitter
group and its Lie algebra on subspaces of spin-zero unitary
representations of the Poincaré group. The Poincaré group is
the semidirect product of the Lorentz group SO,(3,1) with
the abelian four-dimensional translation group T,

Z = S0,(3,1)&T,.
80(3,1) is the component connected to the identity of the

group of all real linear transformations of R* which preserve
the quadratic form

x3 —xi—x3 —x}

on R*. The simply connected covering group of Z we denote
by Z and is equal to SO,3,1)&7T, where
S0,(3,1) = SL(2,C) is the simply connected covering group
of SOg(3,1). Positive mass, integer, or semi-integer spin
UIR’s of 7 were constructed by Wigner.?! We denote the
UIR spaces of these representations by #°(m,s; +) or
7 (m,s; — ), the + or — signs referring to UIR’s with dif-
ferent signs of the eigenvalue of the generator of translations
in the x, direction. Realizations of these representations for
spin zero are provided by Hilbert spaces of .#? functions on
the positive and negative branches of the momentum hyper-
boloid (the character space of 7, for these representations):

(a)ps — IpI>=m>, po>0,
(3.7)
(b)pg - |P|2 =m?, p0<o’
where ( po,p) = ( PosP1,P2:P3) denotes the coordinates in the
character space. The two branches are depicted in Fig. 1,
where it is shown how they form the cone in projective four-
momentum space.>? The following measure on 7' ;' is invar-
iant under the Poincaré group:

du (p) = |1/2poldp, dp; dps, po>0. (3-8)

We may construct on T';+ the Hilbert space .£*(T ;" ,du ).
We have the well-known result??

H(m0; +)= LT3 dul).

Likewise on T ;- we have the Poincaré group invariant mea-
sure

du5(p) = 1/2po|dp, dp, dps, po>0
and the Hilbert space

KZ(TS_ Adp 5 )=H (m,0; — ).

For convenience we write these Hilbert spaces simply as
LT ;) or LT ;) when no confusion arises.

Now let us denote the space of all bounded linear opera-
tors on LHT;) [or LYT;)] by RB(LATS))
[or Z(L3T5)]. _

Then the action of Z on L3T ;") [or L3T; )] is
given by the mapping U:Z->B(LYT5)|[or
#(LAT )] with

(3.9)
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Xo

C, the plane: xz1 ] ': /
T, /\ _,”

l /

|

— the plane: Xzl

FIG. 1. The three-sphere of radius m and the hyperboloid of radius m in
projective four-space (R°). The cone Cq= {x|x2 —x} —x2 —x —x2
= 0} intersects the plane x, = m in the sphere S; and C, intersects the plane
x,=m in the two-sheeted hyperboloid T, =T ;*UT;". p, = (xs/mx,,
x;/mx,) and p,, = (x,/mx,, x,/mx,) relate usual coordinates (p, and p )
on T, and S; to projective coordinates x,.

[U((A.a)f 1(p) =e~“*f(A "' p), (3.10)
where p—A ~! p is the usual linear action of SO(3,1) on R*
[A€SO(3,1)] and a€T,.

This representation is easily shown to be continuous.
For computation of Lie derivatives it is necessary to transfer
these actions of Z onto certain images of .£*T';") [or
LT ;)] associated with the charts on T, obtained by the
projection 7 of T';* or T';~ onto R?, as shown in Fig. 2. #* *)
[or 7 ~] is defined by

i )(PO:P:') =P
7= ) = ((p* + m?)'2p;), (3.11)
7 Npop,) = pis
777 p) =(— (p* + m?)'*p,). (3.12)

With these projections we define the isometric mappings
M- LYT > LHRdu )
(I p) =" o))

(3.13)

1(3) 2{3

FIG. 2. Projectionof T';" ontoR and 7’;” ontoR .
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LT 7 > LR du )

S p) =, )
where .Z*(R%,du ) [or .£* (R%du 5 )] is the Hilbert space
completion of the space of all £R*>—C which satisfy

d?

1= [ 5 T A (Pl < o
Using [T+’ (or IT~) we can define equivalent actions of 7
on £ (R%dus) [or £ (R% dugz)] by

vt =g it -t
or

Ut =g umo-,
Using this equation and Eq. (3.10) we compute the Lie de-
rivatives of the one-parameter subgroups of SO(3,1) rota-

tions and the translations in the charts on 7, defined by 7 !
or 7' ). The well-known results are**>*

[Pif] =p, f(p:)[Pof1(P:)

= +m> +p’ f(p.)eL*Rydu ),

(3.14)
E; E
- pm;g)f(p..)
[M kf](p,)—zpo—kf(p.-)

Here fe.£*(R%,du }7 ) [or fe.#*(R*dp 5 )] is any differentia-
ble vector for the Poincaré group representations U - (or
U™"). The + sign for the eigenvalue of P, is for
fe LY R%du ) and the — sign is for fe L3R du 5 ).

Now we define some local actions of SOy(4,1) on cer-
tain subsets of R>. Here, O(4,1) is the set of all real linear
transformations of R®> which preserve the form

[M,f 1(p:) = ,(p,
, Lmk =1,2,3.

x5 —x} —x3 —x5 —x3.
SO(4,1) is the simply connected covering group of the com-
ponent connected to the identity, SO,(4,1) of O(4,1).

The linear transformations of R® which preserve the
cone C, (see Fig. 1) induce through projection, a local action
on T°? as follows: Suppose x° (a = 0,1,2,3,4) is a lightlike vec-
tor in five dimensions, x*x, = x3 —x? —x2 —x2 —x2 =0.
All transformations A of O(4,1) [and hence of SO,(4,1)]
preserve the length of this vector, i.e., A x° = y*( y, y* = 0).
To each vector x°, we may associate a vector p* on T as
(p*/m) = (x*/x*). Let U * be an open subset of T';* contain-
ing the point (1,0,0,0). Choose ¥ to be a neighborhood of the

identity in SO(4,1) so that for all p*eU +

- K (Ax)y €T
P Ay
(x = (Y withZ = ﬁ‘) (3.15)
m X

Equation (3.15) together with these remarks define an
actionof SOy(4,1) on T ;. Inasimilar way we may define an

action of SOy(4,1) on T ;- through the use of Eq. (3.15). [Let
U ~ be an open subset of T';~ containing the point ( — 1,0
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0,0).] Through the use of the projections 7\ *) and 7' ! these
local actions induce local actions as defined in Definition 3.1
of SOy(4,1) on 7!+ U *)and #* ~ (U ~), which are subsets of
R3.

Next let us define certain generalized infinitesimal ac-
tions of the Lie algebra of SOy4,1) on (7' (U *)) and
& (7 ~(U 7). The actions are constructed out of the ex-
pressions for the generators of 7 given in Eq. (3.14) and are
given by the set of all

X= ”,Vz: . a"M,, +2a % B, (a*",a"cR)
with
( ijr ok)
and
Llps =i(P + 2 (pem }) (0 <AcR),
A H A M 2m PH

where the + distinguish between the two possibilities for
polpo= +m*+p)'? for #AHNUY) and p,
= — (m*+pH)"? for #'~U~)]. We argue below that
these operators satisfy the commutation relations of the Lie

algebra of SO,(4,1). Thus by Theorem 3.1 these generalized
infinitesimal actions of ¥ on U * (or U ~) generate local mul-

tiplier representations T'{}.); 2 (or T'{2);2u2 of SOy(4,1)
on (7 U *)) and (7'~ (U 7)). Their forms are expli-
citly given by

T(MI/AZ)I/Z —” T'( 2/12‘|/2 ”(+)—1
or

T},;z}/l 312 = II‘ - )T'lmz//l 2)1/2 H( -)-
where T,/ 2 is given by SO,(4,1) 1)24—T,,:/,2(4 ) with
(Timsap2(4) SN D)

= |u{d ~'p)| 2N fmd = p/m),

(3.16)

where fe (T ;) [or fe£>£*(T ;)] is the image of an

JFed (7 U *)) [or feod (*— U ~))] under IT+ {or IT' ),
and

(- 2-

1 .~
=-—®(4,p),
m

a4(d =) + Z at({d ~ ") p*/m)
ayd Y+ Zal{d Y p/m)

(3.17)

WA o) =aid )+ S a2

(V(Z,P) = |y(Z —l’p” —3/2— gm¥/A 2)112)
with
000 aol a02 a03 004
_ alO al1 a12 a ,3 a 14
A= a, a*, a4, &, a4, eP(V)CSOy4,1).

P, @& o, @, a34

a*y, a*, &, a*, o,
[4 is an element of S0,(4,1) corresponding to the element 4
of  SOy4,1) under the covering projection
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P: SO,(4,1)—S0,(4,1).] The reason why these local multi-
plier representations cannot be extended to global multiplier
representations on a larger subset of R* is made clear from an
analysis of Eq. (3.17) and Fig. 1. For certain 4 ’sin SO,(4,1)
butnotin ¥, pointsin U * or U ~ can, under the action of the
mapping defined by (3.17), be moved from one branch of the
hyperboloid into the other. As seen from Fig. 1, any 4 which
moves points of the left hemisphere of S, into points of its
right hemisphere will interchange points in different
branches of the hyperboloid.

Despite the above result, the generalized infinitesimal
action of the Lie algebra of SO(4,1) on (7' * U *)) and
& (7'~ U 7)) can be extended to representations on func-
tions analytic on all of R>. In fact, it even gives us a represen-
tation of the Lie algebra of SO,(4,1) on the space of differen-
tiable vectors for the associated spin zero, positive mass
UIR’s of the Poincaré group. We denote these spaces of dif-
ferentiable vectors by Z = and Z~ .

Theorem 3.3: The following expressions are the genera-
tors for representations of the Lie algebra of SO,(4,1) by sym-
metric operators on £ = or &=

M,,, (3.18)
Lpz-L(p + 2 (pPom,}), 0<icr. (3.1
788 = Bt g P PMaud)p Ok B0
For p, > O the representationison & % , and for p, < Oitis on

=,

Proof: We verify straightforwardly, using the commu-
tation relations of the Lie algebra generators of 7 that M,
and (1/4)B F satisfy the commutation relations of the Lie
algebra of SO(4,1)

[/1 BZ ——B i] iM,,,
(3.20)

1 1 1
ooz |~ (o Loz 5. 42)

Since we have on % arepresentation of & (7 ), the genera-
tors (1/4)B " and M, leave invariant D%, and (by
Theorem 2.3) are symmetric operators on D C .#*(T;").
Thus the generators (1/4)B " and M,,, are a basis for an
SO,(4,1) Lie subalgebra of dU (£ (Z)) onD and they gen-
erate a symmetric representation of the Lle algebra of
SO,(4,1) in LT ;*). The same arguments show that (1/
A)B . and M, generate a representation of the Lie algebra
of SO,4,1)on = CH(m,0,— )= L4T;).

Does there exist a unitary representation of SO,(4,1}in
either LT ;") or .£*(T ;) such that its Lie algebra repre-
sentation is the one generated by the symmetric operators
(1/2)B } or(1/4)B, and M, which are defined on either
of the dense subspaces Z+ or Z 7, i.e.,, a U (SO,(4,1); +)
[or a U {SOy(4,1); — )] such that

i(1/4)B * v=l'iino(t”1[U(e"’“,j:)v—v]) (3.21)
and

iM, v—hm(t_'[U(e “Jo — v]) (3.22)
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for v either in % or & = ? The answer is no. A very ab-
stract proof of this statement is presented in Ref. 2 (p. 235); it
uses the reduction of a UIR of SO,(4,1) in a noncompact
“generalized basis” which “‘diagonalizes” the noncompact
SO,(3,1) subgroup. Through the use of Theorem 3.1 we can
provide here the geometrical reason for this fact. (We treat
the case p,>0.) We can choose UCR? so that the express-
ions in (3.18) and (3.19) generate a generalized infinitesimal
action on U. By Theorem 3.1 this action is the algebra of
generalized Lie derivatives for a {unique) local multiplier
representation 7, of SO(4,1) and by Definition 3.3 this lo-
cal multiplier representation is the one described by Eq.
(3.16). { Using (3.16) and the mapping /7 [Eq. (3.13)] compute
(D, f)(x) to obtain (3.18) and (3.19).} However, for the rea-
sons stated above it cannot be extended to a global multiplier
representation on R?, with an action on T';" given by Eq.
(3.17) for arbitrary U’s. Likewise for the case p, <0 we can
show there exists no unitary representation of SO,(4,1) on
LT ;) with the generators given by expressions (3.18) and
(3.19), and an action given by (3.17).

From this result we know there cannot exist a & with
D5 CHCLHT ) ora D with P> CHC LT )]
with the property that an extension of the Nelson operator
onZ= (orJ=),

#=LpEiel 3 B

i=1

+— Z 2

=1
is essentially self-adjoint on & . This follows from a theorem
of Nelson.?® Otherwise we would have a group representa-
tion of SO,(4,1) on LT ;") or LT ;).

From Theorem 3.2 we expect that it might be possible
to obtain a global action of SO,(4,1) on some compactifica-
tion of T';+ and T ;. To this end we define a global multi-
plier representation of SOg(4,1) on a compact manifold 7",
which contains 75" and T';. This T is obtained from
T, = T ;uT ; by the adjunction of a surface at infinity of
codimension one such that the map

7T $—Sy:7(p) = (p*eT’5)

(3.23)
establishes a homeomorphism of 75 onto .S,. Its inverse is
given by

7 u) = [mug ', ( (u*eS,).  (3.24)
A neighborhood of a point of infinity of T { is chosen so that
T is to be a homeomorphism. Equation (3.15) then deter-
mines a global action of SOy{4,1) on T {. For the measure on
T, we take the measure on 7';% and T ;- given by Eqgs. (3.8)

and (3.9). The Hilbert space is the completion of the set of all
JS:T3—C such that

0= Fortodut + | Flor (P <.
3 3 (3.25)

[mps 1,( — mp;/p,) ]

—mu,/u,) |

A. Bohm and P. Moylan 370



(Since an £:T y—C differs from an f:7;—C by a set of mea-
sure zero it suffices to consider functions on T,.) With these
definitions we have
Theorem 3.4: A multiplier representation 7./, 2: of
SO,(4,1) on the compact manifold 7§ is provided by the

operators T/, (A4 ) for each 4 SOy(4,1) with

[Timeran=(4 V] (P)
_ 1
- [(Z —1): + (Z —1):(1,14/”']]31/2+i(m’/}.’)”2

A%+ lp/m) )
@+ @R p/m)

Furthermore, T/, is a unitary irreducible representa-
tion of SO,(4,1) on .£*T;). The proof is presented in Ap-
pendix B. Note that the muitiplier is undefined for certain
A’s and p’s.

Using Definition 3.7 we may compute the generalized
Lie derivatives of an analytic function fe.«Z(T,) with respect
to the one-parameter subgroups of SOy(4,1) rotations along
the coordinate planes in the projective space of Fig. 1. In
order to explicitly compute the generalized derivatives we
use the coordinate systems defined by the projections 7'’ of
Fig. 2, along with Eq. (3.26). The results are?”’

Dl for =) =) p)
= —i ,_a__ _3_ ol =1 p.
R ) T 1
= My for*)= ) p)

X f(m (3.26)

(3.27a)

M, 0\ ((for ~Y)p,)
ot £ =) p, =( uv ) ( _ ),
(Dl f Wed=\ o m_ ) \(for—-Yp)

I

Dyl for =1~ N py)
= ~i{p g oms Wp

= ok(foﬂ'(i)— l)(Pi) (i, .k = 1,2,3),
(D,sul for' £~ ) p)

=(I/A)P, + (A /2m){P *,M,, })( for'®) = ") p,),
(3.27b)

where we have introduced the notation 7+ to stand for the
two maps 7' *' and 7 ~), so that Eqgs. (3.27a) and (3.27b) are
two sets of equations, one set for the chart on 7';" and the
other for the chart on T';. [We could also compute deriva-
tives at points at infinity using the mapping (3.23) followed
by a stereographic projection of S 2 onto R, but this result is
of no importance for us.]

Next we cast (3.27a) and (3.27b) into more useful forms.
Consider the Hilbert space direct sum

H=LUT e LUT ;)= LAT,). (3.28)
Also consider the decompositions

AT)=A(T;H)e L (T )CH (3.29)
and

=9 0= CH. (3.30)

These decompositions are obvious since any function f in
ZT;)is equivalent to the pair ( f,, £,) with f,&.£*(T ;+ ) and
€T ;). Using the decomposition (3.29) we can com-
bine the two sets of equations of (3.27a) and (3.27b) into a
convenient matrix form:

(3.27a))

(1/A)P, + (A /2m){P .M, }) 0 (from )= p,)
D, . for' £~ 1)) p, =( g i )( ) 327’
sl o= W) 0 (1/4YP, + @ 2m{p oM, 0 \(frort =) ) B2
Viewing f,o7'*)~ ! and f,o7* ~'~ ! as functions in Z % and ! With this we have shown that there exists a unitary

>, respectively, we obtain the following theorem whose
proof follows from Theorem 3.4.

Theorem 3.5: The following expressions are the genera-
tors for a unitary representation of the Lie algebra of

SO,(4,1) by symmetric operatorson ¢ =% e Z = :

(M,w 0) ; ((1/,1)3; 0 )
o M) ™ 0 (VA)B]

(3.31)
with
1 1 A
788 =7 (B3 )
Thus on ¢ we have a symmetric representation of the Lie

algebra of SO(4,1) with

(M,w 0) . ((1/,1)3; 0 )
o M, ) ™ 0 (1/A)B ]

being the generators of the representation. Furthermore, this
is a representation on ¢ of the algebra of the generalized Lie

derivatives of the global SO,(4,1) multiplier representation
T 2222 on the compact manifold 7' 5.
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representation 7,22 of SOg(4,1) on .#*(T;) with the
property that

Ju =limt =1 [T (™) f = £]

+—0

(Mw O\ (A
_, ( . ) (f2 ) (3.32a)
Ty, = lim 1 Tyl 1]
(/A h
_ ( P e ) (fz ) (3.32b)

for any f=( f}, f2), with f,eZ % and f,eZ = differentiable
vectors of the positive and negative mass unitary representa-
tions 5 (m,0; + ) and #(m,0; — ) of Z.

Now we show that the Nelson operator constructed out
of the

(L,w 0) d((l//i)B; 0 )
o /)™ 0 (VA8 )
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B R S BB+ S MLt S MM
N = - = -
0

which is a symmetric operator defined on ¢, has an essential-
ly self-adjoint extension to a larger domain (& _ ), namely
the Nelson operator for the SO,(4,1) multiplier representa-
tion, T,/ defined on the space & = of differentiable
vectors for this SOg(4,1) group representation. First observe
that ¢ =2 = © P = satisfies conditions (i) and (ii) of
Theorem 2.2 for the representation of the Lie algebra of
SO,(4,1) considered in Theorem 3.5. [Clearly

((1/,1)3; 0 ) ] (M,w 0)
0 wap; ) " M,

stabilize ¢, and vep—ven, , Z(J,,) since
1/A)B
ved=> (( B

0 (1/4)B -
(M#V 0

0 M,

so that J,, ve.¥(T) for all a,b = 0,1,2,3,4 by the above ex-
pressions for J,,.] Therefore, ¢ =25 @ F > satisfies
conditions (i) and (ii) of Theorem 2.2, so $C & *. We can
define extensions of the operators (3.31) to be the J,,,’s of
(3.32a) and the J,,,’s of (3.32b) defined on their maximal com-
mon invariant domain, & =. They are all symmetric on & =,
since, according to 3.4, T ., = is unitary (Theorem 2.3) so
they are symmetric extensions of the expressions (3.32a) and
(3.32b).

Now we claim .#" has an essentially self-adjoint exten-
sion #"*'t0 & <. We take the extension of the Nelson opera-
tor.# on ¢ to be the Nelson operator constructed out of the
infinitesimal generators (3.32a) and (3.32b) of the SO,(4,1)
multiplier representation T,:,, 2. Here /4™ agrees with
4 on ¢. We claim it is essentially self-adjoint (e.s.a.)on & =.
To show this we prove the following resulit.

Theorem 3.6: Let A be a symmetric operator with do-
main DC 7. Let D, C D be a dense linear subset of 7 and
suppose that A4 restricted to D, (4 |D,)ise.s.a. then 4 is e.s.a.
Although the theorem is well known, its proof is not so
straightforward, so we present it in Appendix C.

Now the Nelson operator for a unitary group represen-
tation is e.s.a. on the space of analytic vectors 4 (see Ref. 28)
and AC Y~ (U(G)) (see Ref. 29) so by Theorem 3.6

N JoSJos + JiSJiS + JOiJoi + % JikJik
on > =D *(Tpspn)isesa.

Now let us carry the representation 7T,z of

SO,(4,1) over into .Z*T ;* )@ .£*T ;*) and obtain analo-
gous results about integrability of the Lie algebra representa-

tion on a dense subspace of this space. For this purpose we
define the unitary operator

)vef 4T)
and

)ve.i” AT
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—B‘2+—ZB -BS +EM E

2
A i=1 i=1 =1

(3.33)

O-LHT ) o LHT ;7 VLT )0 LT )
by
LUT 7)o LT )
Su( p>{6v)( p)
= (Pv_(—pIeLHT )0 LHT ).

[v,(p)andv_( p) are the components of v( p)in .£*(T ;" ) and
LT ), respectively.] It is readily shown to be unitary, and

we define “abstractly” a representation of S_Om on
gZ(T ;- ) @ KZ(T ) by Tv(m’//l e = 07‘(”,2/,{ 2)!/:0 . Here,
T(mz,,lz,m is constructed so that T, ;202 and T,z/,22 are
unitarily equivalent. Because of this unitary equivalence, we
have also an extension of a similar Lie algebra representation
defined on the direct sum of the spaces of differentiable vec-
tors of two positive energy spin-zero (positive mass) UIR’s of
. This proves (for the case s = 0) the result conjectured in
Ref. 2.
Finally we remark that the multiplier representations of
SO,(4,1) on .£°*(T), which we have constructed, are equiva-
lent to certain multiplier representations of SO,(4,1) on
ZS,). The unitary equivalence is established through the
use of the mapping 7 defined in (3.23). (See Refs. 3 and 4.)

IV. THE INTEGRABILITY OF THE LIE ALGEBRA
REPRESENTATION OF SO,(4,1) ON
D = P(m,s; + ) & Pim,s; — )CH(m,s; + ) @ Z(M,S; —)

In this section we consider an arbitrary spin unitary
irreducible representation of Z—%°(m,s; + }—and state re-
sults analogous to those which we proved for the spin-zero
case. First we note that there exists a generalization of
Theorem 3.4 to arbitrary spin: There exists a continuous,

unitary irreducible representation of SO,(4,1) on the Hilbert
space direct sum

Hm.s; +) o X \ms; — ).

This generalization to arbitrary spin, which is described in
Ref. 4, involves replacing complex-valued functions on T,
with complex vector-valued functions on 73, and a suitable
modification of the multiplier (4,p) together with an inter-
nal SO,(4,1) rotation of the finite-dimensional spaces in
which the functions take their values®’; so in principle, the
analysis of the last section should carry over with little differ-
ence, except for modifications that come about from dealing
with vector-valued functions on 7.

The analog of Theorem 3.5 for arbitrary spin involves
only the addition of a term S,,, (Ref. 31) to the orbital angular
momentum tensor M,,,. The S,,,’s generate various Lorentz
transformations in the internal space of the vector-valued
functions. Using this remark we may state the following ana-
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log of Theorem 3.5 for arbitrary spin.
Theorem 4.1: The following expressions are the genera-
tors for a unitary representation of the Lie algebra of

SO(4,1) by symmetric operators on @ (m,s) = @ (m,s; + )
P (m.s; —)

(4.1)

with

A
7o =gy 0onn)

andL,, =M, +S,,. Therefore, on @ we have a symmet-
ric representation of the Lie algebra of SO,(4,1) in which

(L w 0
0 L

v

1
e
) and

0 B

are the generators of the representation.

In order to prove this theorem we must first determine
the form of the generators of the Poincaré group representa-
tion acting on ##°(m,s; 4 ). These expressions are well known
and are given by>' generators of translations P, and genera-
tors of Lorentz transformations L,, =M,,, + §,,,, where
P, and M, are given by (3.14). Thus the(1/4) B F and L,
of Eq. (4.1) are, as in Sec. III, bases for representations of the

SO,(4,1) Lie algebra of (2 )in & (m,s; + ) and @ (m,s; — ).
Furthermore, they generate symmetric representations of

SOy(4,1) in @ (m,s; + )and P (m,s; — ) (by Theorem 2.3}, and
therefore the matrix expressions in Eq. (4.1) generate a sym-
metric representation of SQO(4,1) in @ (m,s). Finally we
claim that the expressions in (4.1) are the generators of a
unitary irreducible representation of SOy4,1) on
Fm,s; + )@ F\m,s; — ). To prove this we must know the
explicit form of the generalization of the multiplier represen-
tation of Theorem 3.4 and then, using this form, we must
calculate the infinitesimal generators of the representation.
The calculation, which is basically the same as the calcula-
tion of Eqgs. (3.27a) and (3.27b) (except the functions now are
vector-valued functions), is given in Ref. 4. We obtain for the
infinitesimal generators exactly those matrix expressions in
(4.1), and for the same reasons as in Sec. III, they can be
applied to any ve® (m,s). These remarks complete the proof.

The proof that the Nelson operator on @ (m,s) con-
structed out of the (1/4)B ,F and L,,, in (4.1) has an e.s.a.
extension to the space of differentiable vectors for an

SO,(4,1) representation is essentially identical to the proof
for the spin-zero case. [We use the fact that there exists a
unitary irreducible representation of SOy4,1) on
FHm,s; + )@ H\m,s; — ); and the infinitesimal generators
of the representation when restricted to @ (m,s) are given by
the matrix expressions of Eq. (4.1).]

Finally we note that it is possible to obtain realizations
of the principal series representations of SO,(4,1) on the
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Hilbert space direct sum of two identical irreducible unitary
representations of 7
Hms; + )@ H(ms; +).

The proof of this fact involves an obvious generalization of
the isometric isomorphism & defined in Sec. III to vector-
valued functions on T; (see Ref. 4). Using this fact we can
establish that there exists an essentially self-adjoint exten-
sion of the operator which is the image under 8 of the above
Nelson operator on @ (m,s), i.e., an extension of the Nelson
operator on @ (m,s; + ) & @ (m,s; — ) constructed out of only
(1/A)B} and L,,,.
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APPENDIX A: PROOF OF THEOREM 2.2

Proof: First we show & > satisfies properties (i) and (ii).
{ii) is true by Theorem 2.1. If veZ = then the map fir
—U(e"p is C = for all the generators I, of &. But this
implies J, v exists since iJ,v is the derivative of fat ¢t = 0.
Hence,

ve r"wl_@(J,,).

Now suppose there exists a linear subspace &' of #°
which satisfies conditions (i) and (ii) of the theorem and
D> CYD' LetveZ' thenby (i) J,veZ ' and so by induction,
foreacha,Jve?' form = 1,2,... . But then, by Lemma 2.1
ve? <. Consequently &' = &=, Q.E.D.

APPENDIX B: PROOF OF THEOREM 3.4

To show that T ., .- is a multiplier representation of

SO,(4,1) we must show T2/, 22 (4 ) is bounded and contin-
vous and that

pd,p) =" + A ) (p"/m)

is a continuously differentiable function of 4 and p#, which
satisfies

(i)p(e,_p)_: 1, V&GT?, _

(i) (4,145, p) = pld,, piiAd,,4, p),  peT 5.

When we prove that 7)./, is unitary, the boundedness
requirement will follow immediately. Continuity means if
the sequence 4,€G converges to A, then U (4, )y—U (4 )¢
for every ¥€.2%(T;). This is clear since the multiplier is an
a.e. continuously differentiable function of 4 and p# and if
A,—A, then f(mA ' p/m)—f(mA ~* p/m). Condition (i)
for u(d, p) is easily seen to be valid. Condition (i) can be
shown by a direct calculation.® Thus T,z is a multiplier
representation of SO,(4,1) on .£*(T,).

To prove T2/, is unitary we first observe that the
measure on 75, [see Eq. (3.25)], which we denote by di2,
transforms in the following way under A€ SO,(4,1) (Refs. 3
and 4):
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d2’ = [|at(d =) + Zat{d ~ ") p*/m)|*] "' d0. (Bl)
Consequently we have for f, ge.¥¥(T)

(T(mz//tzw2 (4 )f;T(mZ/A’)'“ (4)g) = (18)
where we have used Egs. (3.25), (3.26), and the above equa-
tion for the transformation property of the measure. Irredu-
cibility of this representation is proved in Ref. 3 (Bander and
Itzykson) and also Ref. 4 by demonstrating the unitary
equivalence between T,/ 2= SOy(4,1) and another repre-
sentation of SO,(4,1) on .£%(S;). In the quoted reference,
irreducibility for the SO,4,1) representation on .#%(S;) is
explicitly demonstrated.>?

APPENDIX C: PROOF OF THEOREM 3.6

Proof: We have (1) A symm=>4 ** = 4 (L symm=L
CL*=D|(L *)dense=>4 ** = 4 (Ref. 33)).

Also (2) A symmetric=>4 symmetric [Proof: 4CA *
=>4 **C A * (take *}=>A4 ** C (4 **)* (take *). But 4 = A **
and 4 * = (4 **)*. * ACA *.] Further (3) 4 e.s.a. =4 * s.a.
[Proof: 4 * = (4 **)* = (4 ) = 4, since the closure of an e.s.a.
operator is self-adjoint and also we have used the fact that
A symm=>4 ** = 4.]

Now let A be the operator in the hypothesis of the
theorem; then

A, CA so A*CA¥=A4A1*
Also

A} =A*CA** =4 (Ref. 33)

L A*CA.

But 4 * is s.a., and 4 is symmetric by (2). So we will be
finished provided we show for any two operators L, L, with
L,s.a.,L,symmetricand L, C L, that L, is s.a. (which means
L,=L,). Toseethis: L,C L, =L $CL ¥ but L, symmetric
and L_,_S.a., SO L_z.CL 2*_C 1* = Ll' _.. L2CL1:>L2 = Ll‘
(ThusA =AY =A,,s0Adiss.a.so 4 is e.s.a.) Q.E.D.

[since 4 ¥ is s.a. by (3)].
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A Jacobson-Morozov lemma for sp(2n, R)
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A variation of the lemma of Jacobson-Morozov on the imbedding of a nonzero nilpotent element
of the real symplectic algebra into the split simple three-dimensional Lie algebra is proved. The
proof is algorithmic and relies on our earlier work on the theory of normal forms for the real

symplectic algebra.

1. INTRODUCTION

Let(R?",w)bethe2n-dimensionalreal vectorspacewitha
symplectic form . Consider a real analytic Hamiltonian
function H: R*" —R with power series H = & >, H;, where
H, is a degree i real homogeneous polynomial. When investi-
gating the local behavior of the corresponding Hamiltonian
vector field X, one of the most powerful techniques is to
eliminate or to simplify the terms of H through successive
applications of canonical transformations, also known as the
(nonlinear) normal form theory.

Thelinearvectorfield X}, viewedasafirst-orderdifferen-
tial operator maps the space of n-degree homogenous poly-
nomials into itself. Putting A into a normal form, then, re-
duces to the problem of finding suitable generators for the
complement of the image of this map. The linear Hamilton-
ian vector field X,; belongs to the real symplectic algebra
sp(2n, R) and, in principle, the normal form problem can be
solved using representation theory of sp(2#, R) on the graded
algebra of real homogenous polynomials.

Recently, Cushmanandhiscollaborators’ carriedoutthis
program successfully for systems with two degrees of free-
dom using representation theory of sp(4, R). Following the
customary first step in representation theory of Lie alge-
bras,” they first imbed the nilpotent part of X, in a certain
way, into the split simple three-dimensional Lie algebra
sl(2, R).

Thepurposeofthis paperistoproveavariantofthe classi-
cal Jacobson-Morozov lemma®* by generalizing their im-
bedding for any element of sp(2x, R} with nonzero nilpotent
part. A similar lemma can be proved for other classical Lie
algebras by using the results in Refs. 5 and 6.

ll. A JACOBSON-MOROZOV LEMMA

Lemma: Let Abe an element of sp(2n,R)and A =N + §
be its Jordan—Chevalley decomposition, that is, ¥ is nilpo-
tent, S is semisimple with NS = SN. Suppose that N #%0.
Then there exist two elements X and Y'in sp(2n, R) contained
in the centralizer of S satisfying the commutation relations

[X,Y]=2Y, [X,N]= —2N, [Y,N]=2X.

Proof: Using symplecticchange of bases, that is, elements
of the real symplectic group Sp(2z, R) we can first put 4 into
a (linear) normal form. For our purpose a particularly suit-
able complete set of all possible normal forms of 4 is given in
List II of Ref. 6, which is also reproduced as List I in Ref. 7.
The notation used below refers to this list.
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It suffices to prove the lemma only for the elements of
sp(2n, R) which are in normal form and indecomposable.
Notice, first, that in the list the nilpotent parts N are in the
classical Jordan normal form. Therefore, it follows from the
proof of the Morozov lemma for gl(n, C) given by Jacobson®
that the elements , X, and Y described below satisfy the
desired commutation relations. It remains to show, then,
that in the special basis chosen in the list, X and similarly ¥
satisfy the following matrix equations:

coX= —-Xo, (1)
SX = XS. (2)
Tosolve (1), let = (@*#) and X = (X*#) be their block

divisions according to the sizes of the diagonal blocks of . It
is evident from the list that

-1

0™ = e , withe* = 41,

—1

0 =0, ifa#p.
Suppose that X*# is of size k X I. Then X satisfies (1) if and
only if

(_1)i+ng’Ei+l,j=(—IV+IXIB;‘3'+1J 3)
withi=1,..,kandj=1,..,1

Using(3)itis easy to verify that X and ¥ described below
are infinitesimally symplectic.

Case I: Suppose that A = N is as given in (1) of the list.
Then

X,=m-—2(-1), i=1,..,m+1,
X,;=0, otherwise,

and
Y= —im+ili — 1), i=1,..,m,
Y,; =0, otherwise.

Case II: Suppose that 4 = N is as given in (2) of the list.
Then
Xiynm+ iwnmeny =m—2(~—1),
i=1..,m+tandn=0,1,
X,; =0,
and

otherwise,
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I’i+n(m+l),i+l+n(m+l) = —im+i{i—1),
i=1.,mandn=0,1,
Y,; =0, otherwise.

In the remaining cases semisimple parts of the indecom-
posable types in the list are no longer zero. Therefore, one
needs to verify that X and Y given below commute with S.
This is immediate, however, since the semisimple parts are
piecewise multiples of the identity.

Case I1I: Supposethat4 = N + Sisasgivenin (3), (4), or
(5) of the list. Then X and Y are the same as in Case II above.

Case IV: Suppose that 4 = N + Sis as given in (6) of the
list. Then

Xy nm+ itnim+ 1y =m—2(—1),

i=1..m+1, n=0123,
X,; =0, otherwise,
and
Yiinma i1 4nmeny = —im+ii—1),
i=1,.,mandn=0,1,2,3,
Y,; =0, otherwise.

This concludes the proof of the lemma.
The imbedding above is algorithmic in the sense that fol-
lowing Burgoyne and Cushman® one can first put any ele-
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ment A of sp(2n, R) into the normal form as a direct sum of
the entries of the list and then use the infinitesimally sym-
plectic matrices X and Y given in the proof above.

Notice that the bases in the list are not the standard one.
Using the information in the two lists given in Ref. 6, how-
ever, the elements N, X, and Y can easily be written in the
standard symplectic basis.
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Representations of a Kac-Moody algebra § associated to a semisimple Lie algebra g, which
decompose to a direct sum of finite-dimensional representations of the subalgebra g, are
constructed using a step algebra method. The cases g = 8u(2), 8u(3) are considered in detail.

I. INTRODUCTION AND NOTATION

Kac-Moody algebras appear in several places in classi-
cal and quantum physics. It is known that certain classical
field equations in 1 + 1 space-time dimensions admit infi-
nite-dimensional symmetry groups which have a Kac-
Moody type of Lie algebra.! In 2 + 1 dimensions the current
algebra of a Yang—Mills theory with an anomalous term (to-
pological mass) is a full Kac~Moody algebra (including the
central term) provided that certain nontrivial boundary con-
ditions for the gauge fields are satisfied.” In four space-time
dimensions the self-duality equations for the gauge poten-
tials possess a Kac—-Moody symmetry.® There are also sever-
al models in (1 + 1)-dimensional quantum field theory
which lead to Kac-Moody algebras.* I have given here only
a few references to the fastly growing literature; more can be
found for example in the review article by Dolan.’

Let g be a finite-dimensional Lie algebra with the Kill-
ing form (x,y):=tradx-ady,x,yeqg and adx:g—q,

ad x(y): = [x, y]. Let § be the linear space of Laurent polyno-
mials p(z, z~ ') with values in g. There is a natural grading by
degree and we can write

i= o g".

nelZ

(1.1)

If x € g denote x\"): = x . 2" & g™, The Lie algebra structure
on § is defined by

[x", y™]: = [x, 1"+ ™ +ia - ns, _.{(x,p), (1.2)
where a is a constant. If G is a simply connected and con-
nected real Lie group with the Lie algebra g, then § is the Lie
algebra of a one-dimensional central extension G of the
group of G-valued C* -functions on the unit circle S ' (with
point-wise multiplication),

(f, a)(g, b): = (fg, abe™" ), (1.3)

with (fg) (¢ ): =f (¢ )g(d) and wf, g) is a two-cocycle. If we
consider the group consisting of maps D—G instead of

S '—>G, where Dis the unit disk with S ! as the boundary, then
@ can be defined by

olf gk =a fD (F df, g~ de). (1.4)

If
fle)=e"9, glz)=e™, zeD, (1.5)

where x and y are g-valued functions and ¢, s real parameters,
then

;:—d;w(ﬁ 8lics—0= aL (dx,dy) = aLl (x, dy).
(1.6)
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Inserting the Fourier components x"(g) = x exp ing,y"™(@ )
=y exp img@ in (1.6), one gets the central term in (1.2).

There are two ways to construct representations of §.
First one can try to construct representations of G by global
methods and then differentiate these to give representations
of §. Global methods have been used for example in Ref. 6. 1
shall follow a second route, namely I shall construct directly
representations of § by algebraic methods. I am not going to
solve the (very difficult) problem which of the representa-
tions of § correspond to unitary representations of G.

Step algebra ( = algebra of raising and lowering opera-
tors) methods have been applied earlier to a wide variety of
problems. In the beginning, step algebras were used for con-
structing irreducible finite-dimensional representations of
classical Lie algebras in canonical chains of subalgebras.” It
was later realized that step algebras could be constructed
also for noncanonical chains.? In the next phase it was shown
how to use these methods to classify irreducible infinite-di-
mensional f-finite representations of Lie algebras containing
a semisimple subalgebra f({-finite means that the representa-
tion is a direct sum of finite-dimensional representations of
¥ ; irreducibility refers to the larger Lie algebra).® In this pa-
per I want to show that step algebras are useful also in the
representation theory of Kac-Moody algebras. The algebra
@ contains the subalgebra g which can be identified with g. I
shall discuss the g-finite representations of § for the semisim-
ple Lie algebras g. The case g = A, =8u(2) is worked out in
detail in Sec. II. Section III contains first some general re-
sults, valid for all semisimple g, which are then applied to the
caseg=A,.

The representations which will be constructed are
called the discrete series because of a certain parallelism with
the theory of discrete series of semisimple Lie algebras; the
term “discrete” has to be understood in a somewhat general-
ized sense since, in addition to a set of discrete parameters
(dominant integral weight of g), the representations will be
parametrized by a representation of an infinite-dimensional
Heisenberg algebra. The same kind of Heisenberg algebras
appear also in the theory of maximal weight representations
of §.101!

Leth C gbea Cartan subalgebra, ¥ the system of roots
for (g, b) and 4 = {a,,...,a;} C ¢ a system of simple roots.
Let h* be the dual of ) and (-, -); h* X h*—C the dual of the
Killing form of g restricted to §). Put

(a,B):=2(a,B)/B,B)) (1.7)

Then the set of dominant integral weights is
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AT ={Aeb*|(A,a)eZ, Vacd)]. (1.8)
Z is the set of non-negative integers. If the §-module V'is g-
finite, then

V= 7] V/I’

AeA™

(1.9)

where V; is a direct sum of irreducible finite-dimensional g-
modules with the highest weight A. The g-submodule ¥V,
C V is the minimal components of V, if ¥, =0 for u <A
(here “ < refers to a certain lexicographical ordering on
A *)and ¥V, #0. My aim is to show that if the minimal A-
value is not “too small” then all the irreducible g-finite 3-
modules with the minimal component ¥, can be parame-
trized by representations of a certain infinite-dimensional
Heisenberg algebra which is acting on the subspace
Vi CV, of highest weight vectors. This claim will be prov-
en for the cases g = 4,, 4, but, using the results of Sec. I1I, it
should be rather straightforward work to prove similar theo-
rems for other semisimple algebras g.

For different approaches to the representation theory of
{i see for example Refs. 11. The results in Ref. 11 seem to have
little in common with the present paper. Except for the high-
est weight modules, people have earlier been interested
mainly in modules which correspond to unitary representa-
tions of groups. Here the representations are (for the most
part) nonunitary.

Il. THE CASE g = 8u(2)

Let {x, h,y} be a basis of the (complex) Lie algebra
g = A, =8u(2) such that
The element % spans the Cartan subalgebra h Cg. A basis of

§ is given by the elements x", ™, yI (n € Z) with the com-
mutators

[x(n)’ qu)] =2pm+n + 4am5", -

[A, xm] = xtrtm  [p ym] = _ plntm)

[A™, B'™] = 2ans
Forbrevity, let us write x© = x, y® = y,and 4 = . Define
the following set of elements in the enveloping algebra U (§)
of §:

s = x5 = xi"y 4 2 ",

s = xy? 4 B y(4h — 2) — Yk (4h — 2),
wheren = + 1, + 2,... . All these elements s have the prop-
erty

(A, x] =x,

(2.2)

n, —m-

(2.3)

xs=0 mod U (§)x. (2.4)
In addition,
[hs% ] =57, [As9]=0, [hs"]=—s".
(2.5)

Let V'beany §-module and v € F'such that xv = 0. From (2.4)

follows that
xpis? ,s§w =0 (2.6)

for any polynomial p of the elements (2.3). Let S, = Sy(d, g)
be the algebra generated by (2.3) and 4,
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S8: = {seS,|hs =sh } CS,. (2.7)
The set of dominant integral weights A * C §* is character-
izedby A (h) € 4Z, A (h )>0(by agreeing that x corresponds to
the positive root). For brevity, let us write A for the value
A (k). If V is g-finite, then

V= D V/l (2.8)
=041,
Set
Vi={veVixw=0}, V*={veV|xw=0}. (2.9)

Clearly S,V * CV*and SV ; CV ;. The annihilator in
U (g} of a vector 0#v € ¥V ;7 is denoted by J,,

S=U@gx+U@)-(h—A)+Ulg)-y*+"
Let
D, =S83/85 nU@V,. (2.11)

Each ¥V ;7 C ¥V has a natural D, -module structure. In fact,
from Ref. 12, Proposition 1.3, it follows that the map
Ve V ;* gives a 1-1 correspondence between (equivalence
classes of) irreducible g-finite §-modules and irreducible D, -
modules. In Ref. 12 the Lie algebras were assumed to be
finite dimensional, but the proof does not really depend on
this assumption; the only thing which matters is that the
adjoint action of the semisimple subalgebra g C{ on § splits
into a direct sum of finite-dimensional representations of g.
(In our case here, each summand is equivalent to the vector
representation A = 1.)

We call ¥, the minimal component of V'if ¥; #0 and
V, =0 for pz <A. It is clear that s ¥ ;* =0 for all n. Let
T C S, be the subspace spanned by the elements s , and let

D% =S3/88 A (U@, + S,T). (2.12)

Since S, T annihilates ¥ ;7 , the subspace V' ;¥ CV carries in
a natural way a representation of the algebra D 5. According
to Ref. 12, Theorem 1.4, the mapping V' ¥V} gives a 1-1
correspondence between irreducible g-finite representations
of §, with the minimal component ¥, and the irreducible
nonzero representations of D 4. All we have to do is to com-
pute D§.

Lemma 2. 1: The following equations hold mod U (§)x.

(2.10)

s s h 2k —4)
= —4h+ 1D s + Ak + 1B + s
— 2k — §)(h + 55’55 + 41— 5, _ )
X(k + 1)k — Yk + Phsg * ™
+ 84 2(h — 4)(k + §)(k + 1)k + 2am + 1)5,, _ .,

(2.13a)
§ s — 1) = simis® h — st 4 25+
hh—11—8, _.) (2.13b)
(s§sg™) — simst) — 16an8,, _ b2k —14)
= g g 214

Proof: By a direct computation. The computations can
be greatly simplified using the following result. Let
U, C U1f) be the subspace spanned by the monomials

Jouko Mickelsson 378



x("l)“_x("pjh 'ml)."h (mq)y(m_._y(l,)h s
(n:, m;, 1, #0),

with n,<n,<--<n, and a similar ordering for the m,’s and
I;’s. Then

U =U,eUlfxo U Up)py. (2.16)
Let Q be the projection on the first summand. One can show

(Ref. 13, Theorem 1, Ref. 14, pp. 46 and 47) that if s, 5, € S,
then

s,=s, mod x>0 (s,) = O (s,). (2.17)

Theorem 2.2: If A =1, ,2,... then D} is the infinite-
dimensional  Heisenberg  algebra  generated by

Pin=+1, £2,.)
[s0, st™] = 16ans,, _ A% (2.18)

Proof: Using the commutation relations (2.13a) and
(2.13b), in any product containing s , ’s and s,’s the elements
s_ can be commuted step by step to the right modulo J, ; on
the other hand elements in S, T represent the class zeroin the
factor algebra D 5. The commutation relations of the ele-
ments s{j’ (more precisely, the corresponding classes in D §)
follow now from (2.14). Thus s, s,~ " satisfy for eachO<n
the commutation relations of a Heisenberg algebra and these
algebras commute for different values of #» eN. Using the
map @ it is easy to show that 0% 1 mod(/; + T'). From the
standard properties of a Heisenberg algebra follows that
there cannot be any other polynomial relations in D%, in
addition to those obtained from the commutation relations
(2.18), without the algebra being zero. a

By the theorem above, all the irreducible g-finite §-mo-
dules with the minimal component V;,A =1,3,2,..., are
parametrized by irreducible representations of a Heisenberg
algebra. If 4 = 0, }, the structure of D} is much more com-
plicated and I have no results about representations of § with
a minimal component, ¥, or ¥V ,.

If the §-module ¥ corresponds to a unitary representa-
tion of the group of SU(2})-valued functions on the unit circle,
then there should be an inner product in ¥ such that the
following Hermiticity conditions hold:

(2.15)

Xt =yl it = =y —p(=m o (219)
From (2.19) it follows that

(vy, SR (4h + 2)p,) = (v;, — 5\~ "vy), (2.20a)

(V3 St0,) = (01, — A (4h + 28T "vy), (2.200)

(1, S8%0,) = (04, 85~ ",), (2.20c)

forv,v, eV ™.

In particular, the minimal component V ;¥ (A>1) of V'
carries a representation of the algebra D § satisfying the Her-
miticity conditions (2.20c). Suppose for example that a > 0.
then si?, 0 < n, plays the role of an annihilation operator and
sh~™ is the corresponding creation operator. A reasonable
first guess would be that V'is a Hermitian §-module if ¥ ;" is
a Hermitian D §-module [in the sense of (2.20c)]. However,
things are not so simple as the following example shows.
Take the Fock representation of D 4, which is characterized
by

379 J. Math. Phys., Vol. 26, No. 3, March 1985

Vi=D%, sf,=0 for n>0, (2.21)
and by s{"" = s\~ ". Now the square of the norm of the vector
s v is

(s vgs 5% Vo) = (vos 5775 vo)

—1

= (Ug, 8= 5% vg) » ————
bor s T £ )

_, At

T AYA 4 1)44 + 6)

g BHPA+ 20+ 1)

{vo 56~ "'56"vo)

44+ 6
2 1
= — .M+5)M+ n+l) , if n>0,
42+ 6
(2.22)

where the Eq. (2.13a) has been used. Therefore, ||s' v,||*> <0
for n>0.

Hi. DISCRETE SERIES OF § FOR SEMISIMPLE g

Let g be a semisimple Lie algebra. I shall use the nota-
tion of Sec. I. Let us define a lexicographical ordering in the
set of weights

A={Aebh*{d,a;) el IiKl]}.

WhenA,A'€A thend>A'if A #A4 ' and the first nonzero
integerintheset (A — A4 ', a,),(4 — 4", a),.., A —A', )
is positive. Let {¢!",...,z %} be a basis of g™ C § such that
each ¢ is a weight vector,

[h 1] =g ()", heb. (3.1)

It is clear that each g, is a root for (g, §j), u; € ¥. Fix the
indexing so that

B2 2l N (3.2)
Of course, only the root £; = 0 can have a multiplicity bigger
than one. The set {t"|0#n €Z, 1<i<N} is a basis of the
ad g-invariant complement p of g in §. Define an ordering in
thisbasisby 1 " <™ ifi <jorf = jand n <m.Let U, CU(d)
be the subspace spanned by the ordered monomials ¢ f-:"---t Pt
multiplied by arbitrary elements of U (). One can write

g=084+ @beg—, (33)
where g, (respectively, g_) corresponds to the positive (re-
spectively, negative ) roots; here “positive” refers to the stan-
dard ordering determined by the set of simple roots A. Now

U@ =U,oUBlg.oU,U(g )g-. (3.4)

Let Q' bethe projection on the first summand and let Q: U (§)/
U (@)Q +—Uy

Qlu+Ul@g,)=Q'(w). (3.3)
Define

S'@a)={ueU(@)lg.u C U} (3.6)
and the step algebra

S8 8) =53, /U)o (3.7)
It is known that the mapping

Q:S (8, U, (3.8)
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is injective (Ref. 13, Theorem 1; Ref. 14, pp. 46 and 47). Let
So(8,8) be the subalgebra of S (§, g) generated by the elements s
such that Q(s) € pU (). It is known that if Q(s) =t "p(h),
where p(h ) € U (h), then

s=tP"ph)+ 3t
7

whereq; € U{g_ + b) and g; #0 only if &; — u, is a positive
root (Ref. 14, Proposition 1). For A € A ™ I denote by J;

C U (g) the annihilator of the vector of highest weight in a
finite-dimensional g-module with highest weight 4. Let S'¢
be the subalgebra of S, = S(8,8) generated by the elements
5,52, where s,,s, € S, and s, is a weight vector (with respect to
the adjoint action of §) with a negative weight in the lexico-
graphical ordering. Finally,

D}:=83/83n(U(@W; +S¢), (3.9)

where S} = [s € S,|[4, 51 =0 Vheb)}. If Vis a g-finite §-
module, then ¥, C V is the minimal component if 0 V, is
minimal with respect to the lexicographical ordering. As in
the case ¢ = A4,, the g-finite irreducible representations of §
with a minimal component ¥, will be described by the action
of D% on V ;7 (Ref. 12, Theorem 1.4).

Let#, =U(§)- {h—A(h)|hebh} (A €h*)and let 7,:
U(§)}—U(§)/# ; be the canonical projection, @, : =7, © Q.

Lemma 31: Let seS(§ g ThenQ,(s)=0

iff se UGN /U(B)g-

Proof: (Ref. 15, Lemma 4.4 or Ref. 16, Proposition II.
2.12). O

Letv e A * and let m(4 ® B;v) denote the multiplicity of
the irreducible representation with highest weight v, in the
tensor product of representations 4 and Bof g. If T C U (§)is
an ad h-invariant subspace, denote by T'(4 ) the weight space
corresponding to the weight A4 € h*.

Lemma 3.2: Let T C U, be an ad g-invariant finite-di-
mensional subspace, A € A * and v € A. Then the dimension
n{d, v)of the subspace Q, ({s € S(§, g)|C:(s) e T(v)}) C T(v)
isequal tom(T e A, A + v).

Proof: Let vt:=1+U(@V, e U@)/U(@V,. Then
U(@)/U (W, is a g-finite (left) §-module and U (g)v* is in fact
the g-module . Let W: = T -v™; this is a finite-dimensional
g-submodule of U (§)/U (§)/, . By Ref. 16, Theorem II. 2.20
there exists s,,...,, €S (d, g)such that {s,p™,....5,v™ } isaba-
sisof Wi, ,. By Lemma 3.1, dim W ;_, = n(4, v). On the
other hand, clearly dim W ', , =m (T®4; A + v). a

Let.S¢ (n, m) C Sy(@, g) be the subspace spanned by vec-
tors of  the type s 4 s, where
Q(s) et U )k = n, m) with p;>p; and p, +p; =v.
Let S¢(n, m) C S, be the space spanned by the antisymme-
tric combinations s{"s{™ — s{™’s{". Denote by R _ (respective-
ly, R, ) the set of negative {respectively, positive) roots with
respect to the lexicographical ordering; set
R, =R U{0}. Let » be the adjoint representation of g.
Remember that g=g' for each n, as ad g-modules. Denote
by w? the symmetric part of the tensor product @ ® @ and let
®? be the antisymmetric part.

Theorem 3:3: Let A ;- C A be a subset such that

(1) dim QS (n, m)>pmlw2®A; A+ v),
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and if n£m,
dim Q, (S 3(n, m))>m(w; @ 4; 4 + v),
VveR_ + E+,

(i) if leAg,u; €R, and A +pu, €A™,
then 4 +pu, €A

Then D% is generated by the weight zero elements
5 €8p, Qs (s) € p(0).

Proof: Consider a typical monomial s=s,5,-5, in
So(@, 8), Q () € ¢ U (B). I want to show by an induction on
the length f that s is equal, mod (U (§}/, + S'¢), to a polyno-
mial containing only elements s, of weight 2 €R .. If in par-
ticular s € S §, then each s, has to be of weight zero. Clearly
the assertion holds if f = 1. Consider now the induction from
S — 1tof. By the induction assumption we can assume that

#;, >0 for k = 2,3,....f. Suppose that u; <0. Denote
AT= Ay By V=

v =535 (L + U@W,) e U@/ U(BV;-
Using the g-module isomorphism (provided by the symme-
trization mapping) between the symmetric algebra 4 () on §
and the enveloping algebra U (@), the vector s,s,v can be con-
sidered as a vector in the g-module g™’ @ 3" ® A/, modulo
lower-order terms in p arising from the commutators
[¢", ¢"]. Dividing this vector into a symmetric and an
antisymmetric part in the upper indices, it follows that
88,0 = w, v + w,v, mod lower-order terms, where
w, €83(ny, ny) and w, € S(n, ny) by (i); '€ A4 by the
assumption (ii). Now both w, and w, are linear combinations
of terms of the type s 55 where s;, 55 are of first order in p, of
weight y,, 7, (in this order) with ¥,>¥,, ¥, + ¥, = v. Again
by the induction assumption s;s,5,--5, can be written as a
polynomial mod (U (g, + S4) of degree <f— 1, contain-
ing only elements of non-negative weight. Since ¥, > i, , we
can show by a second induction on the weight of the first
factor that s is equal to polynomial, mod (U @V, + S4),
where all the elements (including the first) are of non-nega-
tive weight. O

As an example I shall show how the general results
above can be applied to the case g = 4,. Let {a, a,} be a set
of simple roots for g. Then the set of nonzero roots is
v={a,a,a, +a, —a;, —a, —a, —a,}. Inthelexi-
cographical ordering ““ < with respect to the coordinates
(4, a,), (4, a,) of a weight A € A we have

R+ = {al’ a +a; — az}s

R_={~a, —a—aya,).
Let

Ag:={ledA ¥4 a)>2}
Clearly A ;5 satisfies the condition (ii) in Theorem 3.4. The
adjoint representation is now @ = (w,, @,) = (1, 1). Using
the standard Young tableaux rules for tensor products one
gets

w?=(2,2)e(l,1)e(0,0), «=(3,0o(03)e(l,1)
(3.11)

(3.10)

IfA,>2,
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Avw=A+ LA, + oA, — 1,4, +2)
oh,—2,4,+1)e(2—6p,) 4
(1 —80,) A1 +2,4, = )@l —b,,)
A —-1L,4,-1)
®(1 —805,614,) - A1+ 1,4, — 1)

All the multiplicities are <1 except the multiplicity of 4,
which is 1 or 2. By a straightforward computation of the
relevant multiplicities one can show that the condition (i) of
Theorem 3.3 is satisifed. As an example, let us consider the
case v =0.

(3.12)

A. A1

In this case m(w? ® A; 1) = 6 and m{w? ® A; 1) = 4. Ei-
ther using the explicit formulas in the Appendix or Lemma
3.2 and the following multiplicities

mped;A—a)=mweld; A+ a,)
—meeld—a, —a)=1, (3.13)

mwed;A)=2,

mo®A +u)=mwed +u)i)

it is seen that for each 0#n € N there exists elements si”, 53"
and for each root u#0 elements s”u) in S, such that

0#£Q, (s") € g™(0) (i = 1,2), 0#Q; (s"(u)) € g"() and such
that the following symmetrized and (when nm) antisym-
metrized combinations are linearly independent:

s )™ — p) + s —p), ueR,,

sg'n)s}m) + ss.m)s}n)’ i>j,

sl — p) — s )" —p), peR,,

sPsim) — slmigln), (3.14)

There are six symmetric and four antisymmetric combina-
tions and so the condition (i) is satisfied.

B.1.=0

Nowm(w? ®4; 4 ) = 3and m(@? ® A; A ) = 2. Using the
fact that mepe;A —a)=mewei; i+ a,)
=mwed;A) and mwel;A+u)=mlwed +u);i)
one can see that the following combinations are linearly in-
dependent, mod U (§l/; :

Sl — p) + s (—p), p=ay or —ay,
s(ln)s(lm) + Silm)s(ln)’

s} — o) — s s — )y
n#m.

(3.15)

p=a; or —a,,

Thus there are three independent symmetric elements and
two (when m 5 n) antisymmetric elements.
The other cases {(v¥70) are handled in a similar way.
Thus,
Theorem 34 Let g=A4, and
o ={Aed *|{4,a,)>2}. Thenforalld € A ;' the alge-
bra D is generated by the elements s € S, with @, (s) € p(0).
Remark:IfA,>1, there are two independent sets of gen-
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erators, namely {s{"|0%n € Z} and {s}"|0#n € Z} as given
in the Appendix; if 4, = 0, {s{"} is the set of generators.
Theorem 3.5;: Let g = A, and A €A ;. Then the algebra
D¢ is an infinite-dimensional Heisenberg algebra with the
commutation relations
[s7), 5] =0,
[S(I"), S(lm)] =5 l6na5n’ _ml %(A’l + 12 + 1)2,
[s5, 857]) = 16nad, _,A3A, +4,+ 1),

(3.16)

where O#n, meZ.
Proof: By a simple computation,
Qa([s1, 5™]) = (el — efPel)
XAAy + 4, + 1) + 9ef3ely) — efel)
XA A+ 1A, +4,+ 1)

+ 16nad AA, + A+ 1A

(3.17)

Looking at the formulas for the generators in the Appendix
one can see that the sum of the two first terms is a linear
combination of Q, (s"{a " — a,) — sa " — @,))and
Q. (s"ey + a5 — @) — @) — s"™e, + @)
Xs" —a, — a,)). Since s —a,), N —a; —ay) €S,
the commutator in the algebra D § is equal to the last term in
(3.17). Using the injectivity of Q, and the Poincaré-Birk-
hoff-Witt theorem one can show easily that there cannot be
any other polynomial identities than those obtained from the
commutation relations in Theorem 3.5. O

Combined with Ref. 12, Theorem 1.4, Theorem 3.5
gives a complete characterization of all irreducible g-finite §-
modules with a minimal component V;, A €A ;.

APPENDIX COMPUTATION OF S, (¢, g) FOR g = 4,

Here we give a complete set of elements s € Sy(g, g) of
first order in p for the case g = 4,. These generate, together
with U (), the algebra S,,. The generators have been obtained
by a trial and error method. They could be computed also
using the general formula (Lemma 8) in Ref. 17. Let us de-
note by e;; the generator of g which is represented in the
fundamental 3 X 3-matrix respresentation by the matrix

le: j)kl = 511(511
and set b, = e,; — ey,, h, = €5, — e55. Then
say + ay) = ey, s™(a,) = elle;, — efih,,
s a,) = efles; + elhy,
P =280 + Ak + By + 1)
+ 3elFey(hy + By + 1) + 3ele, 85,
+ 3elles th, + 1),
s = (Y + 20 Phythy + By + 1)
+ 3eesolhy + by + 1) — 3elle, e,

+ 3e{1"3' esihy,

Jouko Mickelsson 381



S — ay) = el hylh, — V)(h 4+ Ay + 1)
—h ey — 1) + Ay + 1)
—efled (b + hy + 1) + effesser (b, — 1)
— ey (b, + 1), — 1) — eleseslhs + 1)
+ elieh e,
SN —a))=efh(h, — 1)+ hy+ 1)
— h{Peyy(hy — )by + by + 1)
—efjes (b + by + 1) + effeyien(h; — 1)
+ &leslhy — 1k, + 1) — eflesenlh, + 1)
—efie} e,
s — &ty — ag) = el hyhyhy + )y + By + 1)
+ éfey holhy + ho)lhy + By + 1)
—efleshy by + ho)hy + by + 1)
— h e85, + e3 i)yl + hy)
— hNese, — e, + Whylhy + b))
+ €l (es 82 — esialhy + 2)h, + )
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We consider the Laplace operator defined in the exterior of a resonator and we provide explicit
estimates for the spectral concentration, in the sense of Kato, in terms of the width of the channel

connecting the cavity with the exterior.

I. INTRODUCTION

In this paper we use Kato’s notion of spectral concen-
tration'” in a situation where the perturbed operators are
defined in different Hilbert spaces. This case arises when one
considers the negative Laplace operator H = — 4,,, defined
in an exterior region {2, which has an almost opened cavity.
We deal only with the Dirichlet boundary condition. Results
involving other boundary conditions, which make the opera-
tor H self-adjoint, can be proven in a similar way. In Ref. 3 it
is shown that H has resonances in the sense of Lavine,* and
explicit bounds for the sojourn times are provided in terms of
the width of the channel connecting the cavity with the exte-
rior. We use this result to estimate the spectral concentration
of H near the resonant energies.

Il. SPECTRAL CONCENTRATION

Let p,, be a positive real number and for each p€[0, pyl,
let H,, be a self-adjoint operator defined on a Hilbert space
2, In order to state Kato’s definition of spectral concen-
tration, we make the additional assumption that 7 is a
closed subspace of 7, . Also, we denote by 7,, the projection
of H, onto 7%, and by E, (A ) the spectral measure associat-
ed to the operator H,.

Definition 1: For 0 < p<p,, let S, and T'be Borel subsets
of R.

(a) We say that the part of the spectrum of H,, in 7, with
respect to 5, is asymptotically concentrated in S, if
s-im E (T — S, )m, =0, i.e.,if E,(T — S,)¢—0, as p—0, for
all g, In this case we write o{H,NTCS,,.

(b) Suppose that as p—0, the operator E, (I)m, con-
verges strongly to Eo(l ), [i.e., (E,(I) — Ey(I ))¢—0, for all
@€, for any interval IC R. Then, we say that the part of
the spectrum of H,, in S,, with respect to %", is asymptoti-
cally the part of the spectrum of H, in T if
s-im E (S, ), = Ey(T). In this case we write
oH, S, = o{HoT.

Throughout the rest of this section we shall assume that
the operators H, converge to H, in #°, in the sense that
E, (I)¢p—E(I )¢, for all g7, and all intervals ICR. The
following result establishes the relationship between parts (a)
and (b) of Definition 1. The proof is the same as in the case
where all the operators H, are defined on the same Hilbert
space.’?

Proposition 1: Suppose that T'= (a,b ), where a and b
belong to the resolvent set of H, and, for each p with
0<p<pp, let S,CT. Then olH,NTCS, if and only if
oH, S, =o{HoT.

Closely related to the spectral concentration of a family
{H,} is the notion of pseudoeigenvector.
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Definition 2: Let {H,} be as above and suppose that 4,
is a simple, isolated eigenvalue of H, with eigenvector
Yoe#p. Two families {y,e#,/0<p<p,} and
{4,€R /0<p<p,} are called the pseudoeigenvector and
pseudoeigenvalue of { H, }, respectively, if

(i) lim||¢, — ¥oll =0,
p—0
and

(i) €, = (B, — 4,0, [0, asp—0.

The rate of convergence of €, to zero is called the order
of the pseudoeigenpair {¢,},{4,}.

The next result, which we prove in our more general
context, was originally established by Kato. Its proof is a
slight modification of the argument given in Ref. 1.

Theorem 1: Let H, and 4, be as in Definition 2 and let /
be a closed interval such that Ino(H,) = {4,}. Then, there
exists a function gp) such that glp)—0 as p—0 and
oH,NCI, =4, —glp)A, + glp)) if and only if {4,} isa
pseudoeigenvalue of { H,, | of order €, where €, = o(g(p)), as
p—0.
Proof: Suppose that o{H ,)nNIC1,, and let Y%, be an
eigenvector of H,, with eigenvalue A, By Proposition 1 it
then follows that o{H, [, ~o(Hp)nI, which means that
lim, , E,(I,)¢ = E({Ao})p, for all e, Therefore,

¥, =E,(I,)Y—1 and
&, — 4,0, |2 = f U —A,7d (B, E,A)W,)

<&yl I
Hence, {4,} is a pseudoeigenvalue of order e,

= Olglp)).
In order to prove the converse, let {, },{4, } be a pseu-
doeigenpair of { H, } of order {¢, } and let g(p) be such thate,

= o(g(p)), as p—0. Then,
&= f(/t — A, Py, B, (A,

ol [ d B,

and we have "Ep(l - Ip)¢p ”<”(I - E(Ip))¢p "<€p/gW)’
which converges to zero. Since ¥, —¥ as p—0, we conclude
that E,(I — I,)¢—0, and therefore E, (I — I,)E{A,}—0.
On the other hand,

E, (I — I — Eo({A}))<E, (I ) — Eqg({A0}))
—Eq(I)J — Eo({/lo})) =0.

We thus conclude that E, (I — I,) converges strongly to
zero, with respect to %, i.e., o{H, N C1,. ]
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We remark that Theorem 1 can be extended to the case
where A, is an eigenvalue of H,, of multiplicity greater than 1.
This extended result can be proved using the same argument
given above (see Ref. 2).

lil. THE LAPLACE OPERATOR IN THE EXTERIOR OF A
RESONATOR

For p>0, 2, = CUZ,UE will denote an exterior do-
main in R* with smooth boundary, which consists of a
bounded set C (the cavity), an exterior region E, and a chan-
nel Z, connecting the cavity with the exterior. We assume
that there exists p,> 0, such that for 0 <p<p,, Z, is con-
tained in a cylinder of radius p and height 4. The self-adjoint
operatorsactingon#°, = L *(£2,)and %", = L *(C)givenby
the negative Laplacian with Dirichlet boundary condition
will be denoted by H, and H,, respectively.

It seems apparent that as the channel closes up, the part
of H A inL 2(C) converges, in some generalized sense, to the
operator H,. On the other hand, all the operators H, (for
p>0) have continuous spectra consisting of the interval {0,
o), while the spectrum of H,, is formed by a countable set of
isolated eigenvalues. In what follows, we shall construct a
pseudoeigenvector of the family { H, }. By the results of the
previous section we then conclude that as the channel closes
up, the spectrum of H, concentrates, in the sense of Kato,
around the eigenvalues of the cavity. First we show that as
p—0, E,(I)¢ — Ey(I )p, for all 2. This follows as usual
from the corresponding result for the resolvents of H, and
H,, which we prove now. Given z in the resolvent set of H,,,
we write 6 = &8(2) = dist(z, o(H,,)), s0 that
8, 2~ = 1/6.

Lemma 1: As p converges to zero, the operator
Xz,(H, —z)~" converges to zero in norm.

Proof: Given ¢, set y, = (H, —z)~'$, so that
¥,€D(H,)and (— 4 — z)i, = 4. Then, by the Poincaré ine-
quality,

[ <ot LPIV% *<p(¥,, — 44,)

=p((¥,s8 ) + 29, |-
But, since ||¢, [|<1/8 ||¢ ||, we obtain
vz, (H, —2)~'¢ I><p*(1, ¢ 1| + Izllje, 1)
<p/8(1 + [21/5)[14 I

Hence |9z, (H, —2)7'|’<(0*/8)(1 + |2|/6), which
converges to zero. a

Theorem 2: For any ¢, (H, —z)~ !¢ converges to
(Hy, — 2)~ ', as p converges to zero.

Proof: As in the proof of Lemma 1 we set
¥, =(H, —2)"'¢ (where ¢ is extended to be zero outside
C ). First, we show that Xz ¥,—0. Leta bea C ~ function,
such that e =01in C, @ = 1 in E, and 0<a< 1. Multiplying
the equation ( — 4 — z)¢, = ¢ by az_ﬁp and integrating over
{2,, we obtain

falV% >+ fzz,,va.v,pp - zfaltlzp |?=0.
If we assume that v = Im 250, then it follows that
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ol falg, P<| [3,9a99, |<C I, Iz, 194,

But’ since ”V'pp ”2 = <¢p’( —4-— z)¢'p> + z|l¢p “2<(1/
5 + |z|/8%)||# ||?, we conclude that

[ awr<cigiz sl
Z,VE

On the other hand, if v = 0, then k = Rez <0 and (1)
implies that

k||aly,>< — Reﬁpv‘z-wp

1 ”
N TJ“allﬁp *<C" 14,1,

By Lemma 1, it follows that Xz ¥,—0, asp converges
to zero.
Finally, since (— 4 — z)¢, = ¢, we have

[, vt =z 0= [ 5

Therefore, {1, } is bounded in #°'(C') and by compact-
nessof theinclusion #”'(C }—L %(C ) wecanassumethatit has
a subsequence {4, } which converges to ¥,c#”'(C), weakly
in #°'(C) and strongly in L %C). A standard argument shows
that ( — 4 — z)y, = ¢ weakly in C, and that ¥, = 0 on the
boundary of C, in the L % sense (see Ref. 3). We conclude that
Yo = (Hy — z)~ ', as desired. (]

Finally, we construct a pseudoeigenpair for the family
{H,}. As in Ref. 3, let us consider the perturbed operator
A, =H,+V, withD(4,)=D(H,),where V, = (1/p°)yg.
For each p > 0, 4, is a positive self-adjoint operator, whose
discrete spectrum consists of a finite number of eigenvalues
below 1/p% and with essential spectrum [1/p? «). More-
over, as p approaches zero, the eigenvalues and eigenvectors
of A, converge to the corresponding eigenvalues and eigen-
vectors of H, = — A (see Ref. 3).

Theorem 3: Let ¢,€%°, and A,>0 be such that
A,¢, =A,4,. Then {¢,] is a pseudoeigenvector of {H,]
with order

€, = [(H, — A,)8, || = A, /cple ~ "7,
where ¢ = (1 — 4,p%)"/2

Proof: We have that (H, —A,)8,ll
=||V,4,|| = 1/p*||,||z and, therefore, the theorem fol-
lows from

6, 12 <(4,p°/cle ~#*’%, which is proven in Ref. 3. W
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The standard Berezin method for integration over odd variables is combined in a new way with De
Witt’s contour method for integration over even Grassmann variables to give a new method of

superspace integration. It is shown that this integral, unlike the standard superspace integral, is
invariant under coordinate transformations in superspace. The relation between the new method

and the standard method is discussed.

I. INTRODUCTION

In recent years integration over anticommuting varia-
bles has become an essential technique in many areas of
quantum field theory. The integration is invariably carried
out according to the Berezin prescription’

fﬁdﬁ:l, Jld0=0. (1.1)

[Here, as usual, & denotes an odd Grassman variable, or “an-
ticommuting number” as it is often called. Because the
square of @ is zero, the two rules in (1.1) cover all the func-
tions usually considered. No “limits of integration” are in-
cluded.] In some cases, such as in supersymmetric theories,
odd and even variables intermingle, and so Berezin integra-
tion must be fitted in with ordinary integration. However,
the standard method for doing this, as developed by Berezin
and Leites,? Bernstein and Leites,>* and Berezin® does not
always give consistent results under change of coordi-
nates.>® In this paper some of the ideas of Berezin, Bernstein,
and Leites are combined in a new way with De Witt’s idea’
that integration over even variables should be regarded as
contour integration, to give a fully consistent method for
integrating over odd and even variables. By “fully consis-
tent” it is meant that the rule for transforming the integrand
and the “range of integration” under a suitably smooth
change of coordinates (including mixture of odd and even
coordinates) should be such that the value of the integral is
unchanged; thus the definition is coordinate independent.
Coordinate independence is obviously essential if one wishes
to integrate on general supermanifolds (made by patching
regions with local odd and even coordinates). But even when
considering the rigid “super-Minkowski” space of global su-
persymmetry, where symmetry transformations are repre-
sented as translations, a (more restricted) coordinate inde-
pendence is required of integrals; even for this invariance the
standard method of superspace integration is inadequate.
Several examples are given below, showing how the
consistency breaks down; these make it clear that, while the
Berezin method takes care of the odd variables, no account
has been taken of the fact that when one includes odd Grass-
mann variables the even variables are not merely real (or
complex) variables, but also have a nilpotent part, and the
theory of ordinary integration over real (or complex)
numbers must be extended to integration over the full even
algebra. Previously it has been assumed that these parts can
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be ignored (some reasons for this are given below); it is the
purpose of this paper to show that the idea (due to De Witt’)
of regarding integrals over even Grassmann variables as con-
tour integrals can (if carefully combined with Berezin inte-
gration for the odd variables) give a consistent method of
superspace integration.

In Sec. I, after specifying some necessary notation and
terminology, the standard method for superspace integra-
tion is described, and some examples given of where its con-
sistency under change of variable breaks down. In Sec. III
contour integrals over one even Grassmann variable are de-
fined, and several useful properties proved. Section IV re-
peats the work of Sec. III for contour integrals over several
even variables. Section V contains the main result of this
paper: a method for combining the contour integrals with
Berezin integration is described, and proved to give fully
consistent results under change of variable. In Sec. VI the
compatibility between the contour approach and the stan-
dard approach is discussed, with particular reference to su-
persymmetry and supergravity, while Sec. VII contains con-
clusions and discusses further possibilities.

ll. THE STANDARD METHOD AND EXAMPLES OF ITS
BREAKDOWN

Before describing the standard method, some notation
and terminology is necessary.

Definition 2.1: (a) For each positive integer L let B,
denote the real Grassman algebra over L odd generators.
(Here, and through the rest of this paper, attention is restrict-
ed to Grassmann algebras over the reals; the extension to
complex Grassmann algebras is straightforward but not en-
tirely trivial, and will be dealt with in a separate paper.)

(b) Let &: B, —R be the {unique) algebra homomor-
phism which sets all the odd generators to zero.

{c) For each pair of positive integers m and n let B 7"
denote the Cartesian product of m copies of the even part of
B, and n copies of the odd part. (B 7" is often referred to as
“super-Euclidean space” or simply “superspace”. In appli-
cations to supersymmetry, superspace has additional trans-
formation properties under groups such as the Lorentz
group, but these are not relevant here.) A typical element of

B 7" is denoted (x', ..., x™; 8, ..., 8" or (x;6).
(d) Let€,, ,: B 7" >R™ be defined by
€x’, ..., x™0, ..., 0") = (elx"), ..., €(x™). (2.1)
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Turning now to the standard method of superspace in-
tegration, suppose that U is an open set in R™ and let f:
€n..(U)—>B, besufficiently “analytic” for it to have a power
series expansion in the 8, Such a series will necessarily ter-
minate, If its highest term is f, (x)8 "6 " ~'...8 ! then one de-
fines®™

f fix,0)d"xd"6: = f S (x)dx, 2.2)
U U

where on the right-hand side x is simply treated as a real
variable, and the integral is evaluated in the usual manner.
Under a suitably smooth and invertible change of coordi-
nates

hi€na(U)>B 7",
with

h(x,0) = (y(x,0 )¢ (x,6)), (2.3)
the “volume form” d "x d "0 is defined to transform accord-
ing to the rule

d"xd"0=Ber({J (h)(y.d))d ™y d", (2.4)

where Ber denotes the superdeterminant (named after F. A.
Berezin who first discovered it in 1971) while J (4 )( y,¢ ) is the
(m,n) X (m,n) Jacobian matrix

o o0
o H
= ) . 2.5
i P 23
EYTRrYY

(Derivatives of functions of Grassman variables are defined
below, and in detail in Ref. 8. In this section an informal
approach is sufficient.) The function f transforms in the usu-
al manner, while Ubecomese,, , © & © €,, ,(U). Thus the in-
tegral is invariant under the change of coordinates if

ffd"'xd"0= if Jdmyd e (2.6)
U €mn©h O € (U)

(where the sign is determined by the orientation of 4 ). It is
shown by Bernstein and Leites® and by Pakhomov® that this
is true if f|, has compact support, and is C *. A similar
argument is used by Regge.'® An alternative proof, due to
Fung, is quoted by Van Nieuwenhuizen in Ref. 11; this gives
an incomplete proof for a wider class of functions. The proof
is incomplete because it assumes (wrongly) that “ordinary”
integration over even variables is consistently handled by
ignoring the even nilpotent elements in the range of integra-
tion. In this paper we overcome this problem by introducing
contour integrals as suggested by De Witt” and then Fung’s
proof can be adapted to give a complete proof (Sec. V). First
we present some examples where the consistency breaks
down, if one uses the rules described above.

Example 2.2: Integration over B }° (one even Grass-
mann variable). Let a, beR. Consider

d 1
f xdx = > b?*—a?. 2.7)

Now apply the change of variable 4: €,'(a,b |>B ;°, where
h (x) = x + a, a being some fixed even nilpotent element in
B }°. The transformed integral is then
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b x2. b 1
f (x — a)dx = [——ax] =—(b*—a* —alb—a),
a 2 a 2
(2.8)
and thus the rule for transforming the integral has led to a
change in its value.
Example 2.3: Integration on B }2. (This example is giv-

en in Ref. 3.) Consider

b
J-xdx do'do? =0. (2.9)

Now apply the change of variables 4: B }>—B }%, where

hix,0'.03)=h(x+0'6%60",67). (2.10)
This is a bijective mapping; the Berezinian of the transforma-
tion is 1 and the transformation leaves the range of integra-
tion unchanged. The transformed integral is

b

f (x—6'0%)dx do'do* = (b — a). (2.11)
Again the value of the integral has changed, this time by a
pure real number.

Example 2.4: Integration over B }''. Consider

b
f xdxdf=0. (2.12)

Now apply the change of variables 4: B ;'—>B }'!, where
h(x,0)=(x + 16,0), (2.13)

with 7 some fixed odd Grassmann element. Again the Bere-
zinian of the transformation is 1 and the transformation
leaves the range of integration unchanged, and thus the
transformed integral is
b

f (x —n8)dx df = — 5(b — a). (2.14)

Example 2.2 makes it glaringly obvious that the source
of the problem is that the limits of integration are not
changed, because the method pays no attention to the nilpo-
tent even parts. The contour integral approach of De Witt’
has no such problems. There is also an example in the phys-
ics literature, where shifts of the range of integration in the
even nilpotent directions prove essential and are introduced
by Hassoun et al.'” The formula these authors give for con-
stant even shifts is precisely that which the contour integrals
to be defined in this paper give. It is perhaps worth mention-
ing the historical reasons for the seemingly curious treat-
ment of the range of integration which the standard method
uses. Initially odd variables were introduced at a more ab-
stract level than that at which they are used in the physicists’
superspace. If U is an open set in R™ (or, more generally, a
C ~ manifold) then the set of infinitely differentiable func-
tions on U is denoted C =(U). This set naturally has the
structure of an algebra (one can add and multiply functions
in an obvious manner). Initially odd variables were intro-
duced by extending these function algebras without actually
extending the underlying manifold*?; in this approach the
idea of shifting the range of integration in even nilpotent
directions has no meaning. Subsequently, largely motivated
by supersymmetry, a more down-to-earth approach to odd
variables was introduced with R™ extended to B 7" and then

Alice Rogers 386



functions on this extended space being considered. The two
approaches, algebraic and geometric, can be linked®'* and
regarded as equivalent except that the algebras in the first
approach must be extended by taking their tensor product
with B; . In the geometric approach a topology was intro-
duced by De Witt” which takes an “all or nothing” approach
to the nilpotent parts of the Grassmann algebra; a set ¥ in
B 7" is open if and only if there exists an open set U in R™
such that

V=€ \U), (2.15)

so that while an open set may be bounded in the “real” direc-
tion, it contains the full range in all the nilpotent directions.
In this topology the open set ¥in B 7" may be unambiguous-
ly specified by the openset U = ¢,, ,, (V') in R™; in the geomet-
ric approach this is how the region of integration Uin (2.2) is
interpreted, and thus it is obvious that shifts in nilpotent
directions will not affect the range of integration.

In the rest of this paper a consistent theory of integra-
tion is used making use of the geometric approach to odd
variables, and a finer (norm-induced) topology on B 7",

11l. CONTOUR INTEGRALS IN ONE-DIMENSIONAL
EVEN SUPERSPACE

In the previous section we showed that the most com-
monly adopted approach to integration over even Grass-
mann variables was unsatisfactory, in that it did not lead to
coordinate-independent (and thus well-defined) integrals.
Now, for more than a century, there has existed a consistent
theory of integration over one commuting algebra over the
reals—the theory of integration of a complex variable. In
this section, following the idea of De Witt,” we take a similar
approach to integration in even superspace and find that
many useful, indeed vital, properties of complex contour in-
tegration apply here. The definition and results are similar to
those of De Witt’; the difference is that the detailed super-
space formalism used here (developed in Ref. 8 and de-
scribed below) gives B, a Banach algebra structure and puts
the analysis on a firmer footing, especially when considering
an algebra with an infinite number of generators. Before pro-
ceeding to the fundamental definition of a contour integral, a
few definitions relating to the detailed structure of B; will be
given.

Definition 3.1: (a) B, denotes the algebra over the reals
with generators 1, 8,, ..., 5, and relations

BB = —B; B, 1<ij<L. (3.1)
(b) Following Kostant,® if L is a positive integer, M,
denotes the set of sequences of integers u =gy, ..., i)
where 1<y, <p, <<, <L. M;, and M;, denote se-
quences in M, with even and odd numbers of terms, respec-
tively. Also, M; includes the empty sequence, denoted ¢.
(c) A typical element of B; may be expressed as

b= b*B,,

peM;,

(3.2)

where each b, is a uniquely determined real number and

B.:=B,. B.~B., Bs=1
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(d) The set of even elements in B, is denoted B, ,.
(e) A norm on B, is defined by

ol = 3 164

HeM;

(3.3)

It is proved in Ref. 8 that this norm gives B, the structure of
a Banach algebra; throughout the rest of this paper the topol-
ogy used on B; will be the topology induced by this norm (it
is also the usual topology on B, regarded as a finite dimen-
sional vector space). (An extension of these ideas to a “Grass-
mann algebra” with an infinite number of generators is de-
scribed in Ref. 8.)

The definition of a contour integral on even superspace,
which is fundamental to this paper, will now be given. Apart
from some analytic details, it is essentially that due to De
Witt.”

Definition 3.2: (a) Let [a,b ] be a finite closed interval in
R. The mapping y: [a,b ] B, , is called a pathin B, ,, ifitisa
continuous and piecewise C ' mapping of real Banach spaces.
The path ¥ is closed if ¥(a) = ¢(b).

(b} Suppose that y: [a,b ] —>B, , is a path in B; ; and that
Uisopenin B, , with ¢{[a,b ])C U. Also suppose f: U—B, is
a continuous map of Banach spaces. Then the integral of f
along the path  is defined to be

Lfdx: = [ roewier

This integration has several useful properties which are
precise analogs of the properties of complex contour integra-
tion; they do not depend on the specific algebra, but only on
the properties of maps between Banach spaces and on the
fact that we are considering a commutative algebra. The first
of these theorems gives a consistent method for transforming
the integral under change of variable. This underpins the
method for consistent integration in full (even and odd) su-
perspace developed in Sec. V. Before starting the theorem, a
method for differentiating functions of even Grassmann var-
iables is required, together with some properties of this form
of differentiation.

Definition 3.3: Let Ube open in B, , and let f: U—B, .
Then fis said to be G ! on U if there exists f;: U—B, and 7:
B, ,—B, such that givena,a + Ain U,

Sfla+h)=fla)+ hfila) +na)|A ||,
with
linA)|—0 as |[lA]—0. (3.6)

[Also one may define G F inductively, by saying that fis G ' if
fis G?~ ' and the (p — 1)-th derivative of fis G 1]

Further details of this “superdifferentiation” and its
properties may be found in Ref. 8. In particular the following
“chain rule” is proved in this paper [Proposition 2.12(h})].

Proposition 3.4: Let y: [a,b ]—U, where Uis openin B, ,,
be a C ! map of Banach spaces and let 4: U—B, be G '. Then

(3.4)

(3.5)

2 hoy) = (h,o9) 2L
on = her) o (3.7)

(where, as in Definition 3.3, 4, denotes the superderivative of
h).
Theorem 3.5: Let U be open in B, , and let h: U—B, ,
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be an injective G ' mapping. Also let : [a,b ] >Ube apathin
U, and f/: U—B; be continuous. Then

fpanef ot

(where A, is the superderivative of 2 defined in Definition

(3.8)

3.3).
Proof:
Ny
[ o
o PR LY ORI
hy(t))
— hirit)y'(e)
—fa Fipen L) o 39)
{by Proposition 3.4).
Hence
for—1 L dx—ffdx (3.10)
hoy

Another theorem for complex contour integrals which
has its analog here is Cauchy’s theorem which states that the
integral of a suitably differentiable function around a closed
path is zero; this allows one to integrate a G! function
“between limits” without specifying the contour, and also to
clarify the relationship between the contour approach and
the standard approach to even superspace integration.

Theorem 3.6 (Generalized Cauchy theorem): Let y:
[a,b]—B, , be a closed path in B, ,. Let S be a smooth sur-
face in B, , bounded by y. Also, suppose that U is an open
subset of B, , with.SC Uand let £ U—B, . Then, if fis G ' on
U, and f] is continuous,

ffdx=0.

Corollary 3.7: Let y,: {a,b]->B,,, 7, [c.d]—>B., be
paths in B, , with y,(a) = y,(c) = p (say) and ,(b) = y,(d
= q (say). Let S be a surface bounded by 7, and 7,. Also
suppose U is an open subset of B; , with SC U, and let f;
U—B, . Then (a), if fis G ' on U,

f— fdx =J fax.

(b) If £: B, ,—B, is G' on all B;, one can write unambi-
guously

ffdx=ffdx,

where y: {a',b'}—B, , is any path in B, , with ¢{a’) = p and
y(b’) = q. Before proving Theorem 3.6, a lemma establishing
the analog of the Cauchy—Riemann equations is required. A
function from B, ,, into B; can be regarded simply as a func-
tion from R**~'R?". In the lemma are found conditions
which the partial derivatives of the function must obey if the
function is G ' (superdifferentiable).

Lemma 3.8: Let f: U—-B, where U is an open subset of
B, ,. Let ¢ denote the natural identification of B,, and

2L—l
R,

(3.11)

(3.12)

(3.13)
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L( > x"By): = (X5 X(1,2)%(1,3)» ++s X(L — 1.L}5 o)
HeM, o

(3.14)
[The expression on the right-hand side of (3.14) will be de-
noted (x,,).] Then, if fis G ' with continuous derivative f; on
U, (a)fo ¢~ ": R* "B, isa C! function of Banach spaces,

with continuous partial derivatives and (b) if 2£ ~ ! functions
[ 2 {U)—R are defined by

3w =s( 3 x‘“B,,), (3.15)
then
Y B,d.f°=B.fi°, (3.16)

where d,, denotes differentiation with respect to x*. [These
equations (3.16) will be referred to as the generalized
Cauchy-Riemann equations.]

Proof: [Note that an unconventional norm on R,
thatis ||(x")[|: = 2, , |¥*|, must be used. This is because of
the norm (3.3) used on B, , which gives B, a Banach algebra
structure. Because the norm is equivalent to the usual one,
the definition of derivative is unaffected.’®] Choose x,
x + heU. Then

Sx+h)=flx)+hfilx)+ || ||k ), (3.17)
where
(k)]0 as||A ||—0.
Hence
Foum 4 h#)
=fou ) + Y h*B, fior TH)
+ bl o kA, (3.18)
The result follows immediately.
Proof of Theorem 3.6:
[rax= [ serenwia (3.19)
Y a
= ; frou(e) Byt )dt (3.20)
= ® dx¥ 3.21
#EML:Z‘EMLO J“°‘}‘([f1b])f x Bﬂ B ( )
_ f e+
FEMLPZ"EMLO -[(S )( B B” B Bf‘ )
X dx? dx”, (3.22)

using Stokes’ theorem. Thus by Lemma 3.8,
[rax= "5 [(8.8,~8,B)5ax0ax"
14 pPEM o veM, ¢

=0, (3.23)

The proof of Corollary 3.7 requires a further lemma, this
time on the reparametrization of paths.

Lemma 3.9: (a) Let y: [a,b ] —B,, beapathin B, , and
let ¢, deR. Also let a: [c,d1—>[a,b] be C! with alc) =a,

since each veM/ ,.
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ald)=band '(t)>0for all tin [c,d ]. Then

ffdx= r’afdx

[and so the integral is independent of the parametrization of
the path, apart from considerations of orientation, which is
the content of part (c) of this lemma].

(b) Let ¥,: [2,b 1B, , and ¥,: [e,d } =B, be two paths
in B, , with ¥,(b) = ¥,(c). Also define ¥, + ¥, to be the path
¥1+ ¥2: [a, b + d — c]—B, defined by
7ilt)s a<i<b,
vt —b+c), b<t<b+d-—ec.

(3.25)
Then, if U is open in B,,,f U—B, is continuous and
ilab)CU, y,lled)CU,

fdx=f fdx+f Sfdx.
N+7 4] 72

(c) Let y: [a,b ]—B, , be a pathin B, ;. Define the curve
-V [a’b ]_’BL by

—Ht)=va+b—1). (3.27)
Then, if U is open in B, ,, with ¢{[a,b])C U, and f: U—B, is
continuous,

_ fdz= —J;fdz.

The proof of this lemma is omitted because it is essentially
the same as the proof of the equivalent result in complex
analysis. Corollary 3.7 follows from this lemma and
Theorem 3.6, with the closed path ¥ of Theorem 3.6 chosen
tobey, +(— 7).

(3.24)

(2 +7ad0) = |

(3.26)

(3.28)

IV. CONTOUR INTEGRATION IN MULTIDIMENSIONAL
EVEN SUPERSPACE

In this short section the definitions and results of the
previous section are extended to multidimensional even su-
perspace B 7*°. Proofs are omitted, since they differ from the
one-dimensional proofs in length rather than in principle.
One slight change is that the domain of “paths” is standard-
ized to the unit cube, as is customary when working in higher
dimensions; in view of the “reparametrization” invariance of
Lemma 3.9, this is a convenience rather than a loss of genera-
lity.

Definition 4. 1: (This extends Definition 3.2.)

(a) Let 1™ denote the unit cube in R™. The mapping y:
I™—B 7™ is called an m-path in B 7*° if ¥ is continuous and
piecewise C'. A formal sum of such paths is called an m-
chain. If dy = 0 (where the boundary operator d is defined in
the usual manner) then ¥ is said to be closed.

(b) If  is an m-path in B *°, U an open set in B 7"° with
YI™CU and f: U—B, is a continuous map of Banach
spaces, then

J;fdx’---dx"': = J:mf(y(t,,...,tm))

Xdet d; v, dt,--dt,,, 4.1)

where J; y; denotes differentiation of the ith component of
with respect to ¢;.
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Definition 4.2 % (This extends Definition 3.3.) Let U be
open in B 7° and let : U—B, . Then fis said tobe G ! on U if
there exist m functions G, f: U—B, (k = 1,...,m)and a func-
tion 77: B 7*°—B, such that, givena,a + A in U,

fla+m)=fla)+ 3 h*Gyle)+ |k nih)

and ||9(# )||—0 as ||A ||—O0.

Proposition 4.3: (This extends Proposition 3.4.) Let y:
I™—U, where U is open in B[, be a C! map of Banach
spaces. Let f: U—>B, be G '. Then

d,(ho ) = kﬁ_"jl 3, VG, h. 4.3)

Theorem 4.4: (This extends Theorem 3.5.) Let U be
open in B 7° and let A: U—B 7° be an injective G ' mapping.
Also let y: [a,b]—U be an m-path in U and f: U—B, be
continuous. Then

(4.2)

1

dx'edx™ = oh ' ————dx'dx™, 4.4

J;f ho ,,f det(Gh’) e

where the m functions k= U—B, are defined by
h(xh..x™) = (B XX ™),k M x ™). (4.5)

Theorem 4.5: (This extends Theorem 3.6.) Let y: I™
~—>B 7° be a closed path in B, ,. Let p be an m + 1 chain in
B 7% whose boundary is 7. Also suppose U is an open set in
B 7° which contains p(I ™ *!). Then if f: U—B, is G' on U,

dex'---dx’" =0.
v

Lemma 4.6: (This extends Lemma 3.8.) Let f: U—8B,
where Uis open in B 7*° and let ¢ denote the natural identifi-
cation of B *° and R™2" ™", that is,

(4.6)

txhx™): = (x'%,... x™), 4.7)
ifx*=3,, x*B, fork=1,.. m Then
G (fot)=B,(G fou). (4.8)

V. CONSISTENT INTEGRATION IN ODD AND EVEN
SUPERSPACE

In this section it is shown how the definition of contour
integrals in even superspace may be combined with the usual
Berezin definition for integration over odd variables to give a
method of integration over the full odd and even superspace,
together with a fully consistent rule for change of variable. In
order to integrate over the (m,n)-dimensional superspace
B 7", we first require a definition of an (m,n) path.

Definition 5.1: An (m,n) path in B7" is a map y:
I™XB9"—B 7" such that (a) letting {0 ] denote the map-
ping of I "—B 7°, defined by

P10 1(e) = Propgy #it 'yt ™0 ,..00) (5.1)
[where (¢!, ..., t™el ™ and (8", ..., "B %"], ¥[6] is an m-
path in B 7° (Definition 4.1) for each 8 in B %"; and (b) letting
[t 1 denote the mapping of B $" into B $", defined by

vt 16) = Pry, ¥t Lent™0,...,0") (5.2)
(where Pry,, denotes projection of B 7" onto B"), [t ] is
bijective and G " with continuous nth derivatives for each ¢ in
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I™. Also yis piecewise C ' with respect to the #’, and G " with
respect to the 8. (The definition of differentiation with re-
spect to odd variables is similar to Definition 4.2 and given in
Ref. 8.)

This definition now gives one something to integrate
over which, being a mapping into B 7", has a natural way of
transforming under change of coordinate in B [".

The key definition of this paper is the definition of inte-
gration over an (m,n) path. This definition will now be given,
and then it will be shown that integrals are invariant under
the appropriate transformation rule for change of variable.
In the next section we show how the “quasicontour” ap-
proach described here (which is essential for consistency)
relates to the standard approach.

Definition 5.2: Let U be open in B 7" and let F: U—B,
be G ", so that the Taylor expansion of fin powers of 8 exists,
and suppose that the coefficients in this expansion are con-
tinuous. Alsolet y be an (m,n) pathin Pr,, (U)X B 3". Then
the integral of f over ¥ is defined as

f fd™xd"= L FALONB(NL.8)d ™t d™0,  (5.3)

where the integral with respect to ¢ is a standard Riemannian
integral while the @ integration is done in the usual manner;
B (y)isthesuperdeterminant of the (m + n)X(m + n) matrix
(M;) with

.
M’j _ﬁs 1<l’]<m)

a + i . .
Mm+i,j = 7;:] s 1<l<n, 1<]<m,
(5.4)
Mi,m+j=Gm+j 7;’ 1<i<m, 1<_]<n,
Mm+i,m+j=Gm+j7,m+i, 1<iyj<n

(where G,, , ; is the super derivative with respect to §).

It is of course necessary to prove that this definition has
the correct behavior under change of variable. This requires
two theorems: first, Theorem 5.3, which proves the transfor-
mation rule under change of coordinates in superspace (this
is a very straightforward consequence of Definition 5.2) and,
second, Theorem 5.4, which establishes the reparametriza-
tion invariance of the integrals.

Theorem 5.3: Let U be open in B 7" and let &: U—B "
be injective and G ” (with continuous nth derivatives). Also
let ¥ and fbe as in Definition 5.2. Then

ffdmxd"9= foh~Jih)d™xd"6, (5.5)
Y heoy

where, if h(x,0)=(h'x,0),...2"x0)h™"" (x,0), ..,
h™* "(x,0)),J (h )is thesuperdeterminant of the inverse of the
matrix (G4 ).

Proof: The following “chain rules” may easily be estab-
lished:

Ahoyy mE" ; *
= G .h')oyxX—,
a2 O )_7 at’
i=1l..m+n j=1,..m, (5.6)
. m+n .
G, . jlhoy)= kz (G ¥yXG,, +j?’k- (5.7)
=1
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Thus

f foh =\ (h)d"™x d"8
= f]mf (V.0 (A ) (2,8 ))B(hoy)e,0)d "td "0

= me (V6,0 )B(y)1,0)d "1 d "6 (5-8)

[using the chain rules (5.5) and (5.6)],
and the result is proved.

The second theorem in this section contains the real
substance, because it is the reparametrization invariance
which allows one to think of an integral as being over a spe-
cific subset of superspace—the image of the path y—rather
than over the path.

Theorem 5.4: Let Ube open in B 7" and let 4 be a com-
pact set in R™. Also let ¥: A X B ¢"—Pr,,, (U)X B §" be an
(m,n) path. [Note that this is a slight generalization of the
{m,n) path of Definition 5.2. In general it is simpler to stan-
dardize the domain of y; the present theorem shows this
involves no loss of generality.] Now suppose f: U—B; isasin
Definition 5.2, and that B is a compact subset of R™ and that
a: B X B9"—A X B %" satisfies the following conditions: a is
C ! with respect to the real variables, and G " with respect to
the odd variables (with continuous nth derivatives). Also the
Berezin determinant B («) [defined as in Eq. (5.4), except that
in this case G, , ;a’ must be zero for 1< j<n, 1<i<M ] must
be positive. Then

f fdmxd"@=| fdmxd"e. (5.9)
¥ voa

Proof: Following the idea of Fung (quoted in Ref. 11) we
may decompose a into @ = a,; © a,, where

a)t,0) = (a'(t),...a™(t);0,....0") {5.10)
and
a)(t8) = (t'...t a™* Hay (50)),...a” * "a; '(56).
(5.11)

Then Eq. (5.9) is easily seen to hold for both types of repara-
metrization. For a,, it is simply the m-dimensional version
of Lemma 3.9(a) while for a, it is a standard result of Berezin
integration.5?

As well as giving a definition of an integral on a subset
of superspace, this reparametrization invariance also allows
one to patch together integrals to give integrals on super-
manifolds; there are restrictions on the type of supermani-
fold, because the domain and range of ¥ must include all of
BY". The author is investigating the possibility of reducing
these restrictions, and also improving on the somewhat hy-
brid nature of an (m,n) path.

VI. APPLICATION TO SUPERSYMMETRY

Superspace techniques are frequently used in super-
symmetric quantum field theories'®; superspace extends real
space-time (Minkowski space or a more general manifold) by
adding odd dimensions, and making the space-time dimen-
sion even Grassmann rather than simply real. Supersym-
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metry transformations are represented by translations or
general coordinate transformations in superspace; the usual
techniques of differential geometry are applied; in particu-
lar, supersymmetric invariants are constructed as integrals
over superspace. Obviously, if an integral really is to lead to a
supersymmetry invariant, the integral must be invariant un-
der change of coordinates, and it has been shown in this
paper that this is true for the “quasicontour’” method of Sec.
V, but not for the standard approach described in Sec. I. The
space-time theory is recovered from the superspace version
by using the augmentation map ¢, , (Definition 2.1) to pro-
ject our space-time; it is easy to combine the standard meth-
od of superspace integration with this projection to obtain
from a superspace integral an integral over space-time; one
simply carries out the @ integration. Because the standard
method does not have full coordinate invariance, the space-
time integrals obtained by carrying out the @ integration are
not guaranteed to be fully invariant under supersymmetry
transformations; when explicit calculations are made of the
variations of such “invariants” under infinitesimal super-
symmetry transformations, the variation is found to be equal
to a surface integral which becomes zero if the usual sort of
“dying away at large distances” conditions are put on the
fields. In fact, one can use the quasicontour approach togeth-
er with the generalized Cauchy theorem (Theorem 4.5), to
work out the possible departure from true supersymmetry
invariance of any space-time integral derived from a super-
space integral, and thus to work out what boundary condi-
tions must be placed on the fields if the integral is to be
invariant under both infinitesimal and finite supersymmetry
transformations. To begin with, one must define a method
for obtaining a space-time integral from a quasicontour inte-
gral. To make contact with the standard approach one natu-
rally derives from an (m,n) path ¥ and a function f: B 7""—B,
the space-time integral

fn
€Emn®Y

where £ is the coefficient of 8 '..-6 " in the 6 expansion of f
and the integration is carried out in the usual (Riemannian)

dt,

Fmn © €mn © ™)

(6.1)

way, and,, , denotes the natural injection of R™ into B 7""; if
y satisfies
Y =Jmn © €mn ° Vs (6:2)
then
J.fd "x d"0 = f S € x)d mx. (6.3)
Y €mnoy

However if / gives a coordinate transformation of B 7" (that
is, h: B 7""—B ["" is bijective and G ") then the path /# © ¥ will
not necessarily satisfy (6.2} even if ¥ does, and so the invar-
iance of a quasicontour integral under transformations of
superspace cannot, of course, guarantee the invariance of the
associated space-time integral (6.1). The possible discrepan-
cyis

ffd"‘xd"e—ffd’”xd"e, (6.4)
14 B
where S is any m, n path, which satisfies

e‘m,n ° B = e.m,n ° 7, (65)
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Now suppose ois an (m, n)chainin B 7" such that {0 ]-
B[01-0[8]1is closed for each @in B ¢". Then, by Theorem 4.5,
if fis sufficiently well-behaved,

ffd"'xd"o—Lfd'"xd"o=£fd"'xd"0, (6.6)

and so the maximum breakdown in supersymmetry invar-
iance of the space-time integral (6.1) is §_ fd "x d "8. To see
the nature of this quantity, we consider the simple case
m = 1; then, if y, 3 satisfy (6.5) a possible choice of (1,n) path
o such that ¥[0]-8 [0 ]-0[0] is closed is

og=0,+ 0y,
where
oo(t,0) = 10,6) + ¢(B8(0,6) — 7(0,0)),
(6.7)
0,(,0)=B(1,0)+t(11,0) —B(1,0))
Thus

J;fd "xd"0
= [([ r00)+ (8100 - vo.0)
X(B(0,6) — 10.6) —F(B (L) + £ (111,6)
— B(LOWALE) —B(LO)d Jd"0. (63
Now, if g is a G * function of U C B7" into B,
gr)= 3 b,
and -

g =g + 3 (' — elx)d, g (elx)) +

i=1

(6.9)

(cf. Ref. 8, Corollary 2.9, which includes a form for the re-
mainder). Thus one sees that a sufficient condition on the
field f for the space-time integral (6.1) to be invariant under
supersymmetry transformations is that fand all its deriva-
tives vanish on the boundary of y. This is a slightly weaker
condition than requiring f to be of compact support; it also
extends the result for infinitesimal transformations (familiar
to anyone who has worked with supersymmetry transforma-
tions in component form, where supersymmetric invariants
are always invariant only up to a surface integral) to finite
transformations. Moreover, in any given situation one can
calculate precisely the extent to which using the standard
approach as opposed to the “quasicontour” approach affects
the invariance of a superspace integral under coordinate
transformations.

Although it might seem that by making quite reasona-
ble assumptions on fields, the standard approach (relating
easily to space-time integrals) can be used instead of the qua-
sicontour approach, one must remember that quantization
may involve very singular field configurations; a simple ex-
ample (such as those in Sec. II) shows that for a discontin-
uous function the invariance may break down in a serious
manner. However, although this might lead to some ques-
tioning of the status of the space-time Lagrangian, the quan-
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tization can be carried out in superspace'” where the ap-
proach developed in this paper does lead to full supersym-
metry invariance.

VII. CONCLUSION AND FURTHER POSSIBILITIES

In this paper there has been presented for the first time a
fully consistent method of integration in superspace, pulling
together several ideas in a new way. The method relies on the
geometric approach to superspace, and the use of the finer of
the two topologies which can be used on superspace. In
many cases it gives the same result as the standard method; it
also makes clear the cases where the standard method breaks
down, and is of much wider applicability—for instance, it
can be applied to a superspace with a boundary. A consistent
integration method is clearly essential for putting the various
applications of superspace integration in quantum field the-
ory on sound foundations. It is also important for the exten-
sion to superspace of many standard techniques in differen-
tial geometry. One development which immediately springs
to mind is a method for integration on supermanifolds; su-
permanifolds are made by patching together bits of B 1"
much as conventional manifolds are made by patching to-
gether R™ or C ™. Bernstein and Leites®* and Berezin® have
described how, using “superforms” and superspace integra-
tion one can define integrals on supermanifolds; this ap-
proach becomes fully consistent when combined with the
method of integration on B [*" defined in this paper. Bere-
zin’s method applies only to a certain class of supermani-
fold—basically, those where there is no patching in the 8
directions. It is an open question whether or not a good de-
finition of integration can be given for the wider class of
supermanifolds that has been considered.®

One area of conventional differential geometry which
has found wide application in theoretical physics is the the-
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ory of characteristic classes and their integral representa-
tions; a start on developing a similar theory for supermani-
folds was made by Berezin®; it should be possible to make
further progress using the fully consistent method of integra-
tion developed in this paper.

It should finally be added that the author feels that the
hybrid theory presented here is a step on the way to a more
complete understanding of odd and even integration.
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A class of nonlinear boundary value problems is reduced to linear canonical form by a

combination of Bicklund transformations.

I. INTRODUCTION

The application of Biacklund transformations to the so-
lution of nonlinear boundary value problems is less well-
developed than their role in the solution of privileged initial
value problems via the inverse scattering transform. How-
ever, in a recent paper by Fokas and Yortsos,' application
was made of coupled Bicklund transformations to solve a
nonlinear boundary value problem involving two-phase flow
in an unbounded porous medium. Further developments in
the solution of nonlinear boundary value problems via Bick-
lund transformations are given in Refs. 2—4. Here, a class of
nonlinear boundary value problems on a slab is linearized by
combination of a reciprocal Bicklund transformation and a
version of the Cole-Hopf transformation applied to a
Burgers’ hierarchy.

II. A CLASS OF RECIPROCAL TRANSFORMATIONS
Conservation laws of the form
a d a )] a { ( a d )
=T —{F|— —u)=0 1
ot (axaz“ tal \a M

are considered where

(25 24)
dx oJt

pm= Ty Uy Uy oo Uy Uy o)y (2)
eI
dx ot
T=F(u, Uy, Uy oo Uy Uy, o) 3)

The transformation R is introduced according to
dx* = [aT + b }dx — [aF + c]dt,
t* = et + h(u), R 4)
u*=1/u,
where a, b, ¢, e € R and a, e are nonzero.

It will be required that R be involutory so that R 2 =1,
whence

dx** =dx, (5)

ter—y, (6)

u** =u. (7)
Thus,

dx** = [aT* + b ldx* — [aF* 4+ cldt*
= [aT*+b]{[aT + b Jdx — [aF + c]dt }
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— [aF* +cliedt + h'u, dx + h'u, dt }
= [(@T* +b)aT+b) — (aF* + c)h ', |dx
— [@T*+b)aF+c)+ (@F*+¢)

Xle+h'u,))dt =dx
requires that
(@T*+b)aT+b)— (@F* +c)h'u, =1,
(@T * + b)aF + c) + (aF* + clle + h'u,) = 0.
Hence, T* and F * are given by

aT*+b=(e+h'u)/4, (8)
aF* +c= —(aF + ¢)/4, 9)
where
A:=J(x*t*x,t)=@T+ble+h'u,)+ (aF+ch'u,.
(10)

Condition (6) shows that
t** =et* L h(u*)=ét+ehu)+hu )=t

whence

=1, (11)

eh(u)+h{u=")=0. (12)
Accordingly, either

e=+1, h(u)=¥(n|u|), ¥odd, (13)

or
e= —1, h(u)=06(n|ul),
Furthermore, it is noted that
u** =1/u*=u, (15)

so that the last reciprocal condition (7) is met.
Thus, we obtain the following result.
Theorem: The conservation law

ar gJF
at  dx 16
is transformed to the reciprocally associated conservation

law
t 3
T n OF *
at*  Ix*
under the reciprocal transformation given by (4), where A (1)
is subject to conditions (13) and (14) and T'*, F * are given by
(8)10).

The above result is an extension of the reciprocal result
recently presented by Kingston and Rogers.® This has been
applied to inverse scattering schemes by Rogers and Wong.®
Here, reciprocal Biacklund transformations are used in con-

O even. (14)

=0 (17)
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junction with a Cole-Hopf-type transformation to reduce a
class of nonlinear boundary value problems to linear canoni-
cal form.

lil. THE NONLINEAR BOUNDARY VALUE PROBLEMS:
APPLICATION OF A RECIPROCAL TRANSFORMATION

The class of nonlinear boundary value problems to be
considered is given by

—+-—[ a,(t)qb,.]=o,

O<x<L, t>0, (18)
N
u Y ao,t)P, =¥(t) atx=0, >0, (19)
i=1
N
uyat)P,=wt) atx=L, >0, (20)
i=1
u=1ulx) att=0, 0<x<L, (21)
where the @, are defined recursively according to
aP,_,
ud, =>,_, + o i=12,.,N, 22)
¢0 = l.

It is noted that nonlinear boundary conditions (19) and (20)
correspond to prescribed flux at x =0 and x = L, respec-
tively.

Under the reciprocal transformation,

N
dx' =udx —u Y a;(t)P, dt, t'=t,
i=1

u'=1/u, (23)
Eq. (18) becomes

au’ a

& -2 Sairer] =0, 24)

i= l
where the ¢,f are given recursively by
op!
P, =ud,_,+——, i=12,.,N,
Ox (25)

Di=1.
Furthermore, (23) shows that

ax'

—_—=u,

ox

ox'

—= —u t)P,

o zai( )

- j _[uz_:la,.(t)qb,]dx— ,(¢)
_f 94 e —wyt),

whence
x'(x, t)= f u dx + 6,(0) — 6,(t), (26)
0

where O,: = ¥,, and we have taken x’(0, 0) =0
Thus, the boundary condition (19) becomes

Sae1e; =uw¥ir) @
i=1

atx' = 6,(0)— 64(t'), t'>0,

394 J. Math. Phys., Vol. 26, No. 3, March 1985

under the reciprocal transformation (23).
The flux conditions at x = 0 and x = L show that

[u ia,-(t)d’,]L
i=1 0
=r_a_[u f;a,(t)qb, dx

_ L Qu
o Jt
whence, on use of the initial condition (21),

f Cwdx = O,(t) — B,(t) + 6;(0) — 6,(0) + f " dx,
0 0 (28)

—dx = —-—f udx = W,(t) - W),

where 8,: = ¥,.
Accordingly, the boundary condition (20) becomes, by
virtue of (26) and (28),

Sat)p; =ud3(r) 29

L
atx'=92(0)—92(t')+J- udx, t'>0.
0

Thus, to summarize, the reciprocal boundary value
problem is

é‘———[zaz,(t')w: ~o,
Z a,(t )P =u'Wt')
i=1
atx'=0,(0) — 6,(t"), t'>0,
N (30)
Ya(t)P;=u'Wyt')
i=1 .
atx' = 6,(0) — G,(t") + f iloydo, t'>0,
w=U'(x') att'=0,
where
¥l,mo = [ oMo = U, 1)
0
U'lx') = 1/a(U ~'{x")), (32)

and the @ are given by (25) and generate a Burgers’ hierar-
chy.
IV. REDUCTION OF THE BURGERS' HIERARCHY

We now introduce the Bicklund transformation

ut =u'u*,

it =(Saoilut (33)

x*=x', t*=t'.
Under this transformation it is readily shown that

oL Ju (34)

u* ax
and the nonlinear evolution equation
aul
o ——-—[ Za,(t )P ] 0, (35)
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becomes
N
‘;:‘: - Za,(t‘)——i‘: + T, (36)
f==1

where T (¢ *) is arbitrary. Introduction of #(x*, ¢ *) according
to

t.
= exp{ — f T(a)da]u‘, (37)
0
reduces (36) to
dii y a'u
= t*—, 38
Py :.na'( P (38)

and (33) together with (37) reduce the nonlinear boundary
value problem to the linear canonical form
~ N ~
di = zal(t‘)'g’_u.i'y t*>0,
x

at*t “~
dis o
P - W,(t"‘)——ax* =0
atx* = 6,(0) — 6,(t*), t*>0, (39)
dit ai
at* e

at x* = 9,(0) — Oyt *) + fLﬁ(a)da,

= epr U ’(r)dr] att*=0.
=3
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Thus, it is seen that the class of nonlinear boundary
value problems defined by (18}422) may be reduced to linear
canonical form by combination of a reciprocal transforma-
tion and a Bicklund transformation appropriate to the re-
duction of a Burgers’ hierarchy. The result obtained in Ref. 1
may be retrieved as a special case of the above when reduc-
tion is to a linear boundary value problem for the classical
1 4 1 heat equation. Application was made in that case to
two-phase flow in a porous medium.
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Some properties of hyperspherical harmonics
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A general formula is given for the canonical decomposition of a homogeneous polynomial of
order A in m variables into a sum of harmonic polynomials. This formula, which involves
successive applications of the generalized Laplace operator, is proved in the Appendix. It is shown
that the group-theoretical method for constructing irreducible Cartesian tensors follows from the
general formula for canonical decomposition. The relationship between harmonic polynomials
and hyperspherical harmonics is discussed, and an addition theorem for hyperspherical
harmonics is derived. An expansion of a many-dimensional plane wave in terms of Gegenbauer
polynomials and Bessel functions is derived and used to construct bicenter expansions of arbitrary
functions in many-dimensional spaces. Finally, a formula is derived for the 34 coefficients of
hyperspherical harmonics. These coefficients give the values of integrals involving the products of

three harmonics.

I. INTRODUCTION

During the last few years, the application of the hyper-
spherical expansion method to the quantum mechanical
many-body problem has attracted a great deal of attention.
In nuclear physics, the method has been developed to a high
degree, mainly by Soviet authors."? In atomic physics hy-
perspherical analysis of two- or three-electron atoms has led
to a new insight into electron correlation.>'* For more com-
plex atoms, some impressive qualitative conclusions can be
drawn from the hyperspherical coordinate method.* The
calculations involved are extremely complicated,'’ but an
interesting suggestion for simplifying them has been pro-
posed.'® Hyperspherical analysis has also been applied to
molecular problems, such as the treatment of large-ampli-
tude vibrations and reaction coordinates.”

The increasing interest in hyperspherical harmonics in
theoretical physics and chemistry makes it worthwhile to
undertake a mathematical investigation of some of their
properties. Although many books and papers on this subject
are available,'®?! we believe that some®results still require
clarification. The aim of this paper is to clarify some of the
concepts underlying the theory of hyperspherical harmonics
and to explore relations among them. Many of the questions
discussed in this paper are well known, but others are per-
haps new.

Il. HARMONIC POLYNOMIALS AND HYPERSPHERICAL
HARMONICS

Let us begin by recalling that a homogeneous polyno-
mial which satisfies the generalized Laplace equation is
called an harmonic polynomial. If we consider an m-dimen-
sional space with Cartesian coordinates x,,x,,...,X,, , then the
generalized Laplace operator in this space is

AEM &

—-
/=1 0x;

(1)

* Permanent address: Mining Institute of Xi’an, Xi’an, Shaanxi, The Peo-
ple’s Republic of China.
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The following general formula allows us to express a
homogeneous polynomial in terms of harmonic polynomials
(thisis called a canonical decomposition of the homogeneous
polynomial): Let £, (x) be a homogeneous polynomial of or-
der A in the coordinates x,,x,,...,X,, . Then

[A72]
falx)= kgo PR, _au(x), (2)
where
By (%)= (m+24 — 4k —2)

2%k m + 24 — 2k — 20
“"‘i"”" (—1f(m +24 — 4k — 2t — 4
=0 2!
XA X+ £, (x). 3)

In Eq. (3), 4% ** is the generalized Laplace operator [Eq. (1)]
applied & + ¢ times, and r is the hyperradius defined by

P=x}4+xi+4++x2. 4
A special case of Eq. (3) (k = 0) appears in Vilenkin’s book.?°
A proof of the general formula is given in the Appendix. Asa
simple example of the canonical decomposition of a homo-
geneous polynomial by means of Egs. (2) and (3), we might
consider the case where A = 3 and

X

S1(x) = fi(x) = xix,. (5)
Then Eq. (2) becomes

x1%3 = hy(x) + °h;(x), (6)
where, from Eq. (3),

hy(x) = x2x, — Px,/(m + 2) 7
and

h(x) = x,/(m + 2). (8)

A number of harmonic polynomials are listed in Ref. 22, in
which the polynomials are called A-projections and derived
by angular integration. If an harmonic polynomial is consid-
ered to be a component of a tensor, the tensor will be irredu-
cible with respect to the m-dimensional rotation group
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So(m). Just as we do in three-dimensional space,”® we may
call the hyperspherical polynomial of the highest order
[#.(x)] an irreducible Cartesian tensor. It is a symmetrical
and traceless tensor of order A. There is a general method in
Hamermesh’s book?* for constructing such a tensor. Let 3
be an operator which symmetrizes the indices iy,is,...,03
keeping only distinct permutations of the indices. Then if
A = 2t, the symmetrical traceless tensor can be written as

m(m + 2)-(m + 4t — 4)(x; x; ~x,
— m(m + 2)(m + 4t — 62 (5, x, X,

4ot (= 1)~ m(m 4 2ol + 2 — 22

x3 01,8y, yiny 1 Xtre_ Xy

+ (= 1)'m(m + 2)-(m + 2t — 4)r*

x3 (01, 8i,, i) (9a)

If A =2t + 1, the symmetrical traceless tensor of order A
becomes

m(m + 2)-(m + 4t — 2)(x; -x,, )
— m(m + 2)-(m + 4t — 43 (5, x

X, )
™y '2:+1

F ot (= 1)~ Ym(m 4 2 + 2¢)7 2

xZ 0,00 iz 1 XXty )

+ (= 1fm{m + 2){m + 2t — 2)*

X2 (61,01, _ i ¥, ) (9b)

As a simple example of Eq. (9b), let us consider the case
where A =3, i, = 1, i, = 1, and i; = 2. Then the symmetri-
cal traceless tensor of (9b) becomes
m(m + 2Jx}x, — mrE (81.1%2)

= m(m + 2)(x}x, — r'xy/(m + 2)), (10)

which should be compared with Eq. (7).

We will now show that Egs. (9a) and (9b) can be ob-
tained from Eq. (3), although they seem very different at first
glance! From the definition of the generalized Laplace oper-
ator, it follows that

4(x; x, -
x,lx X, (A 4
- h(»@@wz%)
=1 =
X; X, X 2
+ I (S 6 )~ 14 5 0,a)
x2 =1 ji=1
A
26.-,,,.)
i=1

G

=23(5,, x,- (11)
Similarly, we have
A% ex,) = A3 (B, 8,0, Xi, %), (12)

where the factor 2! comes from the symmetrization of the
indices of the two §-symbols. Since there are ¢! different pro-
ducts for ¢ §-symbols when the indices are symmetrized, we
have, in general,

4 (x, x )-—2't!2(5 0;

. . . ane
iy '314 iy i T iy s % )'

(13)

-

397 J. Math. Phys., Vol. 26, No. 3, March 1985

If we substitute Eq. (13) into Eq. (3), and let A = 2¢ foreven A
or A =2t + 1 for odd 4, we obtain Eqgs. (9a) and (9b).

We can ask how many linearly independent harmonic
polynomials of order A it is possible to construct in an m-
dimensional space. The number of linearly independent
functions of the form x; x, --x; that it is possible to con-

struct is
A+m—1
i (7).

Since the harmonic polynomials are required to be traceless,
there will be

(14)

Nu—m=@+m—ﬁ

12 (15)
relations of the form

hl.n,+2n, Py +h/1n,n,+2 .....

with
n4+n++n,=4-2, (17)
where the n;’s are the powers of the x;’s. Therefore the num-

ber of linearly independent harmonic polynomials of order A
in m-dimensional space is

+m—l) (/l+m—3)
A T\ a-2
_(A+m—2)A+m—13)
h Alm —2)1
A set of harmonic polynomials of order A in an m-di-

mensional space is related to a set of hyperspherical harmon-
ics of order A by

Yo @)=mr=" hy,(x), (19)

wherep = (1,025 m — 2 ) is a set of indices which label the
different linearly independent harmonic polynomials, and
hence also the different hyperspherical harmonics. In Eq.
(19), n is a normalization constant and {2 stands for a set of
m — 1 angles in the space. Since the harmonic polynomials
satisfy the generalized Laplace equation, we have

A [k, (X)] =4 [FY,,@2)] =0 (20)

One can express the m-dimensional Laplace operator in the
form

Nm—Nu—m=@

(18)

1 4 a Al
_— & m—1 =, 21
"=t or ar r (21)

where A 2 is the generalized angular momentum operator

4=

A= -3 4 22)
i<j
and
a d
A . = xi —_— ;g —_— 23
" Ix; K Ix; 23)
From Egs. (20) and (21) it follows that
A2 Y, (2)=A A +m—2)Y,,(2) (24)

Equation (24} can be regarded as a definition of hyper-
spherical harmonics. They are eigenfunctions of the general-
ized angular momentum operator A 2,. Usually they are cho-
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sen in such a way that they also fulfill an orthonormality
relation of the form

f 2, ¥, (@)Y, (@) = 5,3 By, 25)

where df2,, is defined by
dx,dx,-dx,, =r"~ldrd(2,,. (26)

Now suppose that we have found a set of hyperspherical
harmonics Y, , (12 ) which satisfy Eqs. (24) and (25) for a par-
ticular value of A. Then any other set of functions % ;..(2)
which are related to the set Y, (42 ) by a unitary transforma-
tion

Y. i2)=3 Y,,(2)U,, @7)

will also satisfy (24) and (25). Obviously, there are infinitely
many ways of carrying out such a transformation, since the
only restriction on U,, is that it should be unitary. Hence
there are infinitely many possible ways of constructing sets
of hyperspherical harmonics, and further specification of
Y,..(€2) will depend on the organization of the indices » and
on the definition of the hyperspherical angles.

As an example of a particular way of specifying a set of
hyperspherical harmonics let us consider the case where the
angles are defined by the equation®

X, =rsin @, sin 6,-sin 8, _; sin,, _, sin ¢,

X, = rsin @, sin @,--sin @, _; sind,, _, cos ¢,

_

x3 =r Sin 01 Sin 02°-'Sin Bm_ 3 COs Om_z,
x4 =rsin @, sin 0,--cos 6, _;, (28)

x,,_, =rsin @, cos 6,,
x,, =rcosé,.

In terms of the angles 6,,...,0,,, _ , ¢ the element of the solid
angle becomes

df,, = (sin 6,)" ~ *(sin ,)" ~3.(sin G,, _,)°

Xsin 8, _, d6,d6,--dé,, _, dé. (29)
Integrating over the ranges 0<6; <7 and 0<¢$ <27, we obtain
/2 N
[aa, =2 T (30)
'im/2) (m-—2M
where
(2m)™2, if m is even,
S LN (31)
(27) , ifmisodd.

[Notice that (30) does not depend on the particular choice of
angle (28), since df2,, can be defined by (26).] In terms of the
angles defined by (28), a particular set of hyperspherical har-
monics can be written in the form*®

Yu (42)

..... by 2

= ml_—[ 6('uf—-1#j;ej)]yym_g.um_z(em—2’¢)’ (32)

j=1

O (1 1:136)) = [

. j+m—j—1)72
X (sin 8,7 €1+ 70T (cos 6)).

In the above formulas the functions C Zj:’l": ;jj RS

are Gegenbauer polynomials defined by
@2 (— 1) (m + 2n — 2t — 4!

Clm=22x) =
= t;o 12" "(m — 4l(n — 2t )

(cos 6;)

(2x)n — 2t,

(34)
while the functions Y, ., (0, _,.¢) are the familiar
three-dimensional spherical harmonics. The set of indices
satisfies

A = HoR P Pl 2 20, (35)
For example, we can find the four-dimensional spherical
harmonics by means of the formula

Y iosti2 61,028 )

=24 (p, + 1) 2(po + D 4o —#1)!]1/2

o + 1 + 1)!
X(sin 8, Ct:* . (cos 6,)Y, ., (6,.60)
=i7# [2(u0 + 1)/m]'/? H, 5,1(c086)Y, . (0,96),
(36)

where H,, ,,, (cos 6,) is the function which is discussed in
some detail by Bander and Itzykson?® and Talman.?’

The hyperspherical harmonics ¥,,, . _.(£2) defined
by Eqgs. (32) and (33) obey the orthonormality relation
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2(2”j+,,,_j_3)r2(ﬂj +(m—j— 12 (g —p; + )2y +m—j— 1)]1/2
Ly —p +m—j—1)

(33)
I
[40n s 0V @)
m—2
= ,-l;Io a%,, (37)
and they are simultaneous eigenfunctions of the set of com-
muting Casimir operators A 2,42, _|,...A 2 and3d%/3¢ 2, so
that they obey
AL Y @) =p(y +m—j— )Yy,
j=0,1,.,m—3 (38)
and
a ,
% iiy(ﬂ)= T, Y/l,p(ﬂ) (39)

Some authors define hyperspherical coordinates in
ways which are different from Eq. (28). For example, in the
papers of Delves®® and Knirk'* the hyperspherical coordi-
nates are defined by a clustering approach in which the polar
angles of individual particles are preserved, and thus their
hyperangular functions contain indices representing the an-
gular momenta of individual particles. From the standpoint
of group theory both the hyperspherical harmonics defined
by Eqgs. (32) and (33) and those defined by Knirk and Delves
can be seen to be basis functions of the same irreducible re-
presentations of SO(m). They differ, however, in their sub-
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group symmetry. The hyperspherical harmonics of Knirk
and Delves are adapted to the subgroup chain

So{m) D SO(m — 3) @ SO(3) D - > [ ® SO(3)]™",
(40)

while the harmonics of Eqs. (32) and (33) are adapted to the
canonical subgroup chain

SO(m) D SO(m — 1) D - SO(2). (41)

1. THE ADDITION THEOREM FOR HYPERSPHERICAL
HARMONICS2#-31

In Refs. 30 and 31 it is shown that in three- and four-
dimensional spaces the multiplication rule for matrix repre-
sentations of the rotation group leads to an addition
theorem. Now let us try to carry through an analogous proof
for m-dimensional hyperspherical harmonics. Since the
functions Y, , (2 ) form the basis of an irreducible unitary
representation of SO(m), it follows that if R is an element of
SO(m) we can write

RY,,(2)=RY,, (w=Y,, (R )
=3 Y, WD} (R) (42)
<
where
- (2‘_ kY iz'-) (@3)
r o r r

and where D7, (R ) is the matrix representing R in the irre-
ducible representation A.

Now suppose that the unit vector u points in the direc-
tion of the x,,, axis so that

u = u,,=(0,0,...,0,1). (44)
Then from Eqgs. (32) and (33) we have
Y,,.,)=0, ifus#0, (45)
and
Yiu(u,)
—er00). [-L
4
m—3 2m—j—31'~2[(m __]__ 1)/2](’" —j— 1) 172
X jnz [ mm —j—2) ]
[ (m—=2MrA+m—2)24 +m—2) ]‘/2 (46)
N AT (m—1)

Setting u = u,,, in Eq. (42} and making use of (45
Yl,p('R _lum)
- [ (m — l)!!I"(/l+m—2)(2/1+m—2)]"2

}and {46}, we

N, AWl (m— 1)

XDé,p R). (47)
Because of the unitarity of D7, , we can rewrite Eq. (47) in
the form
D (R)*

_[ N, AWl (m —1)
T lm =2 (m—2)2A +m —2)

172
| rren

(48)
As a special case of (48) we have
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Dg’o(R) A!r(m+2) C(m_z)/z
’ rA+m-2)
where 8, is the first angular coordinate of the vector Ru,,,,

i.e., the angle between Ru,, and u,, .
From the definition of a representation, we have

ZD (R)D - i (Ry). (50)
Combining Eq. (50} with Eqs. (47}-{49), we obtain

ECHL

_ =it m =)
N,

Here 8, is the angle between R,R,u,, and u,,, or the angle

between the vectors R,u,, and R ; 'u,, (see Fig. 1). If we let

{2 and £2 ' be the angular coordinates related, respectively, to
v and v, then Eq. (51) becomes

ZY

(cos 8,), (49)

1) Yy (R 3770, )

(cos 6). (51)

wl2)Y,,2°)

A+ m—2)m — 4
N,
where N,, is defined by Eq. (31). This is the form of the
addition theorem given by us in Ref. 22. It should be noted
that although we have used explicit expressions for the hy-
perspherical harmonics to derive Eq. {52}, the formula is cor-
rect in general, since it can be derived using only the unitar-
ity of the representations and Eq. (24) (see Ref. 22).

From Eq. {52)it follows that if /(12 ) is an arbitrary func-
tion of the hyperangular coordinates {2 and if O {™ is a pro-
jection operator which projects out the component of f{£2),
which is an eigenfunction of A2, with the eigenvalue
A{A +m —2), then

oy fR2)] =

Ci—22ua’), (52)

(m — 424 + m — 2)
N,,

X j dn;, Co =) f(2°).  (53)

For example, if f(2) =1,
(m — 424 +m —2)
N.

o1l =

de.f),',, Clm = yay), (54)

FIG. 1. Angles in Eq. (51).
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while if f(2) = C{* ~2(u"-u),
oCy -]
_(m—42A 4 m—2)
N,
X €7~ V")
=8;; C'T~¥u"w). (55)

f dn;, ' Y{u)

iV. BICENTER EXPANSIONS OF FUNCTIONS BY
MEANS OF GEGENBAUER POLYNOMIALS

The formalism which we have been discussing can be
used to construct bicenter expansions of functions in an m-
dimensional space. In order to do this, we begin by expand-
ing an m-dimensional plane wave in terms of Gegenbauer
polynomials:

e,-k.x - ei(k.x. + KXy 4 e+ KX y)

=3 *m + 24 — 2)(m — 4N 77(kr)
A=0

X C =22y, ), (56)

where u, = k/k, u = x/r, and where the functions j7{kr) are
to be determined [the factor (m + 24 — 2)(m — 4)! is intro-
duced for the sake of convenience]. Applying the operator
(4, + k) to both sides of Eq. (56), we obtain

@, + kY = (4, + k? z P(m + 24 — 2)m — 4

Xjxtkr) €= 2w u) = 0. (57)
Combining Egs. (57), (21), (24), and (52) we obtain an equa-
tion satisfied by j7/( p):

L))+ [ - AEE =D o)

e+ ("’
(58)
where p = kr. We now let
JZp)=p " F(p) withv=(m—2)/2. (59)
Then Eq. (58) becomes
P F"(p)+pF'(p)+[p* — A+ V1 F(p)=

which is the equation satisfied by the Bessel function of order
A + v. Thus we obtain

F(p) _Jarslp)

v p‘V
The many-dimensional plane wave of Eq. (58) is related to
the §-function in the m-dimensional space by

m kex
5(x)= 2 ).,. J-d ke

Z *(m+ 24 —2)m — 4!

(27)"' i=o

i(p)= (60)

Xf d™ kjrkr) C{~ 2 (u,u). (61)
An arbitrary function f(x’ — x) can be expressed as

Sfix' —x)=fd"‘x"f(x")6(x" — X+ Xx). (62)

400 J. Math. Phys., Vol. 26, No. 3, March 1985

In the special case of an angle-independent function,
J(lx’ —x]), (62) becomes
fx' —x|) =J ar’ r™"=1f(r") f dn,, 5(x" —x' + x).
(o]
(63)

If we replace 8 (x” — x’ + x) by (61) and make use of (54) and
(55) we obtain

Fllx = x)) = 3 a,(rn) €= > ), (64
where
o iy = Nilm + L(;;zz)(m —a
X J:o ar"rm- lf(r")Jw (r*,r,r (65)
and
Jous = [ e = ftr”) ) e, (66)

The function a, (#',7) can be expressed in a differential form
by the following procedure. We rewrite a, (r',7) as

a,(r',)=N2%(m+24 —2)m — 4
f dk k™= Fik) ke ke, (67)
where
Flb) = L[ e gtk (68)

Substituting the explicit series for j7(kr) into (69), we obtain
a,(rsr)=NZLim+ 24 —2)(m — 4!
© ( - l)nrzn +A
W= (2n)(2n + 24 + m —2)I!

xf dk km+A+m—LF(k)jrkr).  (69)
(4]
It is not difficult to prove by reduction that
1 1 4
er’) = ( — _) ( ) k 70
JZ(kr) . r EaEw o (kr'). (70)

Then the formula (69) becomes

a(r'r) = Ni(m + 24 — 2)(m — 4)!

(=1t
o (2n)12n + 24 + m — 2!

) J dkk2n+m—l

X F{k)jokr). (71)
From formulas (58) and (56} it can be verified that

X(= 1 (2

N, f dk k™= F (k) jokr)
0

=fd"'ke"“‘"'F(k)=f(r’).
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Applying V2 to both sides of the previous equation, we ob-
tain

Viflr) = ——jd”'kkze““""F(k)
—~ N, rdkkﬂm-'jg(kf)p(k).

Successive applications of V2 n leads to

VIfir)=(—-1yN, fow dk k2" * ™ =1 ke \F (k).

(72)
By combining (71) and (72), we finally obtain
GrA= 3 fulr) P+, (73)
where
_ (= 1)im +24 — 2){m — 4N,
Fulr) = 2n2n + 24 + m — 2)N
JA i __a_ 4 2n ’
xXr (r’ c?r’) Vo). (74)

Formulas (64), (73), and (74) are the m-dimensional general-
izations of the three-dimensional expressions obtained by
one of us.>?

V. 34 COEFFICIENTS FOR THE HYPERSPHERICAL
HARMONICS

The Wigner coefficient and the 3; coefficient related to
it for SO(3) and their great utility are well known. Wigner
coefficients for some higher rotation groups, such as SO(4)
and SO(6) (see Ref. 33), have been worked out and used in
calculations. We now consider in general the 34 coefficients
of the hyperspherical harmonics for SO(m). We define sym-
metrized “34 ” symbols as follows:

[a2 @017, @)

_[A 4 4

- ”l #2 #3 ’
where the superscripts have been attached to the sets of u’s,
thusy’ means (uf ub,...u% _ ). If we substitute Eq. (32) into
(75) and introduce the notation

I(v _.”'jl—l .“'12—1 ,“;—l)

(75)

7 1

A
= J: dw; O (p)_ 1 44736,)0 (1} _ 144736,
XO (p_1,150), (76)

do; =dO)(sin )" ~/~', j=12,.,m—3,
then the “34 > can be written as

Ay Ay A m=r f piy By By
1 2 3| = H 1 T 2 3 ’
A A =1 K Hj H;
77
where the integral with j = m — 2 is defined by
Bm—3 Hm_3 M3
I\v,_,; , 2 3
,u'm -2 Hm-—2 Au'm —2
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_ [(2;!5,,_3 + (267 5 + D2ps s + 1))

47
x(l‘rln—a 7R ”'3"_3)
0 0 0
1 2 3
ﬂm — Hm_3 ”m -3
x(frs tmoe Kae) 78)
Hm-2 Hm—2 HEm—2
and where( )are the 3j symbols for SO(3). In order to evalu-

ateintegral (55) we introduce the explicit expression (33) of @
functions, i.e., we write

I(v '/"jl—l ﬂjz-l l‘f~1)

Jr 1

[ At

- f d6, (sin 6,2
0
3 N
i+ y
XTI €y €l Ly (008 6) (79)
where
My=p +pi+p, v=m—j—1)/2,
and

Cps = (24272 M ) + )
Xy — g + W2, + 205)
X [#(pi_y + 4 + 20;)] 12 (80)
Gegenbauer® stated that
Cstrl= 3 Cloab) 2ot &1
where

Csap)<B=2+BICt+a—B)lats—1)['B)
£S5y r(1+t)r(a—ﬁ)]"(s._t+ﬁ+lun(a)(sz

See Hua® for a simple proof.

We have
I ‘/-"jl -1 ,UJ?— v Mo
Ui 2 3
K Hj K;

(w1 —mpr2] 3

i i i l

i

X f d6;(sin 6"+
0

In obtaining the above equation we have used the well-
known relation between Gegenbauer functions and Le-
gendre functions

C%x) = P,(x). (84)

It is not difficult to evaluate the remaining integral in Eqs.
(83) if we make use of the following relations:

P, (x)P, (x)

=sen+1( B aw )

an d36

3
1'[l P#}L i ,(cos 8;). (83)

i=
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7L )}

f dx(1 —x*)P~'P,(x)=

Integrating (83) out we obtain

17 R [20p)_ 1 =] 3
Ily; 5 =

1y I I 4=0

x(ﬂ}—l —p =2t -2t 7'1)2(/‘13_1

0
where

Llp+v/2+ 1/ (p—v/2L (v/2+ ) (—v/2+1/72)°

Fl(vjﬂ;'.vl#;;tl) = [

X(I‘_;-l —p =2+ 0O ) v, — W (g + v, — )

Rep>0. (86)

= 2 IR ospn) 3 m + 02rs + DEM ims)

T2

—pi =2 7 7'1)2’ (87)

0 0 0 0 o0

i i i i 172
29 Nyl — g+ 1)
(1 +u + 2000 ) + v, — )

- 88
Lo+ 00 (g —p—t+3) .
and
2[(M, + 2v, + 1)/21 [(1 — 7)/2]sin[(1 + 7)m/2
Fu M = (¥4 + 20, + W21 (1 — 7)/20sinl(U + rbr/2] )
C[(M; + 20, + 2+ )2 T [(M; + 20, + 1 — 7)/21T [(2 + 7,)/2]
r
Here, 7, and 7, take on all the values allowed by the 3jsym- A (FP* £, _,..) =2k (m + 24 + 2k — 4k’ — 2)P* =%, _,,.
bols. For SO(4), it follows that
As Ar ,z( pHflows e + P*Af) e (A2)
! ; ;] where f, _,.- is a homogeneous polynomial of degree
A A — 2k . Thus we can prove from the induction of (A2) that

1 2 3 1 2 3
=1(1;"‘1’ Ho ”‘3’) -1(%”1 # ”;) . 190)

B B 2, By M
The previous formulas produce the same values as those giv-
en by Shibura and Wulfman3” within a common factor (1/

21,,2)1/2_
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APPENDIX: PROOF OF EQ. (3)

Suppose that f, (x) is a homogeneous polynomial of de-
gree A in an m-dimensional space. Then we have the canoni-
cal decomposition**

(2/2)
filx)= kzo P by _ (%)

where 4, _ ,, (x) is a homogeneous harmonic polynomial of
degree A — 2k. It can be verified by direct calculation that

(A1)
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AR )
- X ,"_,(k') klin+24 —2k—2t -2
=0 t Jk—k'+tln+24—2k-2k"-2)I
xXpk-wrungqe e . fork'<k. (A3)
Applyingtheoperator4 tobothsidesof Eq.(A1)k timesand
using Eq. (A3), we obtain

A5, 0) = 2t 24— 2k =200
n+ 21 — 4k — 2)!
(/2] )
+k' 2}:, 14"("21‘ hy_ i)
=K+

It is obvious that A* £, (x) is a homogeneous polynomial of
degree A — 2k. Thus the harmonic polynomial of degree
A—2kis

hy_ 3 (x)

by _2xlx)

(A4)

_ (n+ 24 — 4k —2)
2%k in +24 — 2k -2
X[(/l—2k)/2] (— 1)(n+24 — 4k — 2t — 41

o 2tl(n + 24 — 4k — 4
x’,er k+'f:1(x)
R+24—4k—-2)

T 2% M + 24 — 2k — 21

=252 (1) (n + 24 — 4k — 2t — 41
rgo 21t

XA %+ £, (x).

X

(A3)
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The hyperbolic complex linear groups and the isomorphic relation between these groups and real
linear groups are discussed. A local hyperbolic complex gauge symmetry of the hyperbolic
complex sesquilinear field is equivalent to some local real gauge symmetry of the real bilinear

field.

I. INTRODUCTION

Although the ring H of hyperbolic complex (or “dou-
ble”’) numbers has been studied extensively by mathemati-
cians,'? it has been scarcely applied directly in physics. Kun-
statter, Moffat, and Malzan® first applied this ring in the
theory of gravitation. They have suggested that the metric of
the space-time manifold takes their values in H, and have
proved that this metric has internal GL(4,R ) gauge symme-
try. However, this symmetry, in fact, isa HCLG (i.e., hyper-
bolic complex linear group) gauge symmetry. (See Ref. 4,
and Sec. II1.) In this paper we generally discuss the HCLG’s
and some related problems. In Sec. I1, we give briefly defini-
tions of principal HCLG’s. These definitions are very similar
to the case of CLG’s (i.e., complex linear groups). Section III
and Sec. IV are the principal parts of this paper. In Sec. III,
we prove every principal HCLG to be isomorphic to some
RLG (i.e., real linear group) or a direct product of two
RLG?’s. This is an essential distinction between the HCLG’s
and the CLG’s. In Sec. IV, we prove a local HCLG gauge
symmetry of the hyperbolic complex sesquilinear fields to be
equivalent to some local RLG gauge symmetry of the real
bilinear fields. The case concerning the internal symmetry of
a hyperbolic complex metric® in nonsymmetric gravitational
theory is such an example. Finally, Sec. V is conclusions.

Il. GROUP GL(n,/) AND ITS PRINCIPAL SUBGROUPS

Let € denote the purely hyperbolic imaginary unit of H,
€ = + 1. The conjugation number of z =a + €b (a and b
are real) is Z =a — €b, and the square of the norm of z is
||l2|I* = £ = @* — b 2. Although z does not vanish in H, ||z||?
may vanish (e.g.,z = 1 4 €). Number 2z~ exists, if and only if
||z]/*#0, where

27 '=%/|z||* = (a — eb)la* — b3~ n

The above are different from the case in the fields of complex
or real numbers.

According to the multiplication of matrices, the set of
all n X n hyperbolic complex matrices obviously forms into a
ring on H. If A is a hyperbolic complex matrix and ||det(4 )||
does not vanish, then we call matrix4 “nonsingular.” Onthe
contrary, wecall4 “singular.” By Eq. (1) we have the follow-
ing.

Theorem 1: The converse 4 ~’ of a hyperbolic complex
matrix 4 exists if and only if 4 is nonsingular. 4 ' is calcu-
lated in the same way as an ordinary converse matrix.
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A hyperbolic complex vector is an nX1 hyperbolic
complex matrix ¥ = (V). According to the ordinary way,
the set of all ¥’s forms into a linear space H”. We cannot
copy the concept about ordinary linear independence for
H" . However, the following theorem can be easily proved (in
the following, every Latin index takes values 1,2,...,n).

Theorem 2: { V', } is a basis of H (i.e., any vector Wof H
can be expressed as W =a'V ;,a' € H)if and only if the hy-
perbolic complex matrix (¥”) is nonsingular.

Now, we consider a hyperbolic complex linear mapping
fr H*—H". fcan obviously be expressed in a hyperbolic
complex matrix (f4), and the product of mappings corre-
sponds to the product of matrices. If  f/) is nonsingular, we
call f nonsingular. Such f has the converse f~/,
(7Y =(f)"". A basis is mapped into another basis under
the action of a nonsingular mapping. Thus, the set of all
nonsingular mappings (or matrices) forms a group GL(n,H ),
i.e., hyperbolic complex general linear group of degree n.
The group GL(n,H ) has some principal subgroups, the first,
of course, is just the group GL(n,R ). Since the definitions of
other principal subgroups are similar to the case of the ordi-
nary complex linear group GL(n,C ), we spread them out di-
rectly as follows.

The hyperbolic complex orthogonal group of degree n
relative to signature 7 is defined by

O(nH)={f|feGLnH )" =1}, (2
where 7 is some signature, A 7 is the transpose of 4, and I is
the # X n unit matrix. When = I, O(n,H }=0(»,H ). Obvi-
ously, for any V the quadratic form o = 77, V' ¥/ is invariant
under the action of an element of O(x,H ). The hyperbolic
complex unitary group of degree n relative to signature 7 is
defined by

Ulp,H)={f|feGLn,H)(fIm(fYn~'=1}. (3)
When 9 = I, U(n,H }=U(n,H ). For any V the square of the
norm ||V |2 =,V ¥/ is invariant under the action of an
element of U(n,H ). Obviously, the ordinary Lorentz group
0(3,1) is a real subgroup of U(3,1,H ). The hyperbolic com-
plex symplectic group of degree m is defined by

Sp(m.H)={ f|fe GLCm,H),(f)H(f)=J}, (4

=7 o)

According to the ordinary way, all the above HCLG’s are
Lie groups, and have respective Lie algebras.
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The transformation groups, whch can be applied exten-
sively in physics, are the local linear Lie groups. For this
kind of group, the Lie group construction exists only in some
neighborhood of the unit element, and an “isomorphism,” in
fact, is a local isomorphism only. In the following, we only
consider the local linear group and the word ““isomorphism”
only means a local isomorphism. According to the Lie group
theory, such two groups are isomorphic if and only if their
Lie algebras are isomorphic.

l1l. ISOMORPHIC RELATION BETWEEN HCLG’S AND
RLG’S

There are two special elements in H, i.e., y =11 + ¢)
and 5 = §(1 — ¢),

Y=y, #=5 lI*=0 (5)
Therefore, y and y play the role of 1 and 0 in a hyperbolic
complex matrix, respectively. This is particularly useful in
this section.

Lemma: Let n X n matrices 4 and B be two elements of
some real Lie algebra a, and a mapping p be defined by

piA,B)=}A + B) + eld — B), 6)
then p is a Lie algebra homomorphic mapping.

Proof: (A,B } is an element of the direct sum a +a. Obvi-
ously, p is linear. Next,

pli4,B),(C,D)] =p([4,C1,[B,D])
= p(AC — CA,BD — DB)
= 4(4C — CA + BD — DB)
+}(AC— CA — BD + DB)e
= [ pid,B), p(C,D)]. QED.

Let & ; be an n X n real matrix, and its & th line / th col-
umn element be §,6;. Then all #’s form into a basis of
gl(n,R ) [i.e., the Lie algebra of GL(n,R )].

Theorem 3: GL(n,R)XGL(n,R) is isomorphic to
GL(n,H).

Proof: a,; = (& ,,0) and agz = (0,% ,,) form a basis of
glin,R)+gln,R), where k=k +n,I=1+n A,=%,
and A = €%, form the basis of gl{n,H ). .

Obviously, pla,;) and plag) form another basis of
gl(n,H). According to the above Lemma, this theorem is
proved. QE.D.

Theorem 4: O(7,R ) X O(7,R ) is isomorphic to O(n,H ).

Proof: Any element of A of o{7,R ) satisfies

A +74AT =0, (7)
pUAB Y + 1(pld.B)T = 0. (®)
Therefore, p maps o(7,R )+ o(7,R ) into o(n,H ). In addition,
a0 =& 10 — MM & 1,0}
ag = 0,84y — N i)
form a basis of o(pR)+o(nR). Now, play)

=41+ 61 —Muu& ) and plag) =41 — &y
— NN & i) form just a basis of o(y,H ).

QED.
Theorem 5: Sp(2m,R )X Sp(2m,R) is isomorphic to
Sp(2m,H ). The proof is similar to Theorem 4.
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Theorem 6: For an arbitrary signature 5, U(n,H ) is iso-

morphic to GL(n,R ).

Proof: A is an element of u(n,H ) if and only if

A +747=0. )
Let

A=y —Munu€n (k#l)

Ag=€&uy + MNanu® ) (k#l), (10)

A = €8 i,
then n” elements 4, Az, and 4, form a basis of u(y,H ). Let

P& )= +4g) (k>1),

P& ) = Nunuldr — Ay) (k<l), (11)
P& 1) = A

For any &,/ Eq. (11), in fact, can be unified by
PEL)=31+6Fy — Yl — M u- (12)

We can directly examine that p is an isomorphic mapping
and all elements p(% ;) form just a basis of u(y,H ).

Q.E.D.

According to Theorems 3 and 6, we can naturally con-
trast the interal gauge symmetry of the hyperbolic complex
metric® with the Lorentz symmetry in general relativity. In
the following, let symbol “—” denote some imbedding and a
line denote a (local) isomorphism in a graph. Then we obtain

GL(4,R)XGL(4,R —GL(4,H )}« GL(4,R)

(13)

GL{4,R) U(3,1,H )=«S0O(3,1).

We see that the local GL(4,R ) gauge symmetry of an expres-
sion by real frame corresponds to the local U(n,H ) gauge
symmetry of an expression by hyperbolic complex frame,*
where 7 is some signature of degree 4. Corresponding to this,
in general relativity the Riemann metric has the SO(3,1)
gauge symmetry, and SO(3,1) is a subgroup of GL(4,R ).

In GL(n,C), O(n,C nU(n,C) = O(n,R ). Corresponding
to this, we also have the following theorem.

Theorem 7: U(n,H )nO(n,H ) = O(n,R ).

Proof: Since any element of u(n,H Jno(n,H ) must satisfy
simultaneously Eq. (7) and Eq. (9), the in(n — 1) elements 4,
(k> 1) of Eq. (10) form a basis of u(n,H Jno(n,H ). {A,, } is also
a basis of o(7,R ), this means that U(n,H J"O(7,H ) is locally
isomorphic to O(n,R ). In addition, any element a + eb
€ U{n,H )nO(7n,H ) must satisfy

(@+eb)a"+ebT)=1,

(14)
(@+eb)a™—eb™) =1,

and (a+eb)”! should exist. Therefore, a” + eb 7 =a”
—ebT,ie,b=0. QE.D.

We can clearly sum up the above discussions by the
following graph, which expresses the close relations among
every principal HCLG and RLG. These relations do not
exist for CLG’s.
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Sp(2m,H ) Sp(2m,R ) X Sp(2m.R )
O(7.R )X Q(n.R
1/0(77,11)——— RIXQR) |

GL(n,H j=—————— O(7n,R) GL(n,R )X GL(n,R)
U —— GLmR)” |

, (15)
IV. ON LOCAL GAUGE TRANSFORMATION ACTION OF
AHCLG

According to Sec. III, the local HCLG gauge symmetry
of a hyperbolic complex field, in fact, is a local RLG gauge
symmetry. Now, we generaly prove the local HCLG gauge
symmetry of a hyperbolic complex sesquilinear form K tobe
equivalent to the local RLG gauge symmetry of a real bilin-
ear form K'. Let T, (H ) and T, denote the hyperbolic com-
plex and real tangent spaces at a point x of M, respectively. A
vector A ' of T, = T, X T, can be written as follows:

A'=A"e}, = A%, + A%, (16)
where we use the notation of Ref. 3, {e/, } = {e,, e } isabasis

of T’ in which a hyperbolic complex structure E takes the
form as

E=(f (’)) (17)

A mapping H: T'—T (H ) is defined by

H{4')= (A% + €4 %)e,, (18)
where fe, } spans T, . Let P GL(n,R ) X GL(n,R }>GL(1,H )
be an induced mapping of p of Theorem 3, which is defined in
a neighborhood U of the unit element. Then P is a local
isomorphism. For an element (g,#) € U, a transformation
L(gh).T'—>T'isdefined by L (g,h)=H ~'P(g,h)H, i.e.,

HL(gh)A')=P(gh)H(A'), YA'eT., (gh)eU.

(19)

Let K’ be a real bilinear form on T'. According to Kunstat-
ter, Moffat, and Malzan,® we define a hyperbolic complex
sesquilinear form K on T (H ) by

KAB)=K'A'\B'})+eK'(EA'.B"), (20)
whereA=H{(A'), B=H(B').

Theorem 8: X is invariant under the action of P(g,4 ) if

and only if X' is invariant under the action of L (g,h ).
Proof: From Eq. (19) we have

K(P(g,h)4).P(g.h)B))
=K(P(g,h)H(4"),P(g,h)H(A))
=K (HL (g,h )4 "),HL (g,h)(B))
=K'(L{gh)4").L(gh)B")
+ eK'(EL (g,h A ').L (g, A4 ")).
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Since

EL (gh)=L(g,h)E, 21)
we obtain
K(P(gh)A)Pgh)B))

=K'(L(gh)A4"),L(gh)B")
+eK'(L(g,h)E(4'),L (gh)B"). (22)

This means that the above theorem is true. Q.E.D.

The following Theorems 9, 10, and 11 are direct corol-
laries of Theorems 6, 4, and 5, respectively.

Theorem 9: Let { ¥, } be an U(y,H ) frame* on M, then
the hyperbolic complex metric,? which is defined by

8apg =N VeV (23)
has a local GL(n,R ) gauge symmetry.

When n = 4 and % = diag(l, — 1, — 1, — 1), we obtain
the case in the nonsymmetric gravitational theory.>*

Theorem 10: Let { ¥, } be an O(n,H ) frame on M, thena
hyperbolic complex bilinear form

Kg =0,V V} (24)
has a local O(17,R ) X O(7,R ) gauge symmetry.

However, K5 #Kg,, K cannot be explained as a met-
ric.

Theorem 11: A hyperbolic complex bilinear form

Kog=08,ViVg+t®—VZI*°B,B}) (25)
has a local Sp(2m,R ) X Sp(2m,R ) gauge symmetry.

V. CONCLUSION

Every principal HCLG is (locally) isomorphic to some
RLG (or a direct product of two PLG’s). Therefore, a hyper-
bolic complex field usually has the local RLG gauge symme-
try. An ordinary complex field generally does not have this
property, e.g., the complex metric of Einstein® has the local
U(3,1) gauge symmetry, however, it is not locally GL(4,R )
gauge symmetric. In short, a discussion about the hyperbolic
complex fields may usually be changed into a discussion
about the real fields.
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SA. Einstein, The Meaning of Relativity (Princeton U.P., Princeton, NJ,
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The concept of infinitesimal null isotropy is defined for a Lorentz manifold, in terms of null
sectional curvature (as defined by Harris). It is shown that infinitesimal null isotropy is equivalent
to infinitesimal spatial isotropy (as defined by Karcher), and that a null-isotropic space for which
null sectional curvature is infinitesimally spatially constant must have a Robertson-Walker

metric.

I. INTRODUCTION

Astronomical observation has shown that the various
sorts of extragalactic objects are distributed about us (ap-
proximately) isotropically. This situation is generally inter-
preted as saying that, for an observer with a certain four-
velocity U, every direction in his infinitesimal rest space U*
is equivalent. Moreover, it seems natural to assume that we
do not occupy a special position in the universe; that is,
space-time is isotropic at every point, as seen by the members
of an appropriate family of observers. Karcher' has given the
following definition.

Let U be a timelike unit vector field on a Lorentz mani-
fold M. Then M is infinitesimally spatially isotropic relative
to Uif
RX,Y)Z=k[(Y,Z)X—(X,Z)Y], VXYZeU' (K1)
RX,U)U =puX, vXeU!, (K2)
where R is the Riemann curvature tensor of M, and k and
are real-valued functions on M.

There are a number of theorems which assert that spa-
tial isotropy at each point, together with some assumptions
about the matter content of the universe, implies that space-
time has a Robertson-Walker metric. For example, see
Karcher,' Frankel,? and Robertson.>

Let us reexamine this interpretation of isotropy. What
our observers actually see to be isotropic is the light (and
other radiation) which has come to them from distant ob-
jects. Since light travels along null geodesics, a more accu-
rate formulation of isotropy would be to say that, for our
observers, every null direction is equivalent. As before, we
require that this be the case for each observer in an appropri-
ate family of observers. In order to put this idea in math-
ematical terms, we shall use the concepts of null sectional
curvature and null congruence as defined by Harris.*

Given a nonzero null vector N and a null plane P con-
taining %, the null sectional curvature with respect to N of
the plane P is defined by

kn(P)=A(R(V.NINV)/(V.V),

where Vis any non-null (and therefore spacelike) vector in P.
Here, x(P) is independent of the choice of V'in P, but it does
depend quadratically on N. Therefore, it is best to restrict
attention to a set of “normalized” null vectors which con-
tains exactly one representative for each null direction.
Given a timelike unit vector field U on M, the null con-
gruence associated with Uis the set of null vectors defined by
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N U)={NeTM |(N,N) =0 and (N,U) =1},

where TM is the tangent bundle of M. This set has the prop-
erty that, for each nonzero null vector N, there is a unique
Ae€R such that ANe /(U ).

We shall call M infinitesimally null-isotropic relative to
U if null sectional curvature, restricted to 4 (U), is a point
function; that is, if for each point peM, v(p): = x,(P) is the
same for all null vectors N at p which liein.#"(U ) and all null
planes P containing M.

We shall prove that infinitesimal null isotropy relative
to Uis equivalent to infinitesimal spatial isotropy relative to
U, as defined by Karcher. Then we shall prove that if M is
null-isotropic relative to U and if, in addition, null sectional
curvature is infinitesimally spatially constant [i.e., X (v) =0
for all XLU], then M must be a Robertson-Walker space.

The proof of this second assertion follows closely the
proof of the main theorem in Karcher.! Karcher’s theorem
states that M is Robertson—Walker if (i) the matter content of
M is a perfect fluid obeying an equation of state, and (ii) M is
infinitesimally spatially isotropic relative to U, where U is
the flow vector field of the fluid. Our assumption that null
sectional curvature be infinitesimally spatially constant cor-
responds to Karcher’s assumption that the fluid obey an
equation of state, or to the requirement? that the pressure of
the fluid be spatially constant. Alternately, one could substi-
tute the slightly stronger assumption that U be geodesic
{(Dy U = 0), as in Robertson.® Harris* shows that M is Rob-
ertson—-Walker if M is null-isotropic and U'is an infinitesimal
conformal transformation (L ,g = 2ag, where g is the metric
on M and a:M—R).

Il. INFINITESIMAL NULL ISOTROPY

Before showing that infinitesimal null isotropy is equi-
valent to infinitesimal spatial isotropy, we establish a lemma
characterizing infinitesimal spatial isotropy in terms of the
principal sectional curvatures of M. Recall that the sectional
curvature of a non-null plane spanned by vectors X and Y is
defined by

K(XAY)=K(XY)
= (REY)V.X)/((XX)(Y,Y) ~ (X,Y)?).

We shall use the letter U to denote both a fixed unit
timelike vector field, and the value of that vector field at a
point peM; the intent should be clear from context.

Lemma: Let M be a Lorentz manifold of signature
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(—,++,+,+ ). Misinfinitesimally spatially isotropic rela-
tive to U if and only if all planes containing U have sectional
curvature — g, and all planes perpendicular to U have sec-
tional curvature k.

Proof: First, assume that M is infinitesimally spatially
isotropic relative to U. Then, for all X,Y,Z € U,

RXY)Z=k[(Y,Z)X—-(X,Z)Y], (K1)

RX,U)U=ypX, (K2)
where k and i are real-valued functionson M. Letting Y = Z
in (K1) and taking the inner product with X on both sides
gives

(RXY)Y.X) =k((VY ) {XX) —(X,Y)?).
Dividing bothsides by [ XA Y || = (X,X }(Y,Y ) — (X,Y)?
gives

KX,Y)=k, for all X,YeU".

Similarly, taking inner products with X on both sides of (K2)
and dividing by |[UAX ||? gives

K({UX)= —u, for all XLU,
as was to be shown.

Conversely, assume for each peM that X is constant on
planes containing U, and that K is constant on planes per-
pendicular to U,. Define k:M—R and u:M—R by

k) =K KY), (1a)

up)= —K(U,.X), (1b)
where X and Y are arbitrary linearly independent vectors in
U;. We must prove that the conditions (K1) and (K2) hold
on M.

Condition (K1) follows from (1a) by a standard argu-

ment.’ To obtain (K2), let X and Y be unit vectors perpend-
icular to U with XLY. We have

(RX+Y,U)UX+Y)
=K({UX+Y)|X+ Y)AU|?

=(—pl—-2)
=2u.
On the other hand,
(RX+ Y,U)WUX+Y)=(RXU)UX)
+2RX, UMY
+ (R(L,U)UY)

=24+ 2{RX,U)U,Y).
Combining these equations, we find that
(RX,U)U,Y) =0,
whenever X and Y are orthogonal vectors in U*. In addition,
(RX,U)UU)=0

and

(RXLUNUX) =p.

The last three equations together yield (K2).

Theorem 1: Let U be a timelike unit vector field on M.
Then M is infinitesimally null-isotropic relative to U if and
only if M is infinitesimally spatially isotropic relative to U.

Proof: Assume that M is null-isotropic relative to U. By
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the lemma, it suffices to show that, at each point, sectional
curvature is constant on all planes containing U and on all
planes perpendicular to U.

Given orthogonal vectors X and ¥ perpendicular to U,
let N= — U+ X. Nis anull vector with (N,U) = + 1, so
Ne(U).Since {N,Y ) =0, Nand Y'span a null plane P (see
Fig. 1). By the definition of null sectional curvature, and
since (Y,Y) =1,

kv(P)= (R(Y,N)N,Y).

Since N= — U+ X,

kx(P)= (R(Y,U)U,Y)

—2R(LUXY) + (R(Y X)X, Y). (2)

On the other hand, let ¥V, = — U — X. Then N,e#(U)
and (N,,Y ) = 0; therefore N, and Y span a null plane P,. As
above,

Ky, (P) = (R (VU)U,Y) + 2R (VUMY )

+ R(YXX,Y).
Since M is null-isotropic relative to U, ky(P) = ky, (P)), it
follows that (R (Y,U)X,Y) =0, so
ky(P)=(R(,U)UY) + (R(VX)X,Y).
Since —(U,U) =(¥,Y)=(XX)=1, and (UX)
= (X,Y ) = 0, we can rewrite this as

ky(P)= —K({UX)+K(X,Y);
thatis, K (U X) = K (X,Y) — v,wherev:M—Risthefunction
defined by restricting «y(P) to Ne#(U) and null planes P
containing N. Thus

K(Q)=K(Q)) -,
whenever Q, and Q, are planes with UeQ,, UlLQ,, and
O:NQ, aline.

Now suppose that UA Xand UA Y are any two planes
containing U, where X,YeU* are independent, but not nec-
essarily orthogonal (see Fig. 2). Then the plane X A Y meets
both UAX and UA Yin a line, and therefore

KUX)=KX,)Y)—v=K(U,Y).

Thus K is constant on all planes at p containing U; we denote
this constant by — y(p). We can conclude also that K has the
constant value k = — u + v on planes at p perpendicular to
U. Hence, by the lemma, M is infinitesimally spatially iso-
tropic relative to U.

Conversely, assume that M is infinitesimally spatially
isotropic relative to U, so that the conditions

RXY)Z=k((Y,Z)X—(X,Z2)Y), (K1)
RX,U)U=uX (K2)
hold for all X,Y,ZeU*, and let P be any null plane. Then

P

y  FIG. 1. The null plane p spanned by N and Y,
where N= — U+ X.
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FIG. 2. The plane XA Y meets
’* both UAX and X A Y'in a line.

x/l/\Y

P=NAY,whereNe#/(U)and{Y,N) = (Y,U) = 0.Asbe-
fore, N = — U + X for some unit vector X perpendicular to
U, and (X,Y) = (N + U,Y) = 0. Recall the expansion of
xy{P) given in Eq. (2):
ky(P)= (R(L,U)U,Y)
—2(R(Y,UIX,Y) +(R(YXWX,Y). (2)
From (K1) and the symmetries of the curvature tensor, it
follows that (R (Y, U)X,Y) =0, so
ky(P)=(R(LUUY) + (R(Y.X)X,Y)
= —K({UY)+K(Y,X)
= y + k,
by (K2). Let v = u + k; then «(P) = v for all Ne #/(U), so
M is null-isotropic relative to U.

lil. ROBERTSON~-WALKER METRICS

Karcher' has shown that a perfect fluid space-time is
conformally flat if and only if it is infinitesimally spatially
isotropic. We show in the proof of Theorem 2 that an infini-
tesimally spatially isotropic spacetime is necessarily a per-
fect fluid; this, together with the result of Theorem 1, tells us
that the null-isotropic space-times are exactly the confor-
mally flat perfect fluids. These space-times are called Ste-
phani universes®; they are a natural generalization of the
Robertson—-Walker spaces.’

Theorem 2: Let M be a four-dimensional Lorentz mani-
fold, and let U be a timelike unit vector field on M. Suppose
that M is infinitesimally null-isotropic relative to U, and that
null sectional curvature is nonzero and infinitesimally spa-
tially constant. Then M has a Robertson—-Walker metric.

Proof (following Karcher'): By Theorem 1, we know
that

RXY)Z=k[(YV,Z)X — (X,.Z)Y], (K1)
R(X,U)U = pX, (K2)

whenever X,Y,ZeU*, where k and u are functions on M. It
follows that

Ric(X,Y) = (2k — u){X,Y),
Ric(U,U) = 3,
Ric(U,X) =0,
whenever X, YeU*. Raising an index gives
Riow) = — 3u0,
g .
Ric| . = (2k — p)id|,,..
The Einstein tensor, defined by
~ s
G: = Ric — tr(Ric)id,
has the property that (div G )(W) = 0 for all WeTM. From
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~
the above, we calculate itr(Ric) = 3k — 3y, so
G(U)= —3kU,

G |Ul = (2” - k)idluli
and GW)=Q2u—k)\W+2(u+k){UW)W, for all
WeTM. (If the Einstein equations are assumed, this shows
that the matter content of M is a perfect fluid.) Now

0=2+du(W) — dk (W) + (UW)div2{u + k)U)
+2u+ kD UW), VWeTM. (3)

Returning to (K1) and (K2), we calculate
DyR(X,Y)Z)=dk(U)(Y,Z)X —(X,Z)Y)
+k(Y,Z)DyX — (X, Z)DyY),
R(X,Y\D,Z =0,
R(DyX,Y)Z= —pu({Y,Z)DyX,
RXD,Y)Z =u{X,Z)D,Y.
Thus
(DyR)XY)Z =dk(U)[{(Y,Z)X —(X,Z)Y]
+ (k+u)[{(Y.Z)DyX — (X, Z)DyY].
Similarly,
(DxRWU,Y)Z = —du(Y,Z)U
— (k+p)[(¥.Z)DyU—(X,Z)D,U].
From the Bianchi identity,
(DyR)X,Y) + (DxR)Y,U)+ (DyR)UX) =0;
it follows that

[du(X KY.Z) — du(Y KX,Z)]U @)
= (k+ W) [(¥.Z)DyX — (X.Z)D, ¥ ].
dk (U)[ = (¥,Z)X +(XZ)¥] 5)

=(k +p)[(Y,Z)Dy U — (X,Z)DyU
-~ (DyUZ)Y+ (DyUZ)X].
From (4) with Y = ZLX, it follows that
duX) = (k + p{DyX,U) = — (k +pl{X,DyU). (6)
On the other hand, from (3) with X = WLU, we have

2duX)—dk(X)+2(u + kX, D,U) =0. (7
Equations (6) and (7) together yield

dk(X)=0, for all X1U. {8)
Now let §: = — }DU + DU™™)| . be the symmetric part

of DU | .. Setting Y = Z1X in (5) and taking the X-compo-
nent of both sides, we find
—dk(U)
k+p
whenever X and Y are orthogonal vectors in U*. (k 4+ u#0,
since k + ¢ = v is null sectional curvature.) So we see that

= (DXU»X) + <DYU’Y)! (9)

s= L. kW) .
2 k+p
Then, letting X,Y, and Z be orthogonal in (5) gives
0=k +u)D,UZ), for YIZ. (10)
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This tells us that (DU — DU *™*)| ,, = 0. Moreover, from (6)
and (7) we have

(k +u)DxUX) = (k +p)}(Dy UX).
So (k + p)jcurl(U) = 0. Now k + u = v where v#0 by as-
sumption, so curl(U) = 0. Thus we see that U! is integrable,
and § is the second fundamental form of the integral mani-

folds of U*. From (8), we know that the integral manifolds of
U* are also level sets of k. The Gauss equations now give

R|,.(XY)Z

= (k+ +( %"i—‘l’})z)«xmﬂ XZ)Y),

50 the integral manifolds of U * have constant curvature.
The condition X (v)=0 [ie., duX)=0] for X1U
implies that v is constant on the integral manifolds of U*, so
the gradient of v, grad(v), is proportional to U. Here, grad(k )
is proportional to U by (8); and, since v = 1 + k, we see that
grad( u) is proportional to U also. Putting this information in
(3), we can conclude that D, U is proportional to U. This,
together with curl{(U') = 0, gives D, U = 0. So we see that the
integral curves of U are geodesics, whose perpendicular
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spaces integrate to form three-spaces of constant curvature.
Thus the metric of M can be written in the form

ds* = —dt*+ f(t)do?,

where do 2 is a metric of constant curvature. This is a Rob-
ertson—Walker metric.
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A generalization of the familiar mesh point technique for numerical approximation of functions is
presented. High accuracy and very rapid convergence may be obtained by thoughtful choice of
the reference function chosen for interpolation between the mesh points. In particular, derivative
operators are represented by highly nonlocal matrices; but this is no drawback when one has
computing machines to perform the algebraic manipulations. Some examples are given from

familiar quantum mechanical problems.

I. INTRODUCTION

The most common approach to numerical approxima-
tion of continuous functions involves the representation of
the function f {x) by its values on a set of mesh (net, or lattice)
points x,, . Familiar formulas for the derivative, in the simple
case of a uniform mesh x, = x, + nh, are

[} = [fxa) =fxn1)1/h + O(h),

or

S =[fxn 1) ~fx,_1)]728 + O (h?),
and for the integral [writing f (x,) = f,]

[rots =ty =L 3 1+ S 2o~

+O0(h?.
n=1

These are simple to derive and simple to use but they have a

very low order of accuracy in general. This is due to the fact

that only local information about the function f is used in

building the approximation.

The approach presented in this paper is based upon a
global construction of an approximation for f(x), which is
still flexible and easy to use and involves only the values f, at
the selected mesh points. The purpose is to achieve very
high-accuracy approximations: with a total of N mesh points
it is nice to get errors which are as small as 4 —~ (or even 1/
N1, rather than the 1/N, 1/N 2, etc., errors which are charac-
teristic of the usual methods. In this sense the present ap-
proach is somewhat reminiscent of Gaussian quadrature;
but it is rather more general in its construction and its appli-
cation. The present method may also be described as a gener-
alization of Lagrange interpolation; and the method of “col-
location” is also related.

The general method will be described, along with a for-
mal method for error analysis; then several examples will be
given, mostly concerned with solving differential equations
familiar in quantum mechanics.

Il. THE GENERAL METHOD

To approximate a given function f (x) we start by choos-
ing a reference function (x) that has simple zeros at the (real)
points x = x,,. The construction of an interpolating function
Jf{x) to approximate f (x) is

_ux) 1
X)= )

Y el
Atthe points x = x,,, f(x) takes on the values f, = f(x,, ). We
should choose the reference function u(x) to have analytic

where a, = u'(x,). (1)
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properties similar to those of the desired function f(x); the
error analysis and examples to follow will help show what
this means.

To approximate the derivatives of the function f, we
take derivatives of the interpolating function (1), evaluated at
the mesh points x,,. The resulting formulas are [b, = u"(x,)
andc, = u"(x,)]

( b,
m=n
2a,
=3 fid =3 D mYf,, (@
msn 1 a,
L (xn _'xm) a,
Cn
m=n
3a,
=2/ 1 b, 2 a,
m#n: —_—
L (xn _xm) a,, (xn _xm)z a

= ZDZ(n’ m)fm' (3)

In case the function u{x) obeys an equation of the form
u"(x) = W (x)u(x), then there is a simplification of the above
formulas: b, = 0, ¢, = W, a,; and the matrices representing
the derivative operators can be put into a symmetric form.
To approximate the integrals of f we get the formulas

[ Fex =3 i i,
X0 m

Xn

u(x)

where Q,(n, m)= f dx PR (4)
*o m\d T Ay
[ as[ av701=3 Qs i,
X0 *o m
where Q,(n, m) = fx" dx 1;—(%(:"—;1)). (5)
X0 m\v T Ay

In the case where u(x) is an orthogonal polynomial times a
weight function and the integral is taken over the entire do-
main, then (4) yields the usual Gaussian quadrature results.

The above general method is very flexible since one can
choose any reference function u(x). The quantities that enter
into the matrices for the derivative operators (D ) or integral
operators (Q ) may be determined by some computational
procedure, if not readily expressed in closed form, depending

© 1985 American Institute of Physics 411



on this choice of u. A practical question is the following:
Does one pay a heavy price by having the derivative operator
so nonlocal, since one may be forced to invert or otherwise
manipulate these matrices in order to solve differential equa-
tions? A computing machine can readily carry out such ma-
trix operations numerically for moderate-sized matrices.
Furthermore, when one gets into partial differential equa-
tions the usual mesh point methods already require working
with sizable matrices for the derivative operators. Since the
whole point of the present method is to construct approxi-
mate but accurate functions £ in terms of a small number of
mesh points it is anticipated that the net result should be a
general increase in efficiency of computation.

Now we present a general approach for analyzing the
error in approximating the function /by f; once  is chosen.
Assume that both f(x) and #(x) are analytic functions in some
appreciable domain of the complex plane surrounding the
set of mesh points x,,. Then, using the contour around z = x
[see Fig. 1(a)] we have the identity

foo=§ & L) ux), ©
2mi z—x u(2)
One may take the point x to be slightly off the real axis to be
assured that there is no difficulty in this integral representa-
tion when x approaches one of the mesh points x,,, where
vanishes. Now move the contour of integration to the large
loop C and the small circles around each of the points z = x,,
[see Fig. 1(b)]. Calculating the residues at each x,, we have
the exact result
u{x) 1

flx)= Zf( n) x)m

The first term on the nght-hand side of (7) is just the approxi-
mation f (x) defined in (1); the second term e is the error and is
given by the integral over the contour C of the expression (6).
A general argument about the smallness of this error is as
follows: Since u(z) has many oscillations along the real axis,
one expects it to grow rapidly along the imaginary directions
in the z plane; and it is this factor in the denominator that
should make the error € decrease rapidly as the mesh points
become more closely spaced. A concrete example will be
studied in the next section.

(7)

z plane

o
o\

(@

z plane

(oo

®

FIG. 1. Integration contours for error analysis. The several crosses X rep-
resent the mesh points x,,. The solid dots @ represent the point z = x.
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lil. EXAMPLE |

Consider the infinite line, — o0 <X < o0, and the choice
of a uniform sequence of mesh points:
x, =nh,n=0, +1, +2, + 3,.... Then we take the refer-
ence function u(x) = sin 7x/h; and the matrices for d /dx
and d 2/dx? become

1[n=m: 0O,
Diin, m) = [n;ém (—1)"="/(n—m); ®)
1 [n=m: —a%/3,
D, m) = [n;ém —2(—1)"""/(n —m)* . ®)
The matrices for the indefinite integrals become
Qi(n, m) = (h/7)[Si{(n — m)m) + w/2], (10)
Q,(n, m) = (h*/m*)[(n — m)m(S,((n — m}m)
+7/2)+(—1)"""], (11)
where
5,(x) = f ar St (12)

The only familiar result contained here is for the infinite
integral

O~ wl=h [ fokdx= 5 Winh)+e
i (13)

The high accuracy of the trapezoidal rule for the infinite
integration of analytic functions has been explored else-
where.! This is the “Gaussian quadrature” formula for the
infinite line.

Obviously, if this approach is to be practical, we should
be dealing with functions f (x) which decrease very rapidly as
x grows large, so that the infinite sums over the mesh points
can be truncated effectively. Thus we have two sources of
error to analyze: €, from (7) due to the analytic approxima-
tion and € due to the truncation. A good strategy will be to
choose a relation between the mesh spacing 4 and the trunca-
tion at || < N so that €, and €, are approximately equal to
each other. This will avoid wasting effort on too small a mesh
{(when truncation error dominates) or on too large a cutoff
(when mesh error dominates).

For illustration, consider that the function f(x) is
known to be analytic everywhere in the finite complex plane
and is dominated at large distances by the behavior

e— (14)
Then we have
€p~e WY, (15)

For the mesh size error, we see that the error in (7) involves
the integral over the large contour C in Fig. 1(b); and with
u(z) = sin wz/h, we see that this error is given roughly by

eAzfdzei‘W”e‘d. " (16)

This integral may be estimated by the stationary phase meth-
od (weareinterested in the dependence of €, on 4 forsmall )
and we find

€,~e """, where g=p/(p—1), (17)
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and

bz(z;)l/w_”( ) [ Z(p—l)

Equating the results (15) and (17) we find the optimum
choice of A, given N,

h = (b/aN?)e— V), (18)
and along with this is the error estimate

exe= <V, (19)
where

C=bla/b)".

This result—exponential decrease of the error with increas-
ing number of mesh points—is most exciting. Rather than
trying to make this rough error analysis more respectable I
shall proceed to some numerical experiments.

The one-dimensional Schrodinger equation

(=2 L 2w o) = Bt (20)

fork =24,...,isan elgenvalue problem in which the solution
¥{x) has the characteristics described above: it is an analytic
function for all finite x and has the asymptotic behavior for
large x given by (14) with
_k+2 _2_(3)”2
2’ k+2\k/ ~
Thus we predict the optimum convergence strategy, (18) and
(19):

(21)

h=(m/N)?, e=e 'V, for k=2, (22)
and

h=178N 23, exe ' fork=4. (23)
Taking account of the symmetry, ¢¥{x) = + ¢¥{ — x), and
choosing the mesh points x, =(n— 1/2)A,

for n = 1,2,...,N, and using (9) for the second derivative op-
erator, Eq. (20) was represented as an N X N matrix eigenval-
ue problem which the computer solved for the sequence
N=1.23,..

The values of # were chosen according to (22) and (23)
with (N + 1/2) replacing N. The numerical results for the
ground state eigenvalue showed very rapid convergence:

k=2,E=0.5:
N=1error 7X107% N =2 error 3% 1073,
N=3error2X10™* N = 4 error 1 X 1073,

with a good fit to the formula e ~ e —*°%; (24)
k=4, E=0.420 804 974 475:
errors of —7X 1072, 6X1073,2X 1074,
7X107% for N=1,2,3,4,

with a good fit to the formula e e —23%, (25)

These are very gratifying results: high accuracy at low-order
approximation with very rapid improvement as the order of
approximation is increased. Indeed, these numerical results
for the x* potential converge even more rapidly than the
results of a Rayleigh-Ritz variational calculation that used a
harmonic oscillator basis.? The predicted exponential form
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of convergence (19) was well borne out by the numerical
results; however, there is some discrepancy between the pre-
dicted and observed values of the decay constant C. The
decay constants in (22) and (23) describe the error in the wave
function and perhaps one ought to square these errors for the
eigenvalue: the values 2C=3.14 (k=2) and 2C=2.64
(k = 4) are not so far from the observed results 2.9 and 2.8,
respectively.

In the computations described above the matrix eigen-
value was determined by a direct numerical method (which
requires computing time proportional to the cube of the di-
mension of the matrix). For these one-dimensional problems
the size of the matrix is so small that this is no problem.
However, when one envisions going to multidimensional
problems with a much larger dimension for the matrix of the
partial differential operators involved then some alternative
method of manipulating the matrix may be necessary. There
are a variety of iterative techniques commonly used for large
matrix manipulations (inversion, diagonalization, etc.) and
the critical question is how fast such iterative methods con-
verge. As an experiment I tried solving the above-mentioned
Schrodinger equation iteratively by a few different strategies
and found convergence that varied from fair (about 1/2 deci-
mal accuracy gained per iteration) to very good (several deci-
mals gained per iteration.) As with all iterative schemes it is
valuable to have a good starting guess for the solution; and
the attempts I made worked best when I used the resulting
eigenvector for the solved N — 1 problem to get a starting
estimate for the N-problem eigenvector through use of the
basic interpolation formula (1).

IV. EXAMPLE Il

For a problem on the semi-infinite line 0<7 < oo consid-
er the Schrodinger equation for the hydrogen atom:

1ld 2 1 i+1) + 1) 1 ]

r=Ed(r 26
-5 p=Ebl). (26
At the origin ¢ goes to zero as 7! and at infinity it goes
exponentially to zero for bound states (E negative eigenval-
ues).

To choose a good reference function u(r) we would like a
function which has analytic properties similar to ¢ for finite »
and also has many zeroes. It is known that the solution of (26)
for E = 0 is given in terms of a Bessel function:

¢E=o(’)="1/2121+1((87)1/2)- (27)
This leads to the choice
8 172
) =ray . [(3) 7). (28)
with the mesh points
=h/8)%, Jy 1)=0 n=123,... (29)
With the change of variables
B =Xmd 314 10m)s (30)
we reduce the differential equation (26) to the algebraic form
64 1 8 [8I{{+1)
Y m + 121" < - n
St wl
8
———x.=Ey,. 31
e X =X (31)
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Numerical computations of the ground state eigenvalue
{I = 0) were carried out for a sequence of mesh scales (h = 1,
},3,44&) and a  sequence of  truncations
(m,n=12,3,.,N, for N=1,2,3,4,...). At each A value the
error would decrease rapidly with increasing N {(about one
decimal place improvement per unit step in N) until it
reached a saturation value; then one would need to decrease
h to gain further improvement. Taking the results from these
saturation points one could deduce an overall convergence
rate which went approximately as

e=10—", (32)

This is an experimental result; I have not tried (as in the
previous section) to carry out an analytical estimate of the
expected error. This is a very rapid convergence rate, indi-
cating that this is an extremely powerful approximation
technique for atomic wave functions.

The major nuisance in this calculation was the need to
generate zeroes of a Bessel function. As an alternative, I tried
using the reference function

u(r) =7+ V2sin[m(r/h)"?], (33)
with the mesh points given by
r.=hn* n=12,.. (34)

I will not give details but merely state the results of this
approach. The matrix turns out to be unsymmetrical but this
poses no serious problem. The ground state eigenvalue com-
putation converges quite well, only slightly slower than the
first approach:

€= 10~/ (35)

V.EXAMPLE IH

For problems on a finite interval one usually works with
either polynomials or Fourier series as a basis for approxi-
mations. I will give a couple of illustrations based upon the
latter. -
Suppose we want to approximate the function f(x) on
the interval [0,1] with the boundary conditions
f(0) = £ (1) = 0. One choice of the reference function is

u (x) = sin(¥V + 1)mx, (36)

which satisfies the same boundary conditions as f (x) and has
the interior mesh points

x, =n/(N+1), n=123,..N. (37)

(Here life is simpler since we do not have to deal with two
variables, # and N, but only one, N.)

If we follow the original prescription for building the
approximation (1), then we will have functions that are not
simply a finite set of trigonometric functions. An alternative
is to divide #(x) by something like sin a(x — x,, ), rather than
just (x — x,). After some experimentation I was able to find
the following representation, which is equivalent to a trun-
cated Fourier series:

i yo (=1

x} = sin(N _—

fix) ( +1)7Txn§=:1f,. 2N T 1)

X [cot(m/2)(x — x,) — cot{n/2)(x + x,)]. (38)

From this the second derivative was calculated to be

1
1 1 1 n
=n ——(N+1P——+—csc? ,
_ . m=n 3( + 1) 6+ZCSC7TN+1
f |.7c,| meﬂ'z (_1)n+m T HR—m T n+m (39)
m= m#n ————[—cscz(—— )] +csc2(—— )
2 2 N+1 2 N+1

The eigenvalues of this matrix (39), in units of — 77, are

1 (for N=1);

An alternative problem is one with periodic boundary
conditions:

1,4 ffor N=2); 149 (for N=3)... (40)

flo+2m=flp) (41)
For N odd we construct the approximate function
- . N ¥ Sn (—1)
flp)=sin . ) 42)
i 272, Sm(@—g,) N (
with mesh points
@n = 2mn/N; (43)

and the second derivative operator is represented by
m=n —4N>~—1)

- N
f”l¢n _— z fm m;én. ( — 1)n—m+l cos ¢nm s (44)
me ' 2 sin’g,,,

where
D = (n — m)m/N.
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!
This matrix has the expected eigenvalues: 0, — 1(twice),
— 4(twice), etc.

For a numerical application I considered the problem
of the Schrodinger pendulum:

1 d°
[—7 207 +g%(1 —cos @) |¢(6) = E¢(@). (45)

Using (44), the two lowest eigenvalues were computed for a
sequence of values of N, for two different values of g. No
account was taken of the reflection symmetry. Results,
shown in Table I, exhibit the fastest convergence yet seen.
The calculation was repeated shifting the coordinate in (42)
by 90° [actually, by changing cos @ to sin & in (45)] and these
results were even better, by up to two decimal places accura-
cy at each N. For comparison, a variational calculation of
(45) using a truncated Fourier series with corresponding
number of terms gave results which were in between those of
the two computations just described.

Some previous work on trigonometric interpolation of
periodic functions® bears resemblance to what has been pre-
sented here; but the formula (44) appears to be new. I will
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TABLE 1. Eigenvalues of the Schridinger pendulum, Eq. (45).

g=1 g=13

N E, E, E, E,

3 029 1.71 0.33 13.7

5 0457 1.382 0.89 7.09

7 0.464 86 1.343 98 1.33 4.97

9 0.4649349 1.343 3629 1.455 4.43
11 0.464 935 147 34 1.343 360 133 1.467 3 4.345
13 0.464 935147 7119 1.343 360 128 403 1.468 031 4.33752
15 0.464 935 147 7122 1.343 360 128 3991 1.468 053 5 43371792
17 1.468 054 007 4.337 170 39
19 1.468 054 013 55 4337170257 1
21 1.458 054 013 609 4.337 170 255 64

*Machine accuracy not reliable after this point.

confess, however, that the formulas (44) and (39) were first
obtained by Fourier transform calculation.

Vi. SUMMARY

The general approach presented here should be very
powerful in obtaining efficient and accurate numerical com-
putational results in the form of systematic approximations
to functions that are very smooth. The high accuracy and
rapid convergence usually associated with variational tech-
niques is obtained along with the simplicity of mesh tech-
niques. The key link between these two methods is the judi-
cious choice of the reference function; here is where the
human being contributes analytical insights in setting up the
problem, while leaving the later computational tedium to the
machine.

The numerical examples shown here were restricted to
the solution of one-dimensional differential equations (eigen-
value problems); and the results were excellent. There should
be many other areas of application for this general method of
approximating analytic functions.
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APPENDIX: THE SEMI-INFINITE INTERVAL

For the infinite interval [ — o, « ] a general interpola-
tion scheme was given, with uniform intervals, based upon
trigonometric functions as used in Fourier integrals. For the
finite interval problem, alternative schemes were again
based upon trigonometric functions, this time as they are
used in discrete Fourier series. What follows here is a gener-
alization of the study for the semi-infinite interval [0, o]
based upon Bessel functions.

Choose the reference function, for unspecified value of
V’
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ulx) =x~""21,((x/h)'"?), (A1)

which has the mesh points x, = hy?, n = 1,2,..., wherey, is
the nth zero of the Bessel function J, (y) on the positive real
axis. Next, construct the identity integral representation, as
in (6):

Six)= —‘Zz—. ) ﬂz)—, (A2)

27i ulz) z—x
with the contour a small circle around z = x. Now, move the
contour following the same general procedure illustrated in
Fig. 1. The form of (A1) was chosen so that %(z) is analytic in
the domain Re(z)<0 as well as > 0. Assuming f (z) is analytic
in some sizable region around the positive real axis, we ex-
pect exponentially small errors to the approximate interpo-
lation function £(x) that results from the residues at each of
the zeroes of u(z):

S  ux)

—x — 2hl+v/2 ’11+v‘ A3

= e T T g &
From this one can calculate the definite integral
o _ y: 2

dx x*f(x) = h §4h”+‘(———). Ad

[P = S rm) i (A4)

This is a new “Gaussian quadrature” formula, or rather a
family of such for any value of v. In the special cases v = 4}
this formula reduces to the trapezoidal rule (13). What is
interesting about this formula is the fact that the points
x, = hy? at which one evaluates the function f (x) are spaced
farther and farther apart as n increases.

!C. Schwartz, J. Comput. Phys. 4, 19 (1969).

2C. Schwartz, Ann. Phys. (NY) 32, 277 (1965).

*H. Kreiss and J. Olinger, “Methods for the Approximate Solution of Time
Dependent Problems,” GARP Publications Series No. 10, February 1973,
p. 42 ff.
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A new way for solving Laplace’s problem (the predictor jump method)
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This paper presents a new method, that we call “the predictor jump,” for driving to a faster
solution of Laplace’s equation. Some results obtained by applying this technique are compared
with those that have been obtained by the traditional methods.

I. INTRODUCTION

Laplace’s equation

V=0 (1)
arises in many physical problems associated to scalar fields
{electrostatic and gravitational) and in a large number of
steady-state cases (flow of heat, diffusion of a solute, flow of
an incompressible fluid, and so on).

The analytic methods for solving this equation are not
very useful when the physical system’s geometry or the
boundary conditions are somewhat complicated. In these
cases, some of the numerical methods {Gauss—Siedel, SOR,
etc.) are used as alternative ways.'™

In this paper, we present a technique which has been
called the predictor jump method (PJM}, that can be com-
bined with any of the relaxation methods for driving to a
faster solution of Laplace’s equation. In particular, the PTM
has been used in this paper to calculate the distribution of
temperatures in solids with different geometries. The results
obtained with PYM are compared with those that have been
obtained by using the traditional relaxation methods for
showing the advantages of the proposed technique.

Il. NUMERICAL METHODS

To indicate the difference between the PJM and the
classical numerical methods used for solving Laplace’s equa-
tion it is convenient to summarize some basic ideas about
them.

The general expression of Laplace’s equation for solv-
ing problems by applying numerical methods in Cartesian
coordinates is® at a point

i1k — 2k + bivr gk

(4x)*
" ik — 20k + i 1k
(4y)*
¢!', k—1 T 2¢i, jui + ¢i, jy
+ k-1 (Az,;: gk +1 =O, {2)

@« being the value of the function ¢ at a point (i, j,k ) of a
tridimensional XYZ grid (Fig. 1).

This last equation is obtained by using a Taylor expan-
sion and the central finite difference approximation for the
first and second derivatives.

For a grid of N points the problem is reduced to the
resolution of N equations which can be expressed by the for-
mula
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’A leN|¢ |1v><1 =|BIle’ 3)

I4 |, |B |, and |¢ | being the matrixes of the coefficients, inde-
pendent terms, and unknown quantities, respectively. Every
term of the matrix |¢ | represents the function’s value at a
point of the grid. The matrix |4 | is banded and diagonally
dominant, so that when iterative methods are applied, the
convergence to the solution is insured.

Iterative methods start with some arbitrary values for
the unknown quantities, and the variables are going to get
values more and more approximate to the correct solution by
applying the finite difference equations.

In practice, this process is finished when, between two
successive iterations (k — 1 and k), it is verified that

N
Error=E*= % P —od* 1 <e, {4)
i=1
€ being as small as one wants.

One of the first iterative methods used was proposed by
Jacobi.” The algorithm of this method can be expressed by
the following formula:

N

¢£’k = —b_"' - Z fﬂ_¢}k— l’ k= 1’2,-", {5)
i=1 8y
i
that is to say, the values of the unknown quantities in the
generic iteration number k, are calculated from the valuesin
the former one.

On the other hand, in the Gauss-Seidel method, whose
algorithm is

i

i—1

b; a;
=L — L gk
' a; 2 !

ji=1 4y
A T
— 2 —¢j , k=1.2,.., (6)
j=i+1 Gy

the values of the unknown quantities in the iteration number
k are calculated not only from the values obtained in the

i,.k+1

i+1,9,k

ivj-1.k 1,71,k

i~1.3.k
i.i,k-1

FIG. 1. Tridimensional XYZ grid.
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precedent iteration, but also from the previously modified
values in the same iteration.

The Gauss—Seidel method presents some advantages
over the Jacobi method,; its convergence is faster, it uses less
computer memory and its programming is easier.

Equation (6) can be rewritten as

i—1

pl=g-1+ -;l_f{bi - X4

i j=1

xg— 3 a8, ”

=i
which is transformed in another algorithm by multiplying
the second summand of the last expression by the factor @, so
that

sr=pt-tr 2o S,

i j=

N

X = S a8, ®
j=i

When @ has a value between 1 and 2, this last algorithm

improves the rate of convergence and the method is called

SOR (successive over relaxation).”®

At each particular problem, there is an optimum value
for the relaxation factor, named w,,,, with which the num-
ber of the necessary iterations to get the correct solution is
minimum.®

In the bibliography, there are some approximate for-
mulas proposed for w,, Wwhich have been empirically ob-
tained and used for solving some specific problems.!%!! Un-
fortunately, these formulas are very tedious to calculate.
Moreover, the number of times that it must be applied to
solve a specific problem for studying the influence of each
parameter is so high that when one is interested in solving a
few times the same model of a problem the method is not
practical.

Other methods'? calculate the value of w,,, automati-
cally after a certain number of iterations; for instance, SOR-
ACO?™ (successive over-relaxation with automatic conver-
gence optimized). Such methods define a convergence
criterion previously and according to it, values of @ are com-
pared until w,, is reached. Although a lot of time may be
wasted in the research of w,,, in practice SORACO is one of
the most effective iterative methods.

lii. THE PREDICTOR JUMP METHOD

We propose another technique which can be used with
any of the other iterative methods, but it starts from a differ-
ent idea. Instead of finding the solution of Eq. (2) by succes-
sive iterations which provide, at the end, the final value of ¢,
in the PYM we must wait for some conditions to be reached
and immediately, by jumping over the possible iterations,
the solution is found almost directly.

These conditions are given when the parameter called
EQ* (error quotient between the iterations k and k — 1)
reaches a practically constant value. This parameter is de-
fined by the following expression:

EQk = Ek/Egk—1 (9)
where
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(8}

EQ(k

)

FIG. 2. (a) EQ; tends to a constant value. (b) The decrease of the error is
exponential.

E¥= 3l gt

i=1

and

N
E(k—l — Z |¢£_k—l_¢£.k—2|.

i=1
Clearly in order to get the convergence of the method, the
value of EQ* must be smaller than unity. Obviously, the
closer to zero its value is, the faster the system of equations
converges to the solution.

Generally, and depending on the value of w, EQ,tends
to a constant value as it is shown in Fig. 2(a). This figure has
been obtained applying the SOR method for studying some
temperature distribution problems. So that, from a certain
iteration called m, it is verified that

|[EQ* —EQ*~'|<¢, (10)

that is to say, by choosing for €' a sufficiently small value, it
can be obtained with good approximation that

EQ*~! ~EQ* ~EQ'*. (11)

This constancy of EQ* indicates that from the iteration m
the decrease of the error is exponential [Fig. 2(b)]. In fact,

EQ™ = EQ™+! = ... = @ = const. (12)
From (9) and (12), it is proved (when k»>m + 1) that

FIG. 3. A cylinder made up of a grid of 294 points inside which is another
cylinder at a temperature T, = const.
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(k
log E e=10 3

-3

FIG. 4. Log E against the number of iterations for two values of w that are
different by 0.025.
Em+t - 1?("%11
12(»14-2 = 1;(»14—1¢z = lr(nuZZ
’ (13)
Er=Fr—1g _ Fimgn—m
This law of decreasing for E* is of the same type as for E {¥,

which is the error associated to a point / of the system.
By calling

Ef=|pl—ol | (14)
and

Ef =gl 197, (15)
it is verified that

E{'=E{a;~", (16)

where a; = EQ!".

The particular values of a; are very close to the general
value of @, so that we shall choose a; = a.

If m is the iteration from which EQ* = a = const, ata
generic point i, the values of the function ¢ from that iter-
ation can be expressed by the formulas

grti=¢"r+{p" " — ¢,

(17)
piri=gimt 4 (1T — g {Ma(l +a)
that is to say,
pr=gi"i+(pim*! —pimalle” 2~ 1@ — 1)1.018)
So that, when n— 0, and because a < 1, it is verified that

pio=¢"*! + g+ —¢{"}la/(l —a)). (19)

If the value of EQ is constant, this last equation relates
the solution of the function ¢ in a determined point of the

system with the values that this function gets in the iterations
mandm + 1.

log E wal. 6,
e=10"".

90 iterations

FIG. 5. Log E'* versus the number of iterations applying the SOR method
and usingw = 1.6,
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w=l.6

ez10”3
e'<10”
40 iterations

log E

3

-3

FIG. 6. Same as Filg. 5, but using the PJM when €<10~>,

In practice, when the PJM is applied, the value of EQ*
is not exactly constant, and the solution reached with the
jump may not agree accurately with the exact solution, but if
it is so close to it that Eq. (4) is verified, we shall consider the
calculus process to be finished.

On the contrary, if the solution reached by applying the
PIM does not verify Eq. (4), the iterative process continues as
usual until it is verified or until a new constant value of EQ*
is reached and, in this case, the PYM is applied again.

In any way and in all the cases, the number of necessary
iterations is substantially lower.

One could think that if instead of applying a to the
expression (19) we choose a;, the value for ¢ |~ obtained by
the PJM would be closer to the exact solution. Nevertheless,
we have observed that it does not happen in this manner; it
seems as if the constancy of the general value of EQ* could
be reached faster than the values of EQ ¥,

IV. RESULTS

We have applied the PJM to the solution of the equa-
tions that describes the temperature distribution in solids of
different geometries. As an example, the following results
correspond to the solid in Fig. 3. It is a cylinder made up of a
grid of 294 points inside which is another cylinder at a tem-
perature T, = const.

The equations that describe the temperature distribu-
tion are

ar

V:T=0, T|g =T, —.kEs:h(ﬂs—.TZ)'

(20)

This last equation is verified over the external surface.
All the results shown in this paper have been obtained
by starting from the initial condition T, ;,, = T, =20°C.

1og 'K w-1.725
e-1073
S, 43 iterations

FIG. 7. Log E* against the number of iterations for @, = 1.725.
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leg E {k w=1.5
e=10"
€'<8-10"
39 iterations

3
5

FIG. 8. Applying the PIM to the problem.

Figure 4 shows the logarithm of the error E* against
the number of iterations for two values of  that are different
by 0.025. The great sensitivity of the convergence for the
small variations of @ can be observed. This example gives an
idea of the great advantage of knowing the @, factor and of
the high precision necessary to calculate it.

Figure 5 displays the log E* versus the number of itera-
tions applying the SOR method and using @ = 1.6.

Figure 6 exactly corresponds to the same case but using
the PJM when €'<10732

We have calculated @, for this particular problem and
it has been obtained w,,, = 1.725.

Figure 7 shows log E* against the number of iterations
for w,,, = 1.725.

Figures 8 and 9 show how by applying the PJM the
solution of the problem can be reached with a lower number
of iterations. For demonstrating the great advantage of the
PIM, we have chosen two values for o (0, = 1.5, @, = 1.4)
that are rather distant from w,, .

418 J. Math. Phys., Vol. 26, No. 3, March 1985

log =8 el d

eml0”
£'<10”
38 iterations

3
2

..... F

FIG. 9. Applying the PJM to the problem.

In following articles some practical applications of this
method will be discussed in detail.
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A general method for the construction of the second constant of motion of third and fourth orders
is given for two-dimensional systems in terms of z = ¢, + ig,, andZ = ¢, — ig,. Correspondingly,
the third- and fourth-order potential equations are obtained whose solutions directly provide the
integrable systems. Using the Holt ansatz, the potential equation corresponding to the third-order
invariants has been reduced to a pair of potential equations whose solutions yield a large class of

integrable systems.

I. INTRODUCTION

Whittaker' first investigated the problem of the con-
struction of an invariant (other than the total energy and
which will be called the second constant of motion) for a

system described by
= =2, = -2, v=igg)
T e Tt dg e

His studies were, however, restricted to the invariant of first
or second order in momenta. Although there have been sev-
eral attempts? in recent years to construct the second-order
invariants, not much effort has been made to obtaining the
third- or higher-order invariants for such systems. In some
cases, no doubt, the system is found to be integrable just by
accident? (e.g., the Toda lattice case). For an interesting re-
view on the subject, we refer to the work of Hall.2

Recently, Holt* has introduced a procedure which es-
sentially has bearing on the perturbation theory of McNa-
mara and Whiteman* and has obtained the third-order in-
variants for a number of integrable systems. As an outcome
of this method Inozemtsev’® has shown that the system
v = A (g,,g,)~ % is also an integrable one at least classically.
In fact, there already exists scarcity of classically integrable
systems in two or more degrees of freedom and a test for their
corresponding quantum integrability in each case should be
carried out® separately. The utility of the second or other
constants of motion, if they can be constructed for a system,
has been noticed’ in recent years from several points of view
particularly, in reducing some nonlinear dynamical prob-
lems to a quadrature, in solving several problems of plasma
physics and hydrodynamics, and in the study of a classical
analog of Yang-Mills field equations with reference to the
generation of potentials (both time-dependent and time-in-
dependent by choosing suitable gauges).

Earlier, in the light of the work of Katzin and Levine,?
we have suggested® a method for the construction of second-
order invariants for time-dependent classical systems in two

* Permanent address.
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dimensions. In fact, some new time-dependent integrable
systems were found by introducing the complex variable
z==q, + ig, and Z = g, — iq,. A lot of simplifications were
achieved in the derivation and the analysis turned out to be
more transparent. With the same spirit, in the present work,
we reexamine the time-independent systems in two dimen-
sions and construct the second constant of motion of third
and fourth orders in momenta. We obtain in their most gen-
eral form, the potential equations of third and fourth orders
(corresponding to the third- and fourth-order invariants)
whose solutions may directly provide the integrable systems.
However, for the third-order case this potential equation re-
duces to a pair of potential equations each of second order
only after making use of the Holt ansatz [cf. Eq. (4.1)]. All
the cases discussed by Holt are recovered and a new integra-
ble system v(¢,,9) = alg,” + ¢.°) + B/(9,* + ¢.°), is also
found. Analytical general results are given for the fourth-
order invariants. The plan of our paper is as follows.
In Sec. I1, we consider the Lagrangian

L =1|2|* —v(z,2)

and requiring that df /dt = O, we obtain an overdetermined
set of partial differential equations involving the coefficients
in which the invariant 7 is already expanded. In Sec. III, we
continue with a general solution of these equations in the
form of “potential” equations. In Sec. IV, we establish the
correspondence between our method and the method of
Holt* for third-order invariants. Section V deals with the
applications of the potential equations obtained in Sec. IV.
Various integrable systems are derived and analyzed in Sec.
VL

Il. CONSTRUCTION OF THE POTENTIALS AND
CORRESPONDING SECOND CONSTANT OF MOTION

We first give here a general treatment of the construc-
tion of invariants up to fourth order in momenta and then®
discuss separately the third- and fourth-order invariants in
the subsequent subsections.
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A. The method

We consider a dynamical system described by the La-
grangian

.f=5|2|2—v(z,2), z=¢q,+iq,, zZ=p,+ip,

2.1)
with the concomitant equations of motion
5 v v
= —2=, z= —2— 22
az dz’ 2.2)

Let us consider the second constant of motion up to fourth
order in a general form as

I=a,+a¢ + (1/2!)aij§i§j + (1/3!)aijk§i§j§k
+ (1/4a;;,6:€:6 60 (2.3)

where i, j,k,l = 1,2; £, = 2, £, = Z, and the coefficients a,, a;,
a;;,a,;,, and @, ; are functions of z and Z only. These coeffi-
cients are symmetric with respect to any interchange of their
indices. Using dI /dt = 0, we find from (2.3),

ao,igi + ai,j§i§j + aig‘i
+1a,.8:6,6x + iaij(g'ifj + 5,5.) +3a;6,6:8;6:6
+ %aijk(f;'igjgk + §.§,§k + §i§j§k)
+ 4%k 1m€i6i6xbibm + 15(§.§,§k§1 + fig}fkfl
+§i§}5k§1 +§i§j§k§l)aijkl =0. (2.4)
After accounting for the proper symmetrization of the coef-

ficients and since (2.4) must hold identically in £ ’s, we obtain
the following conditions on g, ;, @, @,, and ay:

Qjktom + Grimi + Qkimi g + Cmijre + Qs =0, (2.5)

Aijeg Y i + Qi ; 850 = 0, (2.6)
Gun + @+ +a,0€ =0, (2.7)
a,; +a,; +aué, =0, (2.8)
ao; +a;,€;, =0, (2.9)
a,é; =0. (2.10)

Equations (2.6), (2.8), and (2.10} yield the following set of
partial differential equations:

94y,
i ., 2.11
% (2.11)
92112 _ (2.12)
a9z
da,z, 94y,
—-uz _o, 2.13
P (2.13)
da,1, da,,
3 =0, 2.14
Jz + dz ( )
045z, da,,,
3 =0, 2.15
9z + Jz ( )
da, o
hided = =, 2.16
2 al”ﬂf+a"2 o2 ( )
da, v av
ge ik =, 2.17
& 012232 + a2 % ( )
da, da, d A ,
4 2 — 924 2a 2.18
- + e 12 0 + 28427 — %’ (2.18)
421 J. Math, Phys., Vol. 26, No. 3, March 1985

o

av
ov = =0, 2.19
a, E +a, o2 ( )
whereas Egs. (2.5), (2.7), and (2.9) yield
dauu _o, (2.20)
dz
da;yy, 43‘11112
=0, 2.21
Jz + az ( )
23‘11112 + 33‘11122=0, (2.22)
a9z az
da da
3 1122 + 2 1222 — 0’ 223
0z az ( )
9a57, +4 01337 _ 0, (2.24)
Jz a9z
%apm _ o, (2.25)
Jz
a dv av
3R =2 + 2y (2.26)
o av a
3 ;;2 = 28553, — % +2ay5, a_: (2.27)
07 a v dv
‘% +2 ;zu —2‘111125_ +2‘1112252‘ (2.28)
a o av v
SR A2 =2 o + 2m (2.:29)
day v 1))
=2a,, — + 2a,, —, 2.30
az 11 62 + 12 az ( )
da, & A
=0 =24,,— +2a,,— 2.31
% 124 + P (2.31)

Now, we present solutions of these equations for determin-
ing various coefficients.

B. Determination of g,
From Egs. (2.11) and (2.12)

an=a112) =¥, and ay; = a;(2) = ¢,(2).
Equation (2.14), after using (2.11), yields
& 12
Zéu2 _q,
az?
whose solution is
a1y, = (22 + ¢5(2). (2.32)

Similarly, Egs. (2.15) and (2.12) will lead to the solution

132 = $,(2)Z + $(2). (2.33)
With these solutions, Eq. (2.13) implies

dy, | d¥ | -d,  do; _
= e e T &
Let us consider, ¢, = C, and ¥, = C,. (Note that here ¢,’s
and ¥;,’s are the functions of only z and 2, respectively, and
C,’s are some arbitrary complex constants.) This reduces the’

above equation to the form
Ldy, | Ldés _
z dz z dz

which after making use of (2.32) and (2.33) in (2.14) and
(2.15), respectively, yields

0, (2.34)
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d’¢,

p 5 = const
Z

(say,C5),

-1
z

or
) =4CZ + CZ+Cs, = —}CZ —{C,.
Similarly, we find ¢, and ¢, as
b= —IC2+Ca+C, $,=1C7* —iCs
Finally, the solutions of Egs. (2.11) to (2.15) become

a4 = écz? +Cz+ G, (2.35)
@y = —§Cs2 + Cz + C, (2.36)
a;, = —§C2Z —§Cz + C,, (2.37)
1y =§C22° — §CZ + C\. (2.38)

C. Determination of g, ,

From Egs. (2.20) and (2.25) we have ay,,, = a,;,(%)
=04(z) and @y, = Gy0(z) = y1(z). Using (2.20) in Eq.
(2.21), we have

#1112

oz

which admits the solution as

a2 = 05(2)z + 03(2). (2.39)
Similarly, Eqgs. (2.24) and (2.25) will lead to the solution

@122 = X2 + X5(2)- (2.40)
On differentiating (2.22) with respect to Z and (2.23) with

respect to z, and correspondingly subtracting the results and
making use of (2.39) and (2.40) we obtain

=0,

d’o, d%, -d%*, d? X
=2z +
&7 T a2 | dz
Now, we fix g, = D, and y; = D,. (Note that here ¢;’s and

x.:’s are the functions of only Z and z, respectively, and D;’s
are the arbitrary complex constants.) This reduces the above
equation to the form

1 d%,

— = const (say, D;),

=1
z

or
0’2 = %Dﬁa +D4E+D5,
Y2=4D2> + Dz + D,

Similarly, we find o, and y, starting from (2.21) and (2.24) as
oy= —\D;7* — 2D7* — 4DZ + D,

X1= — iDsz* — 2DZ> — 4D,z + D,
Equation (2.22) yields
a1, 2 do, 1 _ 2
=uz: oo 2222 — . Dg7?— — D,

P 3k 3T RS

or

ann= — D77 — D2 + 0,(32).
We note that o,(z) can be determined from Eq. (2.23). Final-
ly, the solutions of Egs. (2.20)—2.25) yield

422 J. Math. Phys., Vol. 26, No. 3, March 1985

ayun= —4iDsZ' — 2D 7 — 4Dz + Dy, (2.41)

Ay = — D32* — 2Dz — 4Dz + D,, (2.42)
D, _ _

@y = —6-3—zz3 + DyZ + Dz + D,, (2.43)

@227 = D572 + D2z + DZ + D,, (2.44)

Q122 = _%‘Dlﬁz —§D422—%D622+D10, (2.45)

Having solved the potential-independent equations (2.11}-
(2.15) and (2.20}(2.25) in terms of arbitrary constants C;’s
and D,’s, we now proceed for the solution of potential-de-
pendent equations (2.16}—(2.19) and (2.26)—2.31).

lil. FORMULATION OF THE GENERAL POTENTIAL
EQUATIONS

A. Derivation

In order to eliminate a, and a, from Egs. (2.16}2.18)
we differentiate (2.18) with respect to z and using (2.16} ob-

tain
&a, _ (2% - ﬂ)éz
oz* 0z dz )z
+ a1 —— T ‘1111'6—22
8282 az

Now differentiating this equation with respect toZ and using
Eq. (2.17) for da,/JZ the rearrangement of terms leads to the
equation

(c?za”l + Pay _ 2320112)21’_
Jz az 0z0z) oz
da da v
) L _ 112) ov
+ ( Jz dz ] 32
Fv (6‘20“2 Fasys azam) A
+ a -2 i
maE Y\ T 0202
da da v
2 22 122)
+ ( 9z 9z*
& > &
+azzza—; —auzaz.;?'—axzz 82-81)22:0. (3.1)

In the same way we proceed to eliminate a,,, a,,, and a,,
from Eqgs. (2.26)—{2.29). On differentiating (2.28) with respect
to z and making use of (2.26) for da,,/dz, we find

Fa,, — (aauzz _ _l_aa1112)‘_9v_
dz2 oz 3 0z )oz
2 &
4 (M _ _1_3_“&)@
oz 3 o2/
+ a2 v ! i (3.2)

— - — a1
322 3 1111 822
Similarly, on differentiating (2.29) with respect toZ and using
(2.27) for da,,/Jz, we find
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Fa,, - (301222 _ ig‘izzﬁ)
dz 0z 3 9z

1) 2 F
X— + _alzzzaT;E

9z 3
94,12, _ laal222)@ %
+(az 3 o & e

1 P

- = —. 33
3 Q3322 92 (3.3)

Now to eliminate @,,, we differentiate twice (3.2) with re-

spect to Z and (3.3) with respect to z, and using &a,,/

(022-92%) = 3%a,,/(32°-0Z%), we finally obtain
(33‘11122 _ lyaluz
9z.52* 3 37
_ Fa135 i 33‘12222) @
0z.02% 3 92 /oz
+ (32‘11122 _ #a,132, 32‘12222) ﬁ
i/ 02-02 ar ] dz
a a > 1
- (g - S T+ e
X ﬂ + (aauzz _ 3‘11222) 331’
az* oz dz ] 3z.92%
2, B 2, v
3 Paar T 3 ' ard?
+ (3‘11112 _ ‘9‘11122) Fv
Jz dz /) 92022
#a;1112 1 a0
+ (62322 T3 3 a7
_ Fa, 1 _ iasaun) d
8292 3 92 /a2
+ (32‘11112 _ Fa115, _ 3201111)_‘21_’_
929z oz > ]
—_—)— - = — =0. (34
(F2 - ) % - oG =0 04

Equations (3.1) and (3.4) are general “potential equations”
corresponding to the third- and fourth-order invariants.
These equations involve the potential derivatives and known
coefficients a;, and a;; through unknown constants C;’s
and D;’s. On substituting these coefficients from (2.35}
(2.38) and (2.41)—2.45), the potential equations reduce to the
forms

2wz 4 (3 CZ+ —c4)‘92”

7z 3 ) a7
( C2+Cz+ Cs) Z;g
-0 - (Fer- 5 ) 53
eer-c)
(e termc)2s
— (% Cz? — % CZ+ cl) a:;’ > =o. (3.5)
423 J. Math. Phys., Vol. 26, No. 3, March 1985

and

Cne - B (tor i)
—5(%D3£+D6z+D7)
X%’Z}SLJFL(_%D‘ 2Dz — 4D7z+09)g:f
_.}(703222+DJ)
3_;?.3’?_%(-1—1),22+D622+D7E+D2)£z—3
+%(6D3zz3+D4ZZ+DsZ+D)aa4:3
+%( DszzzJ’D‘z)aas;zz
s 2pr% 4 L (5p7 )5
+5(%D323+D42+D5)'3—_z§‘
+ 2 (Lo 202 40z -D,) 22 =0 3o

As such the solution of (3.5) and (3.6) for v(z,2) is a difficult
task, but we provide the following recipe for the construction
of the invariant. For a given form of v(z,2), the unknown
constants C;’s or D,’s can be determined by rationalizing the
potential equation (3.5) or (3.6). Subsequently, the determin-
ation of other coefficients a; for (3.5) and a,,a;; for (3.6) from
Eqgs. (2.16)—(2.19) and (2.26)—2.31), respectively, lead to the
final form of the second constant of motion from (2.3). How-
ever, for Eq. (3.1) in the next section, we have shown that it
reduces into two second-order partial differential equations
after making use of the Holt ansatz for @, and a,.

B. An example

To demonstrate the method outlined above we consider
the example of Inozemtsev,® v(g,,q,) = 4 (9,,g;)~* or,
equivalently

v(z.Z) = (4if*PA (22 — 23)~ 23 (3.7)
On substituting the derivatives of this potential in (3.5) and

correspondingly rationalizing the resultant equation, we
find that

C,=C,=C,=C;,=C,=0and C, = Cg = C, (say).
Thus, the coefficients a; from (2.35)—(2.38) turn out to be

ayy=C2, aypn= —41Cyg,

A= —1CZ, ap, =Cg.

Now substituting these expressions in (2.16) and (2.17) and
integrating the resultant equations we obtain @, and a, as

a, = — Cokz(z? — )2 + ki,
a, = — CokJZiz? — )3 + ky,

where k, = §(4i)*/3, and k,k, are the integration constants.
Once the coefficients ;; and g, are determined, they can be
substituted back in (2.3) to give the invariant I. After notic-
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ingthatz = q, + ig,,Z = p, + ip,, the invariant finally turns
out to be

I=24(p, 9, —p1 41)lg:42) " + Py P2 P18z — P21,
(3.8)

with the choice C; = . In the same way Eqgs. (3.5) and (3.6)
can be used to find other integrable systems. However, we
shall use the Holt’s prescription in Sec. V for this purpose.

IV. CORRESPONDENCE WITH THE HOLT METHOD

In this section we establish the correspondence of our
method with that of Holt* for the third-order invariant and
use his method for reducing the third-order potential equa-
tion to a pair of second-order potential equations which are
relatively easier to handle. Holt considers the form of the
invariant as

I=Ep+ Ep,’p, + Ep,p;° + E,p,° + Esp, + Egps,

where the coefficients E;’s satisfy a set of partial differential
equations. If we identify

E, =}ay,, E,=la1 E;=}a

E,=}ay, Es=a, Es=a,

and replace z for ¢, and Z for ¢, and € = 1, then a one-to-one
correspondence between our equations (2.11}+2.19) and
those of Holt [cf. Egs. (147){155)] of Ref. 4 can be seen ex-
cept for the fact that the kinetic energy term in the Lagran-
gian (2.1) is defined differently for notational purposes.
Following Holt,* we assume a solution of (2.19) as

a,——-G@, az=—G@,
gz gz
where G is some function of zand Z. With the choice of ¢, and

a, Egs. (2.16)+2.18), respectively, reduce to

(4.1)

G v v v
A LN o LA AL i 4.2
9 o T a7 Tty tohng “2)
3G dv (3G A
24y, =— — [— +2a,,|—==0, 43
(az ‘22) 3z (az + “z)az 0 “3)
4G v &) v v
X _ g g, T X, 4.4
% & g Cmg Tomy “4)

Equation (4.3) can be solved for G by introducing a new func-
tion Y such that
ay ay
E - 1225 E
which after using (2.37) and (2.38) leads to the form of Y as
Y =Y,+2Cz—2Cz —iCZ +§C.2°

+1C2%2, (4.6)
where Y, is some arbitrary constant. The general solution of
(4.3) can be written as

G=Y+94, (4.7)
where 4 is an arbitrary function of v. The substitution of (4.7)
in (4.2) and (4.4) yields the potential equations,

v dv dv d ( 4 8v) (4.8)

Y— —3an,- - = —
dz

az? 9z Jz

= —2a,,,, (4.5)

az.
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and

v A ) a( 6v)
Y2l 434, % 2 - 2), (49
gz T hmg Tty ¥ ¢az “9)

which are similar to those obtained by Holt [cf. Egs. (170)
and (171) of Ref. 4]. It may be remarked here that Holt has
considered only those cases for which the function ¢ = 0.
One case in which ¢ #0 is considered by Inozemtsev’ who
obtained a new integrable system, v(g,,4,) = 4 (¢1,42) 2.

V. APPLICATIONS OF THE SECOND-ORDER
POTENTIAL EQUATIONS (4.8) AND (4.9)

In this section, we look for the integrable systems which
admit third-order invariants through the solutions of the po-
tential equations (4.8) and (4.9). We recover here all the cases
discussed by Holt for ¢ = 0 [case (a), (b), and {(c])] and also
derive new integrable systems for ¢ 70 [cases (d) and (e]].

Case (a): Consider the potential,

vqg:) =gq,” + 49" + 8¢,
or

WzZ) =322 — 3 —F + 4z +2) 2 (5.1)
We note here that although vlg,,¢,) is not symmetric with
respect to the interchange of ¢, and g,, v(z,Z) is symmetricin z

and Z. When this symmetry property of the potential v(z,z) is
used to yield identical solutions of (4.8} and (4.9), we obtain

p=Y,=C,=C,=Cs=0

and
Ci=-C, C=—-C,=3C,
which lead to
G=Y= -2C)z+32),
an =30, a;= —-3GC,
a,=C5 a;p=—0G,

= —2Cz+2)(F — £ — 86 +2%),
a,=2C)z +2){z — £ — 86z +2)°}.
Thus, the invariant I [Eq. (2.3)] reduces to

I=4iC,[ p? p, + 2(49:9, P, — P9:* + 8p29, )1 (5.2)
which coincides with that of Holt on identifying C, = 1/4i.
Case (b): Let us consider the potential>*¢
vlg,q2) = (412 + 3422 + 5)422/3
or
Wzd) = (2P + 4P+ EE+ O -2 (5.3)

On substituting ¥ from (4.6) and the potential derivatives
from (5.3) in (4.8) and (4.9) and rationalizing the latter equa-
tions, we find

$=Y,=C;=C,=C4=0

and
C,=C,= —-3C;= —3C,
which lead to
G=Y=6Cz—2), a;,=Cs ap=0C;
a;,= —3Cs, a5, = —3C,,
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and correspondingly @, and @, can be obtained from {4.1).
Finally, the invariant from (2.3) turns out to be

I =4C; p,(3q,% — 2¢,* ~ 28)g, %>
—§C;s P’ —4Csp, P’ — 24C;s p2q1q21/3’ (5.4)

which has the same form as that of Holt* for Cs = — 3.
Cqse (c): Consider the Toda lattice potential®

vigugs) = a, et g et 30 4 Be =2

or
U(Z,E) —_ a+eA*z+A_E+ a_eﬂ+z+B-E+BeC+z+ C,E’
(5.5)
where
a4, =B L p, =—-‘/21i%, C, = +i
i

After substituting the potential derivatives and Y'in (4.8) and
(4.9) and then rationalizing the resultant equations, we find
that

Yo=3, C,=C,=C,=C,=C¢=¢=0,
Cs=C,= —3i

which lead to
ay = —3i, ay= —3i

a112=0;,,=0, G=Y=3,
and the corresponding @, and a, can be obtained from (4.1).
Finally, the invariant from (2.3) can be written as
| =3a.(p; ~3psJe™ 30 + 3a_(p; +3plen ~ ¢

— 6Bp.e = + p\(pi* — 3p0), (5.6)
which has the same structure as given by Hall.?

Case (d): Now we discuss those cases for which ¢ #£0in
the potential equations (4.8) and (4.9). We assume that the
potential v depends on one argument 7 only, where 7 is given
by

n=Y=gqq, or n=Y=4)"'c -7)
and

v="{n), ¢=0¢)=2¢(r).

A comparison of (5.7) with Eq. (4.6) implies that

Y,=C,=C,=C;=0 and C, = Cq=3/4i,
and correspondingly the coefficients a; can be obtained
from (2.35)—(2.38) as

a;,,=Cz+Cs,

{5.7)

(5.8)

A =Cz+ C;,

{5.9)
ay2= —1§Cz, a;;= —IC2.
After making use of Egs. (5.7)—(5.9) the potential equations
(4.8) and (4.9) reduce to the forms

7+ )7 + (272" + [Cy2? + 7P) + CZ)7

+@i'72 2 o, (5.10)
dr
— M+ )7 — 20727 + [CyfZ +2%) + Cz]7
+ (2i)-‘22r'211£ =0. (5.11)
dr
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Now we multiply (5.10) by z° and (5.11) by z? and sub-
tract the resultant equations to give

(492 +7°) + C4* — )+ CZ* — C,* =0.
(5.12)

For the choice

Ci=C;=0,
Eq. (5.12) leads to

N+ ¢ =C,2* — ) =4iCyy
[from Eq. (5.7)] or

¢ = (4iC, — 1y = 2q(" ~C, = 3/4i).
Thus,

d¢ 2

= = 5.14
dr 7 ( )

Substituting (5.14) in Eq. (5.10), we have
It + 57 =0,
which yields the solution, 7 = A% 23, thus

vig1g2) = A (g1g2) ">

We note here that this potential was derived by Inozemtsev’
using Holt’s equations. Substituting for this potential in (4.7)
and (4.1), we obtain

(5.13)

G=13y, a,=ilzn~ %3, a,=ilzn" %3,
which leads to the same invariant as given earlier in Sec. III
[cf. Eq. (3.8)].

Case (e): If we choose the single argument 7 on which v
depends as

n=(g’+¢°) or n=22 (5.15)
and assume that
Y=9*=27, v=1ly), ¢=0p)=4(r). (5.16)

then the comparison of Eq. (5.16) with Eq. (4.6) implies that
Yo=C,=C,=C,=Cc=0and C; =6,
which in turn lead to [cf. Egs. (2.35)-(2.38)]

an=2+Cs, ay,= -2+ G,
{5.17)
Ay = —2Z°, @y =22

Now making use of (5.16) and (5.17) in the potential equa-
tions (4.8) and (4.9), we obtain

(7 + ¢ 27" + (222° — Csz)r’ + 2777 % =0, (5.18)

(7* + ¢ 221" + (2222 + CA)r' + 2277 % =0. (5.19)

On multiplying (5.18) by z* and (5.19) by Z* and subtracting
the results, we find
7(Cs2> + C,2) =0.
But 7’ #0. Therefore, we must have Cs = C, = 0. Thus, both
{5.18) and (5.19) reduce to (y = zZ),
0 + )" + 247 + 72 13_”. —o0. (5.20)
-

Now we discuss the solution of this nonlinear equation with
three possibilities.
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(1) Let us choose 7 = A,75. Then, Eq. (5.20) reduces to
the form

m+ % _o( 4,20

dy
which yields the solution as
¢=—7"+k, (5.21)

where k, is the integration constant. For this case, we have
G=Y+¢=k, and a,=a,=0, if k; =0; otherwise
a, = k,ZA,,a, = — k,zA,. Finally, the invariant 7 from Eq.
(2.3) turns out to be

| =3g1. — 921364, — 21 P, — @22 )] (5.22)
(2) If we put
7" 4+ 27 =0 (5.23)
in Eq. (5.20), then it reduces to the form
g+ % _o, (5.24)
dr

The solution to Eq. (5.23) turns out to be
r=A,n""! (5.25)
which leads to the solution of (5.24) as

=0 ($=2A:o77), (5.26)
where @, is a positive definite integration constant. For this
case, the function G and the coefficients a, and a, are given
by

G=Y+4¢=(1+¢o7",

ay= —(1+ @z, a,=(1+ @Mz
The invariant turns out to be the same as (5.22) except &, is
now replaced by another constant — (1 + ¢,).

(3) Let us consider a trial solution of (5.20) as

T=Am+ 4/ (5.27)
This provides a consistent solution of the nonlinear Eq.
(5.20) provided ¢ = — 7%

For this case, we obtain

G=Y+¢=0anda,=a,=0,
and the invariant I taks a very simple form as

| =44:2: — 9.0, (5.28)
The cases (1)—(3) correspond to the well-known two-dimen-

sional harmonic oscillator Hamiltonians expressed in cylin-
drical coordinates and are given by

Ailg:® +¢2°) (case 1)
Ugug2) = §A0g:% + )" (case 2) (5.29)
Ag® + @27 + Axlg,° + )7 (case 3).

Vi. DISCUSSIONS

Basically, the paper was intended to derive third-order
invariants and establish the link between our approach and
that of Holt.* Many known potentials of physical interest
have been rederived. The following additional observations
can be made in the light of our analysis.

(1) In general, Hamiltonians which possess invariants of
polynomial order 3 in p;, may possess invariants of order < 3
inp; as well, e.g., if we had chosen all a;; =0, then the invar-
iant 7 would be expressed as
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I=g;z+a,z (first-order in p;)
with a; satisfying the following equations:

da, _ da, _ da, , da, _
E—O, E =0, E + E =0,
and
a2 8,2 -0 (6.1)
On solving for a,, a,, and v, we have
a,=Cz+C, ay=—Cgz+C,
(6.2)

v=f(Cizz + C,z2 — C,2),

C; being constants and the potential v is an arbitrary func-
tion of the arguments. Correspondingly, I is given as

I=C\zz—2z) + Cpz + CiZ. (6.3)
Note that if we choose C, = C; =0, then, the potential is
spherically symmetric and the invariant is the angular mo-
mentum {first order in p; ).

The potential discussed in Sec. III B does not admit
invariants of order <3 in p,. Similar conclusions hold good
also for potentials discussed in V (a—c), e.g., in V(a), if we
choose C, = 0 (implying a;; =0), then ;=0 also. Thus, /
vanishes identically. However, for potentials (5.29), it is easi-
ly seen that the invariant I involves odd powers of
(g1 P> — q.P,) as it should since such systems have angular
momentum as a constant of the motion (first-order in p;).

(2) If the Hamiltonian admitting invariants which are
polynomials in p; (or, equivalently in z and Z) of order 4
should also possess invariants of second order in p;, the fol-
lowing equations are to be satisfied by ¢, and a;:

da,, -0, da, =0, da,, +2 da,, -0,
dz az Jz dz
(6.4)
da,, da,,
—2 422 =0
oz + Jz
and
da, d v
— =2a,;, —+2a,,—,
oz ng g
(6.5)
da, 1) v
—=2a,,— +2a,—.
Gz g THng
Solutions of (6.4) yield
2, =08y = —3CzZ2—1CZ —1Cz 4+ C,
a; =4CZ + CZz + G, (6.6)

a,,=1C2* +Cz + Cs.

Substituting (6.6) in (6.5), we obtain finally the following con-
dition on the potential so that the system will admit invariant
in second order in p, as

_ _ 3 1 _ 32 gy
czZ+C C) V2= (-—CZ'2 C C) —
(% I 2+ 3) 5 2 2 +Cz4 (5 &
—4Cc2+Catcy) L
dz
372
x [(i C+Caz + Cs) »l _o. 6.7)
2 9z
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The solution of (6.7) will yield logarithmic potentials.>®

(3) Alternatively, subsidiary conditions on the coeffi-
cients in Eqgs. (3.5) and (3.6) can be obtained similar to those
outlined by Holt* (see the Appendix) such that v(z,Z) does not
admit invariants lower than third or fourth order in p,, re-
spectively. The derivation of a general solution to Eq. (3.5) or
(3.6) is indeed very much involved. We wish to report more
on this problem in a future publication.
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The twistor encoding of the anti-self-dual Coulomb field is given in terms of the space-time
connections pulled back to.#* and to.# . This description differs considerably from that of the
twistor encoding of transverse or radiation fields, which have been the only fields studied in this
fashion to date. A twisted structure results on.#+ and a topologically incomputable one on .#
and these are identified modulo the null lines intersecting the source world-line.

I. INTRODUCTION

The twistor description of the anti-self-dual Coulomb
field (a left-handed field) was first given by Penrose and Spar-
ling' and later amplified by these authors® and Penrose and
Bailey.? In this paper the description is given in terms of
structures on .#, the null infinity of conformally completed
Minkowski space-time. One can see the resulting structures
in a different and more conventional fashion and the general-
ization to the Lienard-Wiechert field at an accelerated
charge can also be formulated. This analysis aids one in un-
derstanding how longitudinal fields can be incorporated into
the twistor description whereas previously only radiation or
transverse fields could be directly incorporated in terms of
the asymptotic structure of the field.* This analysis can also
be extended to higher-order multipole moments and to the
gravitational case.

Il. THE CONSTRUCTION

Consider Minkowski space-time M in advanced null co-
ordinates (s, 7, 7, 7*') related to Cartesian coordinates by

x4 =54 [ty /e )], (1)
where £44" is the identity matrix, ¢ (7,7)=t"*7,1,., and
the spinor fields 7,,7,. are defined only mod C*. The co-
ordinates x**" are standard Minkowskian coordinates trans-
formed by the Van de Warden symbols so

D

—iy t+z

and thus 7 %4’ represents the components of a timelike vector
field on M which is parallel and has norm 2 for conve-
nience. Graphically the coordinates of a point are deter-
mined as in Fig. 1.

A Coulomb field of a charge e based on the world-line

given by r=0 is represented by the closed two-form
e(ds \dr)/7 and the anti-self-dual Coulomb field is

F=(edsA\dr)/r* + (e An ANA%)/t (7,7,
with Ap=n*"dy,.. The field F pulled back to # * (given
imprecisely by r = « ), which has coordinates u,7,,7,- (see
Ref. 5), is

e(AT NAT/t (7,7)%,
and is locally of the form — d7,,, where a,,. is an arbitrary

spinor and the exterior derivative operator
d=(0/9m, )\dr,. [e.g., dfA7T = (3f /07 ,. )dm A7),
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5 — ¢t (@,m) A7
(a7
where a-7=a"#7,. Then
F l = 37 a-*
There is a Hermitian structure defined on S % sections of # +
associated with the field on £+

= () )

where
H, = (a-7w a7/t (7,7)).

For another fixed spinor B, . (#a . projectively) define simi-
lar structures ¥g,Hg. Then

Hy = $p. Hobpa,
with

¢Ba = W'Tr/a'ﬂ')‘ .

Since 7, is not defined on all of # * (being singular for
m, <a,.) and ¥ is singular for 7,. «8,., the collection
{775} covers £ * and the elements are related by

Vs = (00pa)Bpa ~" + PpaTubpa "

Thus provided eeZ (is an integer), a holomorphic C*
principal bundle is specified on # * with a Hermitian struc-
ture® whose curvature tensor is / times the field on # *. The
bundle is given by the transition function ¢, and {H,, ,Hg}
provide the Hermitian structure. The Chern class of the bun-

dle on the S % section of # * is e in contrast to the bundle for a
pure radiation field which has a bundle with Chern class

FIG. 1. Null coordinates
based on a world-line in Min-
* kowski space.
7t
8
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zero. The structure on £ * is not sufficient to specify the
field on M; using standard procedure of twistor theory a zero
field is produced—the radiation field of the Coulomb field.
The charge e is specified as is the velocity vector of the charge
which is given by £44". This structure locates the charge
world-line only up to translation.

To continue we examine the similar structure on .# —.
Using retarded null coordinates based on the source world-
line (v=s+7p=rpt =147, 5 =147,.},
edvAdp eduhAp

P t @)
pulls back to a field on .# ~ given by

(—edm ANAT/t (7,7)

Introducing 7, , 75, a twisted G* bundle results on # ~ with
transistion functions given by

bz = l@-m/B7),
where the 7’s label a set of parallel null hyperplanes in M and
correspondingly a generator of # * and a generator of # .
Null geodesics, elements of PN, can be identified with first
jets(7) of sections of # +—S 2, PN *, and also with first jets of
sections of # ~—S %, PN —, and one identifies # * and .# ~
and their first jets, PN * and PN —, to obtain a unique repre-
sentation of the null geodesics, PN. (See Fig. 2.) The bundle
over # * (# ") pulls back toa C*bundle over PN * (PN ~)of
Chern class + e ( — ¢) and the identification of PN * with
PN ~ produces no bundle over PN as the bundles are topolo-
gically inequivalent, having different Chern classes.

Of course, knowledge of the field on M produces a set of
null geodesics which intersect the charge world-line and
should be regarded as singular. To be more explicit, consider
a connection on M based on future null coordinates,

F=

p=srmeld(r) - LTI 45

FHt)
and a connection based on past null coordinates,
y=wpe i)+ 2Ty
Tofa ¢ (L)
=+ d ) — T gy,
(@)t (7,m)

Then ¥ — ¥ [more precisely, ¥ = (dH)H ~' + HyH ~ ] is
pure gauge and is given by

ruling by null geodesics

FIG. 2. Null hypersurface in conformally compactified Minkowski space.
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The transition function( — i[r ¢ (7,7)mr-1/t (%,1)])° may bere-
garded as defined on the primed-spin bundle P’ of M with
coordinates (s, r, 7,,7,,74 ) Notice that
x4t B 7wy =rt(f,mmn/t(7,n)from (1) and thus this
transition function is the pullback to P’ of a function on PN,
namely (w-¢)°, where o*=ix**'7,. and wt=0't,*'7,..
The null twistor is given by Z* = (%, 7,.) as usual. This
function on PN, (@-t )°, is of homogenity degree 2e in Z* and
thus may be regarded as a section of the Hopf bundle to the
power 2e on PN and is used to define a transition function
between the bundle over PN * and the bundle over PN ~
modulo the quadric Q defined by w-t = 0. But this quadric
consists of null geodesics intersecting the charge world-line
and thus we can encode the additional information about the
field in this manner.

. THE BUNDLE

The end result is a C* bundle over PN, a non-Hausdorff
mainfold, given as follows.”> Construct two Hopf bundles
over PN. The first has transition functions

¢Bu = (B'ﬂ./a'ﬂ-)e
and twist e. The second has transition function

bpe = B-m/am)”°
and twist —e.

Now identify points of PN — Q in the two copies of PN
and identify fibers over these points using

boa = w0t /(a-nf)
over the region a0 and using
$ie = (-t /(Bmf) ¢

over the region S-7#0. Do not identify the points of QC PN
and do not identify the fibers over these points. The other
transition functions (@z,,...) are obtained by composition.
The resulting bundle has a holomorphic extension to the
complement of Q in PT. Thus the bundle is specified by the
charge e and the ruled quadric Q with equation w-t = 0.

If one restricts this bundle over PN to the CP (1) of null
geodesics intersecting at a generic point peM and makes a
choice of fibers over the two points of CP(1) taking one fiber
from one copy of PN and the other fiber from the other copy
of PN, then a Hausdorff manifold results with a bundle
above it given generically by the transition functions

bpa = Ppaboa = (;—:) ((T.Q;t)?) = ( a:/;ﬂ)

The resulting field ¢ ,, at the point is evaluated by consider-
ing

1 aJ ad _
E§ dw® [( Aw® ﬁa)¢'§a I]Aﬂ’

restricting the integrand to the CP (1) and choosing appropri-
ate contours. The resulting field is the 1/2 (advanced +
retarded) Coulomb field at the point p.

The higher multipole moments do not contribute to the
twisting of the bundle over # ™+, # . The ¢g,, 3, are un-
changed and ¢,,, is replaced by
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-t )"’ exp[ almm) | blwmrm)

(@-m)? ot () + ]’

¢&a = (
where

almm)=a*P'm my,

bmmam)=b22 Py ag ey

represent, respectively, the dipole and quadrupole moments
of the source with respect to the charge world-line. Insertion
into the appropriate integral produces the field at a point

PEM.

IV. DISCUSSION

The anti-self-dual Coulomb field in Minkowski space-
time, the prototype of a longitudinal electromagnetic field,
has an encoding in terms of twistor theory which can be
obtained from the asymptotic behavior of the field and its
connection on .# * and on .# ~. A ruled quadric Q is speci-
fied by the source world-line and an O * bundle results on
PN — Qwhichisinextendible to Q. There are two copies of @
in the resulting manifold so that it is non-Hausdorff and a
fiber over each of the double points. This structure is speci-
fied by considering two copies of PN, one arising from # *
and one from .# ~ each with an O * bundle with twist + e
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and — e, respectively. The corresponding points of PN — Q
are identified as are the fibers over PN — Q. Over a CP(1)
representing the null geodesics through a point of the Min-
kowski space-time a Hausdorff bundle can be constructed
from the above non-Hausdorff bundle so that the usual twis-
tor construction yields the Coulomb field.

Further insight can be gained by examining the Lien-
ard—Wiechert field of an accelerating charge monopole as
the radiation field is nonzero.”
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The twistor encoding of the anti-self-dual Lienard—Wiechert field on Minkowski space-time
yields a considerably richer structure than that of the Coulomb field encoding due to the presence
of a nonzero radiation field. The combination of advanced and retarded transverse fields together
with the longitudinal field and the individual aspects of these fields provides this structure.
Higher-order longitudinal moments can be incorporated so that general longitudinal fields can be

given a twistor description.

I. INTRODUCTION

In an effort to gain a better insight into the twistor con-
struction of the anti-self-dual Coulomb field on Minkowski
space and because of considerable interest in its own right, a
study of the Lienard-Wiechert field was undertaken. The
encoding follows the same general lines as that of the Cou-
lomb field but given the additional presence of a nonzero
radiation field is of much intrinsic interest. One can observe
how the various combinations of advanced and retarded
fields are separately encoded. Additionally, a more complex
field with higher-order multipole moments can be easily
added so that general longitudinal fields in electromagne-
tism can be given a twistor description. Penrose and Bailey'
have also examined this field and give a very elegant coho-
mological description.

The electromagnetic fields associated with an accelerat-
ing charge in Minkowski space-time M are specified by giv-
ing the charge world-line and a value for the charge. Denote
the source world-line x 44" = 7 44'(s), which is parametrized
by s where 7 44'=(d /ds)r “4'=t“4". The parameter s is cho-
sen so that £44'¢,,. = 2 and thus ((d /ds)t *4')t,,. = 0. Null
polar coordinates based on the source world-line are chosen
so that with respect to the standard Minkowskian coordi-
nates,

x M =7 440s) + riptyt '/t (7,7),
where ¢ (7,7)=t** % ,m,.. These are illustrated in Fig. 1. A
coordinate system (s,7,7) is induced on .# *; the s constant
hypersurfaces are the intersection of the null cones from the
source world-line with .# * and on such an intersection the

FIG. 1. Null coordinates based on a
curve in Minkowski space.
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points are labeled by 7,. = 717,. (but it is convenient to main-
tain the distinction between 7 and 7). The retarded field
pulled back to # *,F, results in a local connection y,, such
that F = — dy, with
et(a,m)
a-m t(w,m)
for an arbitrary spinor a,. where &-7=a" 7. Noting that
t=1t(s), :

Vo = A7

e et At 8y .y,

F= AT NAT — dshA7.

t (7,m) t(@m)?
The first term represents the 1/72 part of the field pulled
back to .# * while the second term represents the 1/ part of
the pullback.
Doing the same for another arbitrary spinor 8, results
in 7, and the relation

7 -7.= [o(22)] (E2)

[Moreappropriatelyy; =d( )( )~' + ( }¥.( )~ '] Thusthe
appropriate bundle on # * has transition functions
Ppa = B-m/a-m)’, (1)

with e€Z so that the bundle is the pullback via .# +—S2of a
bundle over S ? with Chern class e. A similar construction on
# ~ results in a bundle with Chern class — e and transition
function

bpe = (B-m/a-m) " ()
The standard twistor construction for a field from y,, results
in a pure radiation field with zero charge. However, ¥, is
defined on a piece of a twisted bundle on .# * and is only a
local expression for a @ closed (0,1) form pulled back from
PN.

Examining the source world-line from the perspective
of # %, it corresponds to a selection of unique null geodesic
at each point of # T, namely the null geodesic at that point of
# * that intersects the source world-line. This is equivalent
to specifying at each point of # * a first jet of a section of
F +852~CP(1). Now CP (1) has a complex structure given
nonprojectively in the coordinates (7,.,7,) by 8 /97, as the
antiholomorphic vector field [modulo the homogeneity op-
erator 7,(@/07,) where the representation is
CP (1)~C? — {0}/C* and the homogeneity operator is tan-

© 1985 American Institute of Physics 431



gent to the fibration C*]. The manifold .# * has no natural
CR structure but a shear-free congruence in M endows # *
with a CR structure—namely the congruence determines a
CR submanifold of N (or PN ).

Specifically, giving a future null coordinate system
based on a straight world-line results in a coordinate system
(A,74sm4 ) on F * and a timelike parallelly propagated vec-
tor field v**’". Let u = Av(7,m). This gives a CR structure on
# * whose antiholomorphic vector field is (3 /974 )| 1 — const -
The CR structure determined by the source world-line is
related to a change of the CR structure on .# *:3 /37 ,—3d/
0w, — 7 L(3/dA), where L (A,7,m) is of degree (0, — 2) in
(74,7 ). Given the straight world-line, a null twistor is de-
fined at each point of # *, wg = idv 4, where v =v** 7.
and w{im, =idlv=iu. The source world-line gives
of =it (s) = ir'' (s\m,., w7, = iu=ir(s). Thus

u=Av=r1s)

gives implicitly s = f(4,7,7). Writing &7 in terms of 74 and
v! gives
ol =Avt — Lo 4 = 0f — Lv7*,
with
olv, =Lv* =74, =74 A,T.m)v,,
so that Lv*> = 7 4v,,. The claim is that

=9 _ 749 3)

7, A
is tangent to the sections of # * given by s constant. The
claim is substantiated by computing the normal one-form to
the sections s = const, ds, and acting on &4 with this form.
Sinced (Av) = d (r{s)) and ds = df (1,7,7), ds can be written as

A A
ds = %dﬂ + ('“’—:T-—) d7,

S

Applying 84 from (3) to ds gives
B
T Vg 74 v

iv"—r‘_LﬁAgziv‘—r‘ : .

t t t v t
That this is zero can be seen by contracting with 7, which
gives u — u and with v, which gives —74v,/t + (1% vg/
v?)u{v/t ). Also note that — (v, /v)6* =8 — L (3/9A).

If {s) is not real analytic but, say C*, the inverse, can-
onically exists, s=f(A,7,m) and is C* in A and
o*v, — L (A,7,7)v* is defined on real jets of # *,on PN, and
the zeros of this function specify the source world-line in
terms of null geodesics intersecting that world-line. The ze-
ros also specify a three-dimensional ruled surface in PN (of
dimension 5) ruled by complex manifolds each of which con-
sists of all null geodesics through a point of the source world-
line. Given the map PN—.# *, §* pulls back (mod homo-
geneity) to the CR vector field defined on this
three-dimensional submanifold of P¥ given by the intrinsic
CR structure of PN restricted to the submanifold.

Additionally, 8* =(3/07,)|;—cone and  so
S (Lv?) = (/37 4 )T A (5).4)|5 — conse = O and this is propor-
tional to the difference in the asymptotic shears of the two
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congruences given by s = const and by A = const. The quan-
tity — (v,./v)6* 'L + (v,/v)5"L is proportional to the differ-
ence in the twist of the two congruences and is given by
(—(™**'v, v,./v) + (1/v)) — c.c. and is, of course, zero for
the congruences involved.

Il. THE BUNDLE

The construction of the bundle representing the Lien-
ard-Wiechert fields proceeds in a fashion similar to the Cou-
lomb case. The two oppositely twisted bundles on # * and
on.# ~ are each pulled back to PN * and PN —, respectively,
and the identification between them is made on the comple-
ment of the ruled quadric Q defined by w“v, — Lv* =0
using

boa = (W, — Lv?)/ (@) 4
and compositions of the transition functions to define the
rest.

The radiation fields are obtained by the following con-
struction. The function L satisfies

5(Lv?) =0,
SO

ALY) _ poadllv?) _

I, dA

Now eL, = (Lv*)~°3(Lv*)°, where 8 = — (v,/v)(d/37,).
Then

eL, A% = (Lv’)~* —2{Lo?) d7r, =7 (5)

a7,

is the connection on .# * for the radiation field and gives the
same 1/r part of the field as y, when pulled back to &+
[conveniently expressed in (s,7,7) coordinates on .# *]. But
this connection results in a field with zero charge. This is
easily seen to be the case by examining the field on # , d7
and pulling it back to a 4 = const section which is a two-
sphere, then integrating the two-form over the two-sphere.
The relevant expression is

j d7_’=f Iy ANdr, =0
A = const (97TA:

by Stokes theorem and the fact that v is a globally defined
one-form. In addition,

¥ represents an element of

FIG. 2. Extent of .# data for the field
at a point P in Minkowski space.
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H L (PN,Z*) as it should in the Dolbeault representation. s = s, which contains both the advanced and the retarded
One might suspect that (5) gives only advanced infor- field information at p.

mation about the field at a point peM but in fact it gives the The generalization to higher-order multipoles proceeds

1/2 (advanced-retarded) field at this point. This can be seen  as in the Coubomb case and presents no difficulties.

by examining the space-time diagram in Fig. 2, where one

sees that the CP (1) integration that gives the field at p con-

tains the information on the source motion from s = s, to IT. N. Bailey and R. Penrose, Twistor News Lett. 14, 9, 16, 19, 22 {1982).
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Nontrivial zeros of the Wigner (3-) and Racah (6-/) coefficients.
l. Linear solutions

Simcha Brudno
Chicago College of Osteopathic Medicine, Chicago, Illinois 60615

(Received 17 July 1984; accepted for publication 4 October 1984)

Some formuals for nontrivial zeros in the 3- and 6-j symbols have been found.

I. INTRODUCTION

Current work in the fields of algebraic theory and quantum mechanics has underscored the importance of Racah—-
Wigner algebra and, thereby, of the 3-i and 6-f symbols. In the ninth volume of the Encyclopedia of Mathematics and Its
Applications, an entire topic' is devoted to the nontrivial zeros of these symbols. The problem of finding such zeros through a
non-numerical method is the subject of this paper.

Il. PROCEDURE
The 3-f symbol of Wigner? has been given explicitly by Racah.? As modified by Rotenberg,* this symbol has the form

(jl 2 )

my my; ms

=(—1)* —j,—m,((jl +j2 —JaJy —Jo + i —Jy +J2 + M + m Uy — ma)iJn + mo)J, — moljs + ma)(Jjs — ms)!)m
(i +i2+i+ 1)

(=1
;k!(jl +h—js—kWji—my— kWi +my— kN js—fo+my+kWj5—jy—ma+ k)
The 6-f symbol has also been explicitly defined by
I J2 j3]
=(— 1)) +a+hrRA (o j3)A (L1 73)A (1 Johs)A (Jalots)

X;( —Wh+n+h+L+1—kNk G+ —fs— kWM + L= — kW + L — b — k)

(1)

Xhh+h—bL—kM—jh—hL+is+bL+kM—f—L+i+5+k07, (2a)
where
— — _ 172
A (abc) = [ @+b—cMa—b+c)(—a+b+c) - (2b)
(@+b+c+1)

In analyzing the 3-j and 6-j coefficients we note the following: Opposed to the trivial zeros resulting from symmetry
conditions (3-f symbol) or violations of one or more triangle conditions (3-/ or 6-f symbols), there also exists another class of
zeros, called nontrivial zeros. The nontrivial zeros are zeros of the “polynomial part” of Wigner or Racah coefficients. A table
of presently known® nontrivial zeros is given in the ninth volume of the Encyclopedia of Mathematics, pp. 420-428. From
these tables it is possible to deduce some algebraical formulas, each of which can be used to calculate nontrivial zero solutions.

When the polynomial part of the Wigner and Racah coefficients has only two terms, i.e., when the summation is carried
out over k = 0,1, we call the resultant expression “linear.” Formulas defining the nontrivial zeros of this linear expression
have been obtained. For example, a pair of linear formulas for the 3-j coefficients are

(3n 2n+1.- n+ 1) G) and all their Regge symmetries. From (5) we obtain
3In—1 —2n 1—n [n +2 (14372 (3+ n)/2] (5
and n B+n/2 (@B+n2l’

and from (6), for n = 0, we calculate the first nontrivial zero

(2n +1 2n 2) 4
“) of the Racah coefficient,

n+l1 —n —=1)°

For the 6-f coefficients, the following linear formulas exist: W24 232).
n+2 n+1 2 In all these expressions for the Racah coefficients (3}
[ i n+l n+ l] , (3} (5'), at least two of the six angular momenta are equal. This
relationship, however, is not necessary. For example,
[3n/2+2 3n/24+2 n+2 ] 6 2 7 6
n+3 3 3n+1)72})° ©) [s.s 2.5 3.5] ’
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which is a specific example of
[ Ji 4J, -1 3, ] )
25, +3 Li+4 4, -4

where J = 2, has a nontrivial zero, but none of the angular
momenta are equal.

A more general parametrical formula for the linear 3/
coefficients is given by

Jy=alb+ c)/2, (8a)
J,=d(b+c)/2, (8b)
Ji=b+ca+d)/2—1, (8c)
m, =alc —b)/2, (8d)
m,=d(c—b)/2, (8e)
where the parameters a=1,..,0, b=1,..,0,

c= l, e 900, andd = 1,..,0.
A more general parametrical formula for the linear 6~
coefficients is given by

J, = (def + adg + abc)/2 — 4, (9a)
J, = (abc + ghi + beh )/2 — }, (9b)
J; = (def + adg + ghi + beh)/2 — 1, (9¢)
L, = (ghi + adg)/2, (9d)
L, = (def+ beh)/2, {9e)
L, = (abc + adg + beh )/2 — }, (99)
where the condition
abc + def + ghi + adg + beh = cfi (10)

must be satisfied and where g, b, ¢, d, ¢, £, g, and h go from
1,..,0.

The following are two examples. In the first example,
fora=b=d=e=g=h=1andc=f=i=2, the small-
est case arising from (9) and (10} is obtained:

2 2 2
{1.5 1.5 1.5]=°‘

In the second example, fora=c=d=h=1 and b =4,
e=3,f=6,g=2,andi=09,

{11.5 165 24 ]—o
10 15 85l

All the known nontrivial linear zeros given in both ta-
bles previously cited>® are obtained by this method; proof
that these equations constitute the total solution to the linear
nontrivial-zero problem, however, has yet to be demonstrat-
ed.
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APPENDIX: DERIVATION OF SOLUTION SETS (8) AND
9)

For the first two terms in the summation of (1) {the
polynomial part) to sum to 0, the following sufficient condi-
tion exists:

F={(jy+J2—jsljy — m)lj2 + mj)

=(—l2+m+1)js—j1—m+1),
where F can be decomposed into four multiplicands,

F=abcd.

In order that the summation of (1) consist of only the
first two terms (k = 0,1), one of the first three multiplicands
of (A1) must be equal to (1). Without loss of generality,

h+i—j=1 (A2a)

Taking one particular partition of F, namely, (ad )(cd ),

(A1)

j1—m, =ab, (A2b)
Jo+my=cd, (A2c)
Js—h+m+1=ac, (A2d)
Jjs—j1i—my+1=bd. (A2e)

The five equations of (A2), with the determinant not
equal to zero, yield solution set (8) having 72 symmetries, i.e.,
72 nontrivial zeros. The other two remaining partitions,
namely (ac)(bd ) and (ad )(bc), yield similar solution sets, with
each set, again, having 72 symmetries. The combination of
these three solution sets yields 216 symmetries, i.e., 216 non-
trivial zeros of the 3-j coefficients, all of these derived from a
single a, b, ¢, and d. It must be remembered, however, that
each F can be decomposed into abcd in many ways and that
for each abcd there are 216 nontrivial zeros, all of which may
be different.

Solution sets for the 6-j coefficients, e.g., solution set (9),
may be derived using an analogous method.
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We obtain a high-frequency asymptotic expansion of Newton’s Marchenko equation for three-
dimensional inverse scattering. We find that the inhomogeneous term contains the same high-
frequency information as does the Born approximation. We show that recovery of the potential
via Newton’s Marchenko equation plus the “miracle” depends on low-frequency information.

I. INTRODUCTION

The exact inverse problem for Schrédinger potential
scattering in three dimensions has a simple exact solution
{even in the presence of bound states) based on the Born
approximation.' This inversion method uses high-frequency
scattering data in the near-forward direction. Considerable
effort has been expanded in developing other exact inverse
methods which do not depend exclusively on high-frequency
data. For example, Newton has recently introduced a meth-
od'-® which generalizes the one-dimensional Marchenko
equation. Newton’s Marchenko equation is derived in a
way which depengds on data at all frequencies, in contrast to
the inverse Born approximation, which depends on high-
frequency data alone. It is quite natural to ask about the
relationship between the two methods. To what extent does
Newton’s Marchenko method rely on high-frequency data?
To answer this question, we have undertaken an asymptotic
high-frequency analysis of Newton’s Marchenko integral
equation. It will be shown that all asymptotic high-frequen-
cy information is contained in the inhomogeneous term of
the Newton-Marchenko integral equation. This informa-
tion is sufficient® to reconstruct the potential exactly by
means of the Radon transform.

The Newton-Marchenko method, however, does not
involve the Radon transform. Rather, the wave field every-
where is first recovered from the scattered amplitude using
the Newton—-Marchenko equation. Finally, the potential is
extracted from the high-frequency asymptotics of the wave
field using an equation dubbed the “miracle” by Newton. As
will be shown, the method just described relies essentially on
low- as well as high-frequency components of the scattering
amplitude. References 4 and S provide @ physical discussion
of the “miracle.” Note that throughout this paper it is as-
sumed that the scattering amplitudes considered were gener-
ated from some local potential. That is, the characterization
problem is not considered.

The structure of this paper is as follows. In Sec. II we
introduce our notation and Newton’s Marchenko equation
in the frequency and time domains. In Sec. III we complete
an asymptotic high-frequency analysis. The determination
of the potential from the inhomogeneous term alone via the
Radon transform is discussed. Next, we show that Newton’s
method of recovering the potential relies on the low-frequen-
cy content of the data. The final section qualitatively dis-
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cusses the physical meaning of the inhomogeneous term in
the far-field and weak scattering limits. A theorem and
lemma on the high-frequency asymptotic are proven in the
Appendix.

il. REVIEW OF NEWTON’S MARCHENKO METHOD

This section states the problem, introduces our nota-
tion, and reviews Newton’s approach. Both frequency do-
main results and a time domain interpretation are treated.

Consider the time-independent Schrédinger equation

— AYik,x) + V (x)pik,x) = k 2Y(k,x). (2.1)

Here the coordinate x is a vector in R >, the potential ¥ (x) is
real valued and decays at infinity, and k is a scalar. We as-
sume that ¥ induces no bound states. Scattering solutions
are defined by the Lippman-Schwinger equation

¥ (k,8,x) = expliké » x) — j (4rr|x — y|)~*

Xexp( + ik |x — y|)V (v)¢ik,8,y)d *y. (2.2)

Here the incident wave is a plane wave in direction &, where &
is a point on the unit sphere. The incoming and outgoing
solution ¥~ and ¥ are related not only by the relation

P (—k, —&x) =9 (k,éx), (2.3)
but also by’
¢+(kré’x) - ¢“(k,é,x)

= —ik(8m)"! f 2 f exp( — k&' - )V (3)
X¢*(k2ydy §~(k&x)de'. (2.4)

Here we have used Eqgs. (10.112) and (10.114) of Ref. 1.
Recall that the scattering amplitude is given by

A k&8 = — (dm)~! f exp( — k& « x)V(x)
XU+ (k2. x)dx. (2.5)
In what follows, we will use the notation ¢ = ¥ and
B (k.é,x) = {k,e,x) exp( — iké - x). (2.6)

The following high-energy asymptotic expansion of B is
known® for 0 < € <} and for k large:

Blkex) =1+ (ik)"'B(2,x) + glk.2,x), (2.7)
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where

Bex)=1 J:o V(x — ré)dr,

|—1—e_

and where g} <clk

This implies that once £ is known, the potential can be
recovered by the following procedure. We first isolate the
k ~! coefficient:

(2)~! J Vix—réJdr= ‘}im k[Bkex)—1]. (2.8)
(1] — 00
The potential can be recovered from (2.8) by noting that
e VVix—ré)= _9 Vix — ré).
or

When we apply 2ié * V to the left side of (2.8), evaluation of
the integral at the lower limit gives us the potential. We have
thus obtained the formula

Vix)=2i-V lim k [B(k2x)— 1]. (2.9)

For future reference let us write some of the above equa-
tions in the time domain.* We use the Fourier transform

u(t,2,x) = (27)" f " expl— ikt ke x)dk.  (2.10)

The Lippmann-Schwinger equation (2.2) implies
¢(k9é)x) = ¢*( - k,é,X),
where * denotes complex conjugation. The time-domain

wave field u is therefore real. If ¢ satisfies (2.2}, then u de-
fined by (2.10) satisfies*

a 2
4 - ——— Vx]u t,ex)=0.
|a- 2 - viw|uten
The Fourier transform of 8 [Eq. (2.6)] is u(t + &+ x,2,x).
Fourier transformation of the asymptotic expansion (2.7) is
then

ult + &+ x,6,x) = 8(t) — 1B (&,x) sgn(t)
+ (smoother terms).

(2.11)

(2.12)

However, we know that £ is well-behaved for small &, and is
analytic in the upper half k plane. This low-frequency behav-
ior allows us to deduce® a more accurate version of (2.12),
namely

ult +8-x,2%)=6(t) —B@x) H(t)+h(tex), (2.13)

where His the Heaviside function [H (¢t ) = 1 for ¢ positiveand
zero for ¢ negative] and 4 is a continuous function that van-
ishes for 1<0. Equations (2.12) and (2.13) are not contradic-
tory; Eq. (2.13) merely contains more information about the
“smoother terms” of (2.12).

From (2.13) it is evident that « satisfied the causality
condition

u(t,é,x) =0fort<é-x. (2.14)
We shall write
7(t,é,x) = u(t + & » x,é,x) — §(t ). (2.15)

We now return to the frequency domain for a moment
to derive the Newton—-Marchenko equation of inverse scat-
tering.> We multiply (2.4) by exp( — iké « x) and use (2.3) in
(2.4):
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ﬁ(k,é,x) - B( —~k— é9x)
= — k(zm')—'f A (k&' 2) explik (&' — &)+ x]de’
SZ

— k(Q@mi)! f A (k,&,2) explik (&' — &)+ x)

X [B(— k, — &,x) — 1]d". (2.16)

We shall refer to the first and second terms on the right side
of (2.16) as terms I and II, respectively. The Fourier trans-
form (in £ } of Eq. (2.16) is the Newton—-Marchenko equation

n(t,e,x) — p( — t, — &,x)

= J. M (e x)de
s!

+ f Mt —see xm( —s, — &, x)deé' ds,
—w JS?

(2.17)

where
M (@,8,&' x) = (27) 2 f exp[ — ik (@ + (& — &)+ x)}

X ikA (k.2 2\dk, (2.18)

and 7, which was defined by (2.15), is the Fourier transform
of B — 1. We consider ¢> 0 only in (2.17), and use causality
(2.14) to eliminate 9( — ¢, — &,x) on the left-hand side.

Equation (2.17) can be used to solve the inverse scatter-
ing problem as follows. One assumes that the scattering am-
plitude 4 is given. One then solves (2.17) or (2.16) for B, and
recovers the potential V' from Eq. (2.9).

ill. ASYMPTOTIC HIGH-FREQUENCY POTENTIAL
RECONSTRUCTION

In this section we analyze the large k limit of Newton’s
reconstruction method. A proof of the basic result is con-
tained in the appendix.

Clearly Eq. (2.9) recovers the potential from the large &
limit of the reconstructed field 8. The question then arises: is
it really necessary to solve (2.16) or (2.17) to obtain this high-
energy information? Perhaps the desired high-energy infor-
mation can be extracted more easily. In particular, since
B — 1 decays like £ ~!, it might be suspected that term II of
(2.16) decays faster at infinity than term I, and that therefore
the high-energy information is contained entirely in term I.
In this case, it might not be necessary to solve the integral
equation (2.16).

In the Appendix, we show that term II of (2.16) does
indeed decay faster than k ~, so that all kK ~! terms on the
right side of (2.16) do indeed arise from term I. Moreover, the
nth term of the Neumann expansion of (2.16) decays at infin-
ity at least as fast as k —" ~ © for arbitrarily small positive €.
The k ~! coefficient, however, is not (2i)~! §& V(x — ré)dr,
but is rather (2/)~' f= _ ¥(x — ré)dr. [This follows from
(2.7)]- Thus, for each x, term I determines the integral of ¥ (x)
over a line which passes through x and is parallel to the
direction of incidence &. For a single direction of incidence
these line integrals are not sufficient to determine the poten-
tial. However, if we vary the direction of incidence over 90°
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in a plane, we can build from this set of line integrals a set of
“plane integrals.” In other words, we can determine the Ra-
don transform of ¥ (x). (For a discussion of Radon’s trans-
form, see Ref. 6.) We can then invert the Radon transform to
recover ¥ (x). Details of the reconstruction method are given
in a near-field context in Ref. 4. This reconstruction method
is similar to the inversion method using the Born approxima-
tion.!

The analysis in the appendix gives insight into the New-
ton—Marchenko equation, which is the Fourier transform of
(2.16). The high energies alone do indeed contain informa-
tion (2.12) about the jump in the solution u across the wave
front. However, in the Marchenko equation, the jumps cor-
responding to both the “outgoing solution” 8 (k,8,x) and to
the “incoming solution” B ( — k, — &,x) appear. They occur
in such a way that when only high energy information is
used, the two jumps add together: the left side of (2.17) can be
expanded using (2.12) as

1 ( -
— T,[; V(x — ré)dr sgn(t)

+ %f V(x + ré)dr sgn{ — t) + (smoother terms)
0

= — % J. V(x — ré)dr sgn(t) + (smoother terms).
- (3.1)

This shows that only line integrals of the potential can be

recovered from the first term of the high energy expansion.
When low energies are taken into account, we can use

expansion (2.13). In this case, the left side of (2.17) is

1 (" R 1 (" R
—--—2—J; V(x—re)drH(t)+7J; Vix+re)JH(—1t)

+ (smoother terms). (3.2)

We see that the limit #—0" of (3.2) allows us to recover the
function — 15V (x — ré)dr, from which ¥ can be recon-
structed via

Vix)= —2e-V f Vix — ré)dr. (3.3)

0

[Equation (3.3) is equivalent to (2.9).] Thus, the low-frequen-
cy content of the reconstructed wave field allows us to deter-
mine how much of the total jump discontinuity should be
apportioned to the incoming wave and how much to the
outgoing wave.

IV. POSSIBLE EXTENSIONS

We have shown that the inhomogeneous term in New-
ton’s Marchenko equation (2.17) dominates at high frequen-
cies. Therefore, if the high-frequency data are good, this
term can be used (following the Born approximation meth-
od) to invert exactly for the potential. One is consequently
led to wonder whether the inhomogeneous term might
dominate in other limits as well. Intuitively, four such limits
come to mind. First, if the potential is sufficiently weak in
some appropriate sense, both the wave field and the scatter-
ing amplitude 4 will be small, and the higher-order terms of
{2.17) will be unimportant. Second, the inhomogeneous term
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should dominate in the far-field limit; this is because the
scattered field (which enters into higher-order terms) decays
like |x|~" in the far field. Third, the first term of (2.17) may
be useful in determining the high-frequency decay of the
higher-order terms. Finally, the first term of (2.17) may be
useful in determining the potential near the boundaries of its
support; this is because of the weakness of the scattered wave
(and hence of the higher-order terms) during the time the
probing plane wave has barely penetrated the region of inter-
est.

ACKNOWLEDGMENTS

We would like to thank Joseph Keller for reading the
manuscript and making a number of helpful comments.

This work was supported in part by Office of Naval
Research Contract No. N0014-83-K0038. This work was
also supported by the National Science Foundation, the
Army Research Office, and the Air Force Office of Scientific
Research.

APPENDIX: HIGH-ENERGY ANALYSIS

Lemma: Suppose that ¥ is bounded and integrable, and
suppose that for some x,, the three functions |V |,|VV |, and
|4V (x)| are all bounded by F (|x — x,]), where Fis a positive
function satisfying ($F(t) dt < 0. Let 0<a<2. Then for k
sufficiently large, we have the following estimate for the
scattering amplitude:

|4 (k2" 2)|<elk [& — &'])~°. (A1)
Proof: We write
Ake8)= — (41r)“f exp[ik (& — &) - x]

X V{x)B (k.e,x)dx, (A2)

where S is defined by (2.6). We multiply (A2) by ik (é — &')and
then integrate by parts, differentiating V5 and integrating
the exponential. The resulting integral is bounded because
VB is bounded.® Therefore, (A1) holds for a = 1. We then
integrate by parts once again, and use boundedness of 48.
Equation (A1) therefore holds for & = 2. Boundedness of 4
then allows us to interpolate to obtain (Al) for
0<a<2. Q.E.D.

Theorem: Suppose that } satisfies the same hypotheses
as above, and suppose that (2.16) holds. Then term II of
(2.16)is O(k~*), where l <ca < 2.

Progf: Equation (2.7) implies that |B({—k, —&',x)
— 1]<ck ~!for large k; we use this fact together with (A1) in
term II of (2.16), obtaining

II<cj (k|e-&’|)—*de'. (A3)

SZ

We write (A3) in polar coordinates with the z axis along &'
and with polar angle 8 and azimuthal angle ¢. The resulting
integral is independent of ¢; accordingly, we carry out the ¢
integration. We then split the polar angle integration into
pieces corresponding to integration over O<k ~' and
0> k ', respectively. We obtain two terms, which we label
I1, and II,, respectively.

In II, we use @ = 0, which gives us
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k1
II,<cJ- sin 8 df<c k 2.

(V]
InII, weuse 1 <a <2:

IL,<ck ‘“f

k1

(2 —2cos §)~**sin 6 d6

<ck —°[4'=92 (2 —2cosk ") 2] = O(k ~°).
QE.D.

Remark I: 1t follows from (2.7) that term I of (2.16) is

(2ik )~ r V(x — ré)dr + olk ).

At high frequencies, therefore, term I dominates term
II.
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Remark 2: The proof of the above theorem depends
only on estimate (A 1); this shows that application of the inte-
gral operator appearing in term II gives rise to an asymptotic
factor of £~ %, where 1 <a < 2.
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Scattering theory for extended elementary particles in stochastic phase space is studied. It is
shown that the interacting Hamiltonian is equivalent to an effective potential in configuration
representation. Asymptotic completeness can be studied by investigating the behavior of the
effective potential. The sharp-point limit of the extension of these particles is studied. It is also
shown that scattering theory can also be studied directly in stochastic phase space in the optimal

case.

I. INTRODUCTION

The mathematically rigorous approach to nonrelativis-
tic scattering theory was initiated in the fifties, and by now it
represents an extensively developed mathematical frame-
work. This framework is, however, primarily applicable to
pointlike particles. On the other hand, we know that all ha-
drons (and possibly also the leptons) are extended. We shall
see that the theory of stochastic phase space will enable us to
adjust the basic concepts of conventional scattering theory
to the case of extended particles.

Let us recall that conventional nonrelativistic scatter-
ing theory is based on the wave operators

02, = s-lim exp(iHt Jexp( — iHyt), (1.1a)
€~

H=H,+V, Hy=P/2m, V=V(X) (1.1b)

(X ) =x'P(x), (P) (k) =k PK), (1.1c)

which are acting on the Hilbert space of square integrable
functions of the relative position of the interacting particles.
It turns out’ that £2  are defined everywhere and satisfy

(EH(B)2 . ¢)(r) =lim. L "|(B)¢Li’(r){b(k)dk, (1.2)

A k) =k/2m, (1.3)
under some technical restrictions on the potential. The dis-

torted plane waves ¢ \*) satisfy the Lippmann-Schwinger
equation

2
#1900 = dulr) + [ G55 (rs K Ve e
m
(1.4)
where the plane waves and the advanced and retarded free
Green'’s functions are, respectively, given by
i (r) = 27) 7> exp(ikr) , (1.5)
k2

G(i’(r,r';—-—)=———m—ex +ilk| [r—1']).
(e ) = - et )

(1.6)
The operators £2  are unitary operators with initial domain

L }(R?) and final domain E # (S ¥)L ?(R3), and therefore the S
operator

S=0*0, (1.7)
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is unitary.

In adapting this formalism to the scattering of extended
particles, we shall show that the potential scattering problem
in stochastic phase spaces for such particles can be reduced
to a potential scattering problem in the configuration repre-
sentation of pointlike particles interacting via a new poten-
tial and we shall subsequently state sufficient conditions for
having7, =L*R’andR, = E®(S¥L*R’. Weshall
also indicate how the three-body problem can be solved.
However, while adapting the configuration space formalism
to stochastic phase spaces, we shall see that the stochastic
center of mass motion turns out not to be separable from the
stochastic relative motion. Consequently, we shall have to
prove that a unitary mapping between the stochastic phase-
space representation and the momentum representation
leads us to equations which are the formal analogs of the
Lippmann-Schwinger equation. We will find the solutions
of these modified Lippmann-Schwinger equations by the

* Fredholm method, and prove that thereby we get an analog

of (1.2). We shall also show that all the basic quantities for
scattering theory in stochastic phase space merge into their
conventional counterparts in the sharp-point limit, and shall
derive a 7-matrix formula for the scattering of extended par-
ticles.

Il. STOCHASTIC QUANTUM MECHANICS

Stochastic quantum mechanics is a recently devel-
oped>~® framework mathematically related on the Menger—
Wald®’ concept of statistical metric spaces, and physically
based on the idea of stochastic value for observables, which
can be traced to the work of Born.?? In this section we shall
review those basic concepts and results required for the for-
mulation of the potential scattering of extended particles.

The Galilei group G,'°

G = {(b,a,V,R ):beR, a,veR?, ReSO(3)} , (2.1)
is a transformation group which acts on

I'eR = {(q,p,? ):q,peR?, R} (2.2)
as follows:
49 =Rq+vi+a,
p—p ' =Rp+mv, (2.3)
t—t'=t+b.
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We define*

Lyr) = [¢(q,p): [ tv/:(q,p)|2dqdp<oo], 2.4)
with inner product
() = fr YHapislapida dp . (2.5)

Let us consider the following reducible unitary ray represen-
tation:

(U(b,a,v,R }¥)q.p:t)
=exp[% [ —mTvz(t—b)+mv-(q—a)”

XWR “[q—v{t—b)—a]l,R "Yp—mv)t—b).
(2.6)
The operators X /, P/,

Xizg+ind, pi=—#2, 2.7)
dp’ dq’
which are multiples of the infinitesimal generator of velocity
boosts and space translation, respectively,
U (0,0,v,] ) = exp((i/f)ymv « X) ,
(2.8)
U(0,a,0,])=exp(—ia-P/#),

realize a reducible representation of the canonical commuta-
tion relations

[Xj’Pk] = iﬁajk »

[X/X*¥)=[P/,P*1=0, jk=123. 2.9)

The irreducible subspaces 77, of physical significance are
those possessing a rotationally invariant resolution gener-
ator £,

£l@p)=£(R 'R 7'p), VReSO(3), (2.10a)

1l =h—3"2, (2.10b)
i.e., an element £ such that

ap) = (5,5 |¥) (2.11a)
where

£up = UOap/mI) . (2.11b)

The resolution generator £ and the subspace 7, define
each other unambiguously. It is called resolution generator
because we have the resolution of identity on 7,

f |§¢,p>(§q.p |dq dp= Pé‘ s

where P, denotes the orthogonal projector of L (I" ) onto 7 £

The spaces 7, are of physical importance because they
give rise to unitary mappings between 7, and the configura-
tion representation L %(R*). These mappings can be written in
the form

(¢ ¥)(x) = Lim, fg (x)¥{apida dp,

(2.12)

(2.13)
(0 'Pap) = fg.::, (x){x)dx,

where £, , (x} is the corresponding configuration space repre-
sentative of £,
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San(X) = (U(0,q,p/m,I )5 )(x)

= exp((i/fjp- (x —q))5 (x — q). (2.14)
The variables q and p in the stochastic phase space are inter-
preted as stochastic variables, i.e., measured with imperfect-
ly accurate instruments of confidence functions®

XJ4)=h3EQ —q)?,

L) =rE@ —p)*.
It turns out? that these instruments can be taken to employ
test particles which are extended elementary particles of
proper wave functions £. The stochastic phase space is the set
of “‘extended” stochastic points

(2.15)

P={@5a=(ax.) b =0f,), apeR} . (216)
On account of (2.15) we have the following relations:
(Ax,)Ak)>H/2, j=123, (2.17)
for the spreads of these stochastic points:
172
@x)= ([t —aixaboax) ",
(2.18)

/2

k)= ([ te, a2, k)

These relations show that we are not violating the uncertain-
ty principle. In the optimal case, i.e., when relation (2.17) is
an equality, the only possible choices for the resolution gen-
erators depend on a positive parameter / and are given by

ENx) = (m1*h )34 exp( — x*/21?). (2.19)
In fact, in the case where the resolution generator corre-
sponds to optimal localization in phase space, the wave func-
tion 4 3/2£ ) coincides with the proper wave functions intro-

duced by Landé in 1939"' for the description of extended
particles.

lil. THE SCATTERING PROBLEM

Let us assume that we are dealing with a system of two
particles whose stochastic position and momentum is mea-
sured by means of test particles of proper wave functions £ ?,
i = 1,2. Then probability amplitudes for results of such mea-
surements provide a representation of the states of the sys-
tem and are elements of the Hilbert space

LIy,) = (YeL *R7)Y(61.62) = (€ L) e £ 219},

58 = U(0,q;,p;/m;, I )§ @,

C=(ap), i=12,
where m; denotes the mass of particles i, i = 1,2, and where
q;,p; represent, respectively, the mean stochastic position
and momentum of particle i, /= 1,2. The Hilbert space
L*(I'y,) is a closed subspace of L %(I"), I = R*%.

The scattering problem for such a system has two
aspects: In the first instance, the system consists of pointlike
particles, in which case the potential energy operator acting
on L }(I',,) is given by

H =VX -X), X;=gq + v, , j=12, (3.2)

and the kinetic energy operator is given by

(3.1)
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Hy=P/2m,+ Pi/2m,, P,= —i#v,, j=12.
(3.3)

In that case there is a unitary transformation [cf. (3.7)] which
takes us from present stochastic phase-space representation
in L %(RS), where we recover the standard potential scattering
theory for two pointlike particles.

In the second instance the system consists of extended
particles. However, if these extended particles consist in turn
of constituents bound together by potential forces, then we
are dealing with a multichannel scattering problem in dis-
guise. On the other hand, if we are dealing with extended
elementary particles, then their extension might be of a fun-
damental nature, i.e., due to their possessing proper wave
functions. In that case we are faced with a type of scattering
problem that has not yet been investigated in literature,. It is
with the mathematical theory of this problem that we shall
concern ourselves in this paper.

In the case of two extended elementary particles of
proper wave functions £ %, i = 1,2, the kinetic energy opera-
tor is still given by (3.3), but the potential energy operator is
given by

H, =P{I",)V(Q, — QJP(Iy,), (3.4)
where
[V(Q, — Q)¥1(61,6) =V (g, — L (SH YN (3.5)

and P(I'},) is the projection operator from L") onto
L*Iyy):

(PTG usta) = j d6d G (€ DIEUNERIEDINELL)
(3.6)

Naturally, the above problem can be formulated also in
configuration representation. Indeed the unitary mapping
from L*I},) onto the configuration representation space
L *R9)is given by

(@d)xyx,) = Lim. f a6 dL L Qs

and it has an inverse of the form

(053 6wt = f dx, dx, £ (x,)E )R, x,)

(3.8)

Therefore, assuming that the potential energy operator H, is
given by (3.4)}-(3.6) where the potential V is locally square
integrable and bounded at infinity then, by a direct applica-
tion of the inversion theorem, we see that the potential ener-
gy operator w ,H,w; ! in the configuration representation is
given by the operator Vg

Ve = Ve X, — X5),  (Xith){x,0X,) = x;9(x,,%,) ,

(3.9)
Viglx) = j du, dag V(e — @ + Xy (sl “(a)

Therefore, in the configuration representation the potential
energy operator acts like an ordinary potential (which we
shall call the effective potential) which depends only on the
relative position of the particles which act on extended parti-
cles and which approaches the original potential ¥ (x), in the
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sharp-point limit (corresponding to pointlike particles), i.e.,
when y “—§,i = 1,2, at all points where the potential ¥ (x)is
continuous.

The Schrodinger operator

H="P/2m, + P}/2m, + P(',)V (Q, — Q,)P(I'},)
(3.10)

is self-adjoint if the potential ¥ (q) is locally square integrable
and bounded at infinity. Indeed, in that case the effective
potential V4 is locally square integrable and bounded at
infinity.'? It has also been shown in this last reference that
the Schrddinger operator is then essentially self-adjoint on
the domain

Dy = {YeL M) 9h61.6) = PL6ut

2 2 2 2
XexP(_q_‘_&_p_‘__pi)] . (3.11)
2a 2a 26 2b

obtained as P varies over all polynomials in the Cartesian
components of §, and §,.

In the scattering theory of the system described above,
two problems are of fundamental importance: the existence
of strong asymptotic states and asymptotic completeness of
the quantum mechanical theory. Sufficient conditions are
known for the scattering of pointlike particles in order to
have those two above problems automatically solved. The
conditions are imposed on the potential and are the follow-
ing': ¥V is locally square integrable, it satisfies

Viy=0(r|~?*9), r-wn, >0, (3.12)
and is of Rollnik class, i.e.,
def ’

IViz = f M-(rz—)ldrdr’< ® . (3.13)
R |r—r'|

Therefore, the above problems reduce to finding sufficient
conditions on the potential ¥ and the confidence functions
x " and y ® under which the effective potential satisfies the
above restrictions.

It might be possible a priori that a long-range potential
gives rise to a short-range effective potential. However, a
counterexample has been built'? for the Coulomb potential
V(r)=1/|r} in the optimal case (2.19) where the effective
potential is then

x % %I/Z
V() = (27’_)—1/2 jﬂl 77 +13) exp( _yZ)dy’
|x| — Vx| /03 4 12 2
(3.14)

where /, and /, are the parameters / in (2.19) for particle
number 1 and particle number 2, respectively. We note that
in the sharp-point limit /,,/,—0, the potential (3.14) indeed
approaches 1/(x|, i.e., the original Coulomb potential. On
the other hand, the effective potential (3.14) is not of short
range since the function

=" en{ -2)s

does not decrease at infinity as |x| ~ € for some € > 0.
Sufficient conditions for asymptotic completeness are
stated in the following theorem.?

(3.15)
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Theorem 3.1: Assume that the potential ¥ and the con-
fidence functions y ¥, i = 1,2, are locally square integrable,
that V is uniformly continuous, that

by )l = o(Ir| ™), (3.16)
V) =0(r|~%, (3.17)
and that
f day“(q—ajy%q' —a) (3.18)
lal <R

are almost everywhere uniformly bounded in q and q’ for any
R >0, i=1,2. Then the initial domains M, of the Moller
wave operators {2, are L *(I';,), the final domains R , of
£, arebothidentical to E #(S ¥)L %(I";,), and the S operator
is unitary on M,,; furthermore, if ¥(r,R) = ¥, (r),(R), where

r=r,—r,, R=(myr, +mypr)/(m +m,, (3.19)

then
(@, YR = (l.i.m. f B0 (ki k):ﬁz(m , (320

where ¥ and ¢ are the configuration and momentum repre-
sentatives of yeL %(I',,) specified explicitly by (2.13) for the
configuration representation, and where ¢ \* are, respec-
tively, the outgoing and incoming distorted plane waves sa-
tisfying (1.4).

We can readily check that the hypothesis of the above
theorem on the confidence functions are satisfied in the opti-
mal case.

We see that we cannot readily conclude that we have
asymptotic completeness for any extended particles interact-
ing via short-range potentials. There might be, however, a
way out of this impass. Indeed Faddeev'? when investigating
the three-body scattering of pointlike particles interacting by
pair showed that under some restrictions on the potentials,
the theory is asymptotically complete. This theory has a two-
body counterpart, and the conditions on the potential are the
following:

(1) |7 k)<c(l + k)~ ¢,
_ _ (3.21)
(2) [V (k) — V(k +h)|<c(l + |k|)~'~°|h|*, |h|<I.

Using (3.9) it is straightforward to prove the following
theorem.

Theorem 3.2: Assume that the Fourier transform ¥ of
the local potential V satisfies conditions (3.21), and that i ¥,
i = 1,2 are bounded and satisfy

[#(k) — ¥"(k + h)| <4 ‘|h|*. (3.22)
Then the quantum mechanical theory with the interaction
Hamiltonian H, in (3.4) is asymptotically complete.

Let us note that the conditions imposed on the confi-
dence functions in the above theorem are satisfied in the
optimal case.

The three-body problem can be solved in the same man-
ner as in Theorem 3.2 if the particles are interacting by pairs
if the conditions of Theorem 3.2 are satisfied with
My = U, = pt4. That last restriction is in particular satisfied
for the optimal case.

The conditions imposed in Theorem 3.2 are also rather
restrictive since the potential must be bounded. Therefore,
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we will be looking for a more general method (in the optimal
case) to solve the scattering problem for extended particles
interacting via a potential. We shall see that the framework
introduced in the next section is adequate for such a purpose,
and that it has the advantage of expressing the states 2, ¢ in
terms of the stochastic variables q,, p;, @, p,.

V. EIGENFUNCTION EXPANSIONS IN STOCHASTIC
PHASE-SPACE VARIABLES

In this section, we start with the conjecture that in the
optimal case the wave operators {2, , specified by (1.1a),
(3.3),(3.4), (3.5), and (3.6) satisfy an asymptotic completeness
condition analogous to the one in conventional scattering
theory [cf. (1.2)] for pointlike particles, but expressed in
terms of stochastic variables. We shall then show that under
those circumstances an equation analogous to the Lipp-
mann-Schwinger equation (1.4) is satisfied. We shall subse-
quently study the sharp-point limit of that theory and derive
a T-matrix formula. The Lippman-Schwinger equation will
be solved in the next section, so that we will be able to prove
that the asymptotic completeness is indeed satisfied for the
solutions of the aforementioned Lippmann-Schwinger
equation.

By (2.13) we have the following unitary mapping
between the momentum representation and the stochastic
phase-space representation for a system of two particles:

Pk ky) = Lim, f 48, d % da (CrCltlEts), (1)

&G = J dk, dk; dy ., 60,50k k) , 4.2)
B (608 = E Lk )E B, (4.3)
Therefore, we can consider that we have an expansion analo-
gous to the eigenfunction expansion in conventional scatter-
ing theory, where the role of the plane waves (1.5) is taken
over by the phase-space waves (4.3).

In conventional scattering theory it is possible to sepa-
rate the center of mass motion from the relative motion, and
therefore work in L *(R?) instead of L *(RS). However, this
procedure is not possible in stochastic phase space. Indeed,
upon performing the change of variables

9=q,—q;, Q=(mq, + m,q)/(m,+m,), (4.4a)

P = (m;p, — m,p;)/(m, +my), P=p,+p,, (4.4b)
we see that the resolution waves are given by

Bl =h ’1”;‘2 ) e(Lka+Lx-Q)

Xexp ( - (i + -I—i—)(k -
27 2P

myl? + m3l3

 2m, + mHP

—ml} +m)l}
(m, + mo)#

(K — Py’

k—p)-(K— P)) » (4.5)

k= mk, — mk,

K=k1+k2.
m;+m,

(4.6)
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In order to derive an equation equivalent to the Lipp-
mann-Schwinger equation we have to introduce the distort-

ed phase-space waves ¢ }‘1 satisfying (as will be proven lat-
er)
(E¥(B)2 . Y6052
= [, S GGkl d, @)
where B is any Borel set in R, and where
A (kpky) =ki/2m, + K2 /2m, . (4.8)

It will turn out that distorted phase-space waves of the form

k, kz(gl’GZ) = exp(iK Q)¢ 5AQ,D1P2) (4.9)
will meet our needs, the dependence in Q being explicitly
given by the left factor in the right-hand side of (4.9) when we
use the variables (4.4a) and (4.6).

In order to prove that the functions ¢ {4/ satisfy an
equation of the Lippmann~Schwinger type, we ﬁrst have to
introduce the counterpart of the free Green’s function in
terms of {eC,

Gox(2,01,02:4',P1 D356 )

= fa{ )

X Pxx (0P1:02)6 % (D7 .D3) » (4.10)
where m is the reduced mass
m=mm,/(m, +m,}. 4.11)

The above function is defined whenever 0 < arg § < 2.
The function (4.10) is computed explicitly in the Appen-
dix and the result is

e
Gox (@P1,P24',Pi P356)
—- I:I;I;m [ (12 2) 2 ,2
D R A
y Lim —limy (p-(K—P)+p'-(K—P'))—————" 757 (¢ — PP+ (K — )~ 2mge
my +m; 2(m, + my)*

X [exp(iJﬂ%+ﬁ§+ﬁ§ szc)[ed(— Lk 4’2?“33 —iJZm;a)—l]
a

+exp( — /Bt +B% + B85 V2mE )[ed‘(— VBi _*-25_2+B§ +i\/2m§a)+ 1” ,
a

where
a=I{ +1%, (4.13a)
B=a—a —i{(i ~ 2o +2)
Pm, + 12
_m+ Lmy) g b p')] . (4.13b)
m; +m;

We are now ready to derive the Lippmann—Schwinger
equation in the context of the following theorem.

Theorem 4.1: Let V'(q) be locally square integrable and
such that ¥ (q) = O(|q|~2). Suppose that ¢’ exists for
(k,K)eR6\S'$, (S$, being a set of Lebesgue measure zero) as a
function of q, p,, p,, and that

f dp, dp,) ). (@b

is uniformly bounded in q when Kk, and k; are restricted to a
compact set. Then the functions ¢ &), (k,K)&S §,, satisfy the
Lippmann-Schwinger equation

(4.14)

a

¢ (‘l,Pn,Dz)

= Gy x(Q,D1,P2) + j dq' dp; dp;

X G!JK (q’pl’l’z,q ’pl ypz ’zm) V( )& (Kd,:k)(q,’p; ’pé) ’
(4.15)
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(4.12)

where the advanced and retarded free Green’s functions are
given by

Gt),d[:()(quppz;q’,l); ,Pi ;’l )
= EETO Gox (a,p1,P2q’,P1,P34 + i€).

Proof: (Ref. 12) The Lippmann-Schwinger equations in
Hilbert space [Eq. (3.34) of Chap. V in Ref. 1] are

(4.16)

1
t = -li —————H,d;Eqy* .
¥ ¥+ illn; A H,iie 1 ETY
(4.17)
Hence, by Theorem 5.5,
@£y =6l = tim (o] [~ Goa-+iem afs),
(4.18)

where by (4.2) and (4.7) (see Theorem 5.8)

@f.—1) = 48 a5 [ dk di kK

X [# 45, (61:62) — Pry e, (61,82)] - (4.19)

Let us assume that
8(61,62)€CHRINL (T ,) (4.20)
f(kK)eC%CCIRY), (4.21)

where C$, is the set of all functions of C'§ with support dis-
joint from the exceptional set .S §,. We therefore have for any
a,beR, a < b, by the Fourier-Plancherel inversion theorem
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4.E1.)

= (2} lim 2 11rn

J—l
Xf
A

m

Since the above integralink’, ¢', p;, p;, k, Khas an integrand
bounded by the integrable function

kr2 K2
V(q )¢Kk (q,pl,l)2)(/l + ie — ;n_ — m)

X & %, (ap; 03 )0 K5 pi.p3) Ik K) |, (4.23)

[cf. {4.14)], we can reverse the order of integration in such a
way that we integrate with respect to k' first, then with re-
spect to q', pj, and p;, then with respect to k and K, and
finally with respect to §,,6,. Now the functions

' 4 , k? K2
J; dk ¢K,k’ (q’Pva)(/Ij + i€ — — — _)
‘<R

2m 2M
(4.24)

X%, @pip;), R>0,

are bounded by a function 4 which does not depend on R,
and is such that the integrand

|g*(61,E2)exp( — K - Q) F(k,K)V (@) &' (a',p; .03 M |
(4.25)

is integrable in §,, §,, k, K, ¢', p;, p;. Indeed, applying the
following relation:

-I;k|<de(——§) exp(—ak2+B'k)l

2m

372 2
<1 (1) exp((i‘iﬁ_)) =4, (4.26)
Im¢| \a da
to (4.24), we find that A satisfies
f 42 dp dP' < (4.27)
which is true since 4ad»c? for
a=(12+12)+(lf——1§)2/2(12+l§), (4.28)

(Ilml_lgmz) (3 —02)im, + 5m))
m, +m, (I3 +13)m, + my)
(4.29)

C =

Iimi +15m; (imy + 13my)

(m, + my) 2011 + 13)my + my)?
Therefore, (4.25) is satisfied in view of the Cauchy-Schwartz
inequality, (4.20}—4.21) and (4.14). Therefore we can carry
the limit as R— o in our expression for the left-hand side of
(4.22). So that, carrying the sum under the integral sign, we
obtain an integral in §,, §,, k, K, q', p}, p;, for which the
integrand is majorized in virtue of inequality (4.26) by an
integrable function of §,, §,, k, K, ', p}, p;. Therefore, we
get by Lebesgue dominated convergence theorem the follow-
ing expression for the left-hand side of (4.22):

(4.30)
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 [atdaees) [ d

k' f dq' dp; dp; V(q)

dk d K CXP( - iK ¢ Q)$K,k' (q’pl’pl)

1 <k/2m + K?/2M<A;

kr2 KZ)
X(A7+ie—2— -2
X vie=3

oar) PR P30 &(ap;p;) FKK) . (4.22)
f 6, dt,g%(6,ts) fdk dK exp( — K- Q) F(kK)
r
XJ dq dp; dp; V(q)d ' sp}.p5)
X Gox (0,01,P24' D1 b5 :k%/2m + ie) . (4.31)

In order to be able to apply the Lebesgue dominated conver-
gence theorem to take the limit as e—0, let us note that by
(4.12) and (4.20)—4.21) the integrand in (4.31) is bounded by
an integrable function independent of €. Indeed, (4.12) is
bounded by

const p

la—q'|

Xexp(—ap?+e:p +cp P +f-P —dP?,
(4.32)

when B is restricted to a compact set, where

__If+1§ _ 2m,—12m,

TR m, +m,

] 2
_(imi +l3mi) (4.33)
2(m, + my,)

A straightforward computation shows that

4ad — ¢* = 131% > 0, which is sufficient to guarantee the in-
tegrability of (9.74). Therefore, the integrand of (4.31) is
bounded by an integrable function independent of €, when 8
is restricted to a compact set. Now for 8 outside a sufficiently
large compact set, the function

G, = |exp(—2m§a+i\//3? +B3 +B% V2m¢)

X [erfl — (JBE +BZ + B2 )/ 2a

~ i2mga) — 1] | (4.34)
is smaller than
|exp(— (BT + B3 +B3V/4a)| . (4.35)

Therefore, comparing (4.12) with (4.35) we see that, by
(4.13b), (4.28)44.30), (4.20)—(4.21), (4.14), the restrictions on
the potential and Cauchy-Schwarz inequality, the integral
of

18*(6062) | K| |V (@) |85’ .3)]

X G¢(a:p1,p23q' P D3 )
is convergent. The same arguments apply for
lexpl — 2ma — i[BT + B3 + BIV2mE )

X [erfl — (VBT +B% + B3 )/2Va + if2mga) — 1] | .
(4.37)

(4.36)

By Cauchy-Schwarz inequality the integral of
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lg*(606)l | FXK)| |V (@) 18 5a’pi 03l

Xlexp( — B} +BZ +B3V2ms )| (4.38)
is also convergent. Therefore, the limit as e— + 0 in (4.31)
can be taken under the integral sign, so that combining {4.18)
with (4.19) and the expression (4.31) for the left-hand side of
{4.22), we obtain (4.15) since C(R®) and C¢ are dense
sets. Q.E.D.

Let us now investigate the sharp-point limit of the dis-
torted phase-space waves. We see from (4.5) that

Jim (L), (61) = )2 explik - + K- Q).

(4.39)
Furthermore, from {4.12) we see that
lim {/ 112)_360,1: {@&:p1,P2q,P1p2:5 )
1,10
= —(m/2n%|q — q'|)explilq — q'|v2m¢ ) . (4.40)

Thus, we can state that upon renormalization with the factor
(1,1,/m) ™32, the phase space wave Py, x, merges in the sharp-
point limit into a configuration representation plane waves
from which the center of mass has not been removed [see
(1.5)]. Furthermore, the free Green’s function G, x goes,
upon renormalization by the factor (/,/,/7)~3, into the con-
ventional conﬁguration representation free Green’s function

~ 3 l 7] ——— expli|t — ¥'|{y2m¢s ) . (4.41)
The same is true for the advanced and retarded free Green’s
functions, with the same choice of renormalization factor.
Let us show that ™2 (1)(&,,&,) [Where ¢ i\ are the solu-
tions of (4.15)] go in the limit / 1h—01t0 65 (Q)é L Y(g) [Where
&+ are the solutions of (1.4)] upon renormalization by the
factor (I,1,/m) 3% To prove this, let us first find the solu-
tions of the series

Golr,x'; p) =

J

Iim} +12m2) {

(@500 s By sYnsOns€n) 5 (4.42)
satisfying the following conditions:
Blim 1 ,
i xp[-y(l%-kl%)(pz-k-pz)
’m, — 1 m
(l 1 2 2)(p'(K_P)+p"(K“‘P'))
(im? +13m3) ]
e (K — PP + (K — P
T —— (( F+ ))
X[ P)dp dP =f, (p,P), (4.43)
so that the terms of the series occur in
f;z(p?P) =4, exp( - anpz _BnPZ
+Y,°P+8, P+e,p-P), (4.44)
and for n = 1 assume the following values:
-3/2 12 4 ]2
=(2ﬂ')‘3(i) exp[ ———-——-( 1 +13) K?
L, 2
(lfml‘*'lzmz)x (—mnl%*‘mzlg)k.x],
2m, + mz) my+m,
(4.45)
1 2 l 2 l 2.2 lZ 2
a=ltl g Mim lm) (4.46)
2 2{m, + m,)
! 12
ni=( 4+ k4 Tl T mds) (4.47)
my +m,
5, = (myl3 —m,l3) (im} + I5m3) K, (4.48)
my +m, (my + m,)?
—m,l? 12
€, =l ey (4.49)
my+m;
We therefore obtain

_ " - 3/2 I::Igm n 172 3n/2 {
a,,, =(2n) ( ) 7y ( 2 z) 2
L, 47 I1+1;5 (m, + m,)

(llml

1
xXexpl —— 11 +1% —
p{ 4(‘ 1213 (my + mo)f

2(l%ml

— 3m, + [myp ]*m
(If + l%)(ml + m2)2

- !§m2)2

_[(nw(l%m% +13m3) _n[lzm, +13m3
(my + myf (my + m;)

(I3 + 13)my + my)

2
] [41315(my + mP /(1% + l%)]‘]K2

(—ml} +myl3) 2 2 Iim} + 15m; 2(13my — lim,)?
- —(lim, —13m,) - >
my+m; my+-m, U1 +13)my +my)
21212 (m, + my)*] !
x{ i 1+2 2) ] ]k'K}, (4.50)
(1 +13)
I
12 413 IPm} +1im3 —lim,+1im,
a, , ,=—, B, =—, 4.51 €, =—", 4.53
+ 1 2 ﬁ+i 2(ml+m2)2 ( ) +1 ml+m2 ( )
(I3imy —1im,) (3m? +13m3) We see that
'Yn+1=—'*m—+‘m—‘“Kr 3n+1=“'(——"‘—_’5{— ’ L0 ( py \n
v -+ ), = (o) ), .54
(4.52) o
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provided that
2 12,0272 2} 15,0
(I1m, I;:';;;) (73 +13) o, (4.55)
12
and that

{3m] + 3m3) = 2[(1im, — Em /0T +13)])?

1,,l,—0

X(T + 130313 — 0, (4.56)
These conditions are satisfied if the radius of one particle
does not decrease much faster than the radius of the other
one. Thus, upon performing all integrations with respect to
the momentum variables (except p and P) in the expression
(5.8), where D{*!is given by (5.10), and then letting the pa-
rameters /, and /, go to zero, we see that

¢ K560,8) — Bxa (6162

goes upon renormalization by the factor

(4.57)

0 K™, rz4)
n % (+) .
diHA) = (—n'l) J];,,, K (r.Z’rl/{) O

1?(_”(":: rrl;'{ ) I?(-H(r:- ’1'2?{ )
K*rrid)
I ra 2 I e °

n! R

E@rrid) = V6 A ) V)2, (4.65)
va _ [IVE?sgnV(X), if V(r)#0,
Ve = [77 exp(—r%), 7>0, if V{r)=0 (4.66)

Hence, in order to obtain for ¢ i, the same renormahzatlon
factor as for ¢y, We must have that d ‘+’ converges to d
when the parameters /; and /, go to zero. Using Eq. (6.35) of
Chap. 5 in Ref. 1 we see that

D (K_,ttl(q’pl’pﬁqlapi Py j' )
=d{P(2)G LR (apLPsa D s )

+J D, K, n _1(@P1D2a”,p] P54 )

X G a).pypy;a.p} 054 )dq” dpy.dp; . (4.67)

And therefore, performing the integration with respect to py
and p5 and letting /,,,—0 we obtain
who D'+ g,q'A )
K™g,q'A)
_SDM(aa")K la".q)da”
K'g,q3A)
Consequently, in the sharp-point limit, we indeed have the

same renormalization factor for free and distorted phase-
space waves.

d(+)(ﬂ‘)

=d{ ).

(4.68)
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K'(-H(l',l'];ﬂ.)

E(+)(rn ’rl;l ) k(+)(rn ’rl;ﬁ‘ )

(Llp/m)~31%d k2 /2m)/d P (k2 /2m) (4.58)
to the function
[#i1a) — ¢ul@) 14k (Q), (4.59)

where ¢! *' is the solution (4.60) of the conventional Lipp-
mann-Schwinger equation (1.4)" for pointlike particles in
configuration space, and d *’ and d ‘* are, respectively, giv-
en by (4.62)(4.63) and (5.9), (5.11):

V()

(+)p) = —
¢ k (l') - ¢k(r) + a(+)(kz/2m)

- 2
XJ‘ D(-H(r’ri; k_)Vl/2(r:)¢k(r;)dr:, (460)
R3 2m
DHrrd)= 3 Birierid), (4.61)
n=0
av)= 3 atrg), (4.62)
n=0
K™r,r,A)
K’(+) X,
CE ) g, ey, (4.63)
0
E(+)(r’rn;/l)
K'H') T
(r.l ")\ e, deyear, , (4.64)

0

r
Now, we intend to investigate the 7-matrix, defined in
terms of

T=wlimT,,

e~ +0

(4.69)
where the operator T, can be computed from

€Ty =L [ ax dkoglbun) Bun v
o JR®

(g2 €] )

Theorem 4.2: Let us assume that the conditions of
Theorem 5.4 on the potential V are satisfied. Then the transi-
tion operator T satisfies

(¢|1r) =tim| [ kg1

’ k’ k ’ ’
XJ‘dk 5 (E——)a(mk ilk )]<g2|fz>,
(4.71)
with fand g related to £; and g;, i = 1,2, by
Flky ko) = fi(k)5(K), (4.72)
gk, k,) = ,(k)2,(K), (4.73)

with the 7-matrix
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(K|T k') = 2rPBu V1645 (4.74)
that does not depend on K, and with

S.(x)=7m"le(x* + €)', (4.75)

The proof follows from the formuia

lim. J' EnRNE L Epp Ydadp =, (k), (4.76)

which can be derived from (2.12). The independence of (4.74)
on K follows from the fact that d ‘) does not depend on K [in
view of (4.12), (5.9), and (5.11)], and from

(Bai [V 1865 = (Box |V 18 55)) (4.77)

which follows from (4.12), (4.5), (5.8), and (5.10), (5.12).
It can also be checked that

¢ntVl¢‘“ (¢ka(¢§7’),

provided that /, (or /;) do not decrease much faster than /, {or

I l)-
Let us now study the first Born approximation
(k| T |k')" obtained, as usual, by replacing ¢ *'by din the 7-
matrix formula [in our case, formula (4.74)). We obtain
KIT )Y =Gy |Ver Ie) » (4.79)
where ¢, is the configuration space plane wave, and where
V. is given in (3.9). Therefore, we have

KIT K =h ¥ ,)k — k)
= h 3/2;’(1( _ k’),?(n(k _ k'}/‘? (2)(k — k'} (4 80)

In other words, we obtain the form factor %2y ® in the
resulting first-order Born approximation for the T-matrix.
Thus, we see that particle extension that manifests itself in
terms of nontrivial proper wave functions indeed gives rise to
form factors in the scattering theory for such particles.

V. ASYMPTOTIC COMPLETENESS

In this section we shall solve the Lippmann-Schwinger
equation and prove the asymptotic completeness. The Fred-
holm method can be used for solving that equation, but it
cannot be applied directly to Eq. (4.15) since ¢x x(q°py,p,)is
not square integrable in q,p,,p,. Hence, let us perform a Roll-
nik decomposition

(4.78)

—

0 é (“1,‘12,/1)
d(+lu)_("'l)"j‘ ag})(az,al;/” 0
n! :

a ;) n’abﬂ) ?; l()( maz,/{)

Gilaaid)  Ghxlaasl)
DN, d ) = (‘; !1)" Ghx (ctg,a';ﬂ.) 0

Gipanad) Blkla,ai)

a,a’,0,,0,...,a, R .

The proof of the above theorem!? consists in showing
that the function @y , €L %(R°) and that the kernel Gg}}’ is
Hilbert-Schmidt. The fact that S,y = {k*/2m:keS} ] is
compact and of Lebesgue measure zero is established in
Theorem 6.7 of Chap. 5 in Ref. 1. Therefore S ¢, is of measure
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?3 {(@py,p2) = Vllz(‘lkzx.k(qmppz) s (5.1)
¢ Lapp) = V' (a)d appy) (5.2)
5},} (4:P1,P2;9',P1,P534 )

= V' QG ik ap.psa Pl 054 )V (Q)2,  (5.3)
V'V%q) = |V{q)|'>sgn V{q), (5.4)

and we shall assume that V(g)#0 a.e. The Lippmann—
Schwinger equation then takes the form

¢ ap1P) = Bk (@P1D2) + qu dp; dp;

7~ (A ’ kz
XG 8}’(q,p1,pz;q B X ;—)
2m
X pips) - (5.5)
Theorem 5.1: (Ref. 12} Suppose that the potential ¥'(q)
satisfying
Vig=0(a~*"9, lagl—w, (5.6)
is different from zero almost everywhere and is of Rollnick
class, i.e.,

flV(Q)V(Q)! dqdq’ < .

Then for keS } ¢, where S}, is a compact set of Lebesgue
measure zero for each value of K, the Lippman-Schwinger
equation {4.15) has the unique solution

(5.7)

—1/
BLL 605 = B (E) + 7(—’{,(—,(-—3% expliK - Q)
fD(+)(q’p1vp2xq 91’1 ,p2a 2k )Vl/z( )
Xexp( — K« Q')y 4, (51,62 )dq’ dp; dp; ,

(5.8)
in which
dP) =¥ dit) (5.9)

n=0

D& (qp,P2a’pi P A ) = Z D) (a,pyp2api,piA),

n=0

(5.10)
Gixla,a,l)
A (+) .
G 0K (a.zya,./i ) da, da,-da, , {5.11)
0
Gia,a,l)
G+
Gox (a‘hum/{ N da, da,-da, , (5.12)
0
(5.13)

L
zero since d ‘{4 ) do not depend on K.

We now intend to prove that the functions (5.8) are the
distorted phase-space waves satisfying (4.7). The proof has to
be carried in several stages. Let us note first that the operator
G,(¢ ) can be considered as an integral operator with kernel
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Gol61,62k1,k558 ) = By i, (61,6206 — ki/2m, — K3 /2m;)~" .

(5.14)
There might be a similar relation for the kernel of the full
Green’s function.

Theorem 5.2: (Ref. 12) Let us assume that the Green’s
operator G ({) is an integral operator with kernel
G (£,,6,;:K,,k,;¢ ). Then we have the following relation for this
kernel (called the full Green’s function in stochastic phase
space):

G (€ Lk ksl ) = Lim. f At A& by u (61r53)
xfdk; dk; G*(&,635ki kit¥)

X ¢kf’l‘i (GI,QZ) .

The proof relies on the fact that G *{{) = G (¢ *).

In view of (5.14), let us set
G (61,62k k)

= Gu,x, (60526 ) — ki /2m, — K3 /2my) ™", (5.16)
for £&S “. Then the next step in the proof of asymptotic com-
pleteness consists in proving the following theorem.

Theorem 5.3: Let us suppose that the potential

V(q) = O(|q| ~*~ 9 is of Rollnick class, locally square inte-
grable and different from zero almost everywhere. Then

(5.15)

¥ (ky k) =Lim. f B0 (61,861,621 6, d &, (5.17)
exists for any (k,K)¢S S,
S% = {(KeR keS by} , (5.18)

if #12 (€1,6,) are the solutions (5.8) of (4.15) and (4.9). Fur-
thermore if BC (0, « ) is a compact set and BnS }, = ¢, where
St =A~'S%, with A given by (4.8), then

L 192 (ko) d k, k.

k3/2my + k3/2m,
(5.19)
Proof: (Ref. 12} Using (5.16) and the second resolvent
equation we see that the Green’s function is of the form

G (61bokikail ) = G (@PiPsid JexplK - Q) (5.20)

for some 6,“( + ;&' ) which does not depend on Q. Therefore,
writing

Bu 606256 ) = D (@PuPC JexpUK - Q) (5:21)
for some ¢, ( + ;§') not depending on Q we obtain
Pxa(GPP2iE ) = B (@DLD2) + f dq’ dp; dp;

P K’
X Gox (q,pl,pz;q P1P236 — W)
X ¥ (q)bxc (a'03) - (5.22)

Performing a Rollnik decomposition, we obtain an equation
which is solvable by the Fredholm method. Therefore, defin-
ing

Pkl ) = J- b ¥, (61,526 *1W(E1,EMd €, A E, (5.23)
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we obtain, by (5.16), Theorem 5.2 and the Fubini and Tonelli
theorems

(GEW) (kpky) = (€ — K2/2m, — K3 /2m)) ™ 'PlkykyC ).
(5.24)

We get from the first resolvent equation and Theorem 5.12 of
Chap. 5in Ref. 1

(YIES — E W)

1 b
=— lim dA
T e~+0J,
- y, 2
€|k, kA + i€)| dk,dk,,
A — K2 /2m, — K2 /2m,) + € (5.25)

since EY =E¥_, for A¢S}, because S is disjoint from
[0,0)\S }.. Indeed [0, 0 )\ S}, CSZC[0, ). Furthermore,
from the explicit expression for the solution of (5.22), we see
that

lim W kK3 /2m, + K2 /2m, + i€) = P (kpky) .
€~ +

(5.26)

Q.E.D.

We obtain the following theorem, which is a conse-
quence of the above one.

Theorem 5.4: Suppose that the conditions of Theorem

5.3 are satisfied. Then the continuous spectrum of H satisfies

[0,0\SLCSHC[0,0), (5.27)
and for any Borel set BC S,
(E¥ (B 1§)(61,62) = Lim. , , 5, (60,62
k2/2m, + K3/2myeB
X kol ky d ks , (5.28)

(f|E®(B)g)
Ftkk)g, ko) k, dk,,
(5.29)

J;f/zm, +k3/2meB

where 12+ is given by (5.17).

The existence of strong asymptotic states has been prov-
en in Ref. 12.

Theorem 5.5: Let us assume that the potential ¥ (q) is
locally square integrable, and that for some € > 0,

Vi@=0(d~'"9 lg—own, (5.30)
then
M,=M_ = [ JeL 2(1‘12):‘s-lim 28)f exists]
=LYT,,). (5.31)

The proof 12 consists in showing that there exists a domain
Y, dense in L }(I") satisfying

exp( — itH) P ,C D, (5.32)

|7 1w exp(— it g < o (533)
for all l/IG@ 1- The following set
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9,= [,p,, 1im.(27)"° f dg,dt,
xexp( — i€, + &1 — i6, — &3 )9, (51,62)

2

< e g qi? q; | Yol Y
=¢.,(;,,c2)=exp[——'____l___z]

2m, 2m, a b

xexpl — 5.&) - p) peR”] (5.34
satisfies these requirements.

Before proving the asymptotic completeness, we have
to check that the following expression

(W #)(60E2) = Lim. f B4 (606 ky ko) K, d
(5.35)

determines a well-defined operator W ..

Theorem 5.6: Suppose that ¢ %) (§,,5,) are the solu-
tions (5.8) of the Lippmann-Schwinger equation (4.15),
where the conditions of Theorem 5.3 are satisfied. Then
there exists a unique operator W, defined by (5.35), and
satisfying

W, W% =E%SH, (5.36)
w* E"B)=E™B)W* . (5.37)
Proof: (Ref. 12) Let us consider the bilinear form

W) = [ e, Kk k. (5.38)

By Theorem (5.4), this bilinear form is bounded.'? Conse-
quently there exists a unique bounded linear operator W
for which

(W ylY) =WlY), (5.39)
for every y,¢'cL %I',,). Assuming that $eC § and 'eC 2 we
can drop the Li.m. in (5.35), and (5.38) is equal to

wiv) = [ dk,dic Pk,

x f 6, d $L oV k) (5.40)

On account of the conditions of Theorem 5.3 we can apply
Fubini’s theorem to (5.40)'? to obtain (5.35). We can easily
show that

(W ¥)(61,62) = Lim. f Bro, G160 (ko) K, Ay

(5.41)

for any 1Aﬁ+ given by (5.17). Equation (5.36) is a consequence
of (5.28), (5.35), and (5.41); whereas Eq. (5.37) is a conse-

quence of (5.28), (5.29), (5.17), and (5.41). Q.E.D.
|

We are now left with the task of proving that
W, =12, and thus establish asymptotic completeness for
n,.

Theorem 5.7: Let us assume that a potential satisfies the
conditions of Theorem 5.3. Then W, = £2,.

Proof: Since Y% 4 if Y& ; , we have by Eq. (2.37) of
Chap. 5 in Ref. 1

(@ (Wlg) = (Wlg) — ,-J: (explitH \H,

X exp( — itH,)y|g)dt , (5.42)
for any geL *(I",,). Setting g = W @, peL *(I",,) and using
W* explitH ) = explitHy)W*, , (5.43)
which is a consequence of (5.37)," we obtain

<¢’|W"+9(T)¢)=(¢|W"+¢>+i£dt

X (@ |explitHo) W™, H, exp( — itHop) .
(5.44)
Now using Exercise (7.1) in Chap. 5 of Ref. 1 we obtain

(PIW% 2.9 = (@ W P +ilim [ e= (g

X expliHt \W* H, exp( — itHo)p)dt .
(5.45)

Using (5.41), (4.1), (4.2), and (5.17), we obtain'? for
Pk k)eC 7

(W™ 2.¢)
=(¢|W*+¢>=ilimj dte_“ dkldk2¢‘(klik2)
0 Jo

x f 6, dt, 4L 6t
X (H,; exP[ —iH, — k%/2m1 - k§/2m2)t ]'ﬁ)(;n;z) .
(5.46

For geC 2, supp @ C B, B compact, BAS$, = ¢, yCC 7, we
can interchange the order of integration in (5.46)'? to obtain

@I 2.9
— (@ |W3 ) +itim [ dk, die ¥k

x f dt,d, ¢L:z;(;,,;2)f ar(H,

Xexp[ - i(Ho - i — —k’%—' - if)f ]'ﬁ)(gpgz) .
i (5.47)

Consequently, using Theorem 3.1 in Chap. 4 of Ref. 1, we
obtain!?

@429 = (W% )~ lim [ dk, Ik, dE; 45 FHkkalVS] 52)

XLim. f de dep; L0065V () f dk; dk; ¢,... (6,6

KoK kK
X + + ie —
2m, 2m, 2m,
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2m,

)_1¢:{,k5(c; )
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= li.m. Jdkl dkz d §, d §2 (4 *(klsz)'p(gl’QZ)

. K2
e ™ °[¢ H(Q,pypy) —J‘dq dp; dp; G ox(q,pl,pz,q PP

={(p|¥),

since ¢ () satisfy the Lippmann-Schwinger equation. Con-
sequently, since C;° and C ¢ are dense in L %(I",,),

wr o, =1I. (5.49)
Therefore,

W,=W_W* 0, =E*SH0, =0, (5.50)

Q.E.D.

We can summarize the results of the last two sections in

the following theorem.

Theorem 5.8: Suppose that the potential ¥ (q) is different
from zero almost everywhere, that it is locally square inte-
grable, of Rollnick class, and that it satisfies (5.6) for some
€> 0. Then the initial domain M|, of the Moller wave opera-
tors 2, is L %(I"y,), the final domains R | are both identical
to E# (S H)L }(I',,), and the S operator is unitary on M,,. Fur-
thermore, (4.7) is satisfied for the distorted phase-space
waves ¢ | %) [given explicitly by (5.8) for the outgoing case].

VI. CONCLUSION

The standard nonrelativistic quantum scattering theory
for potential interactions between point particles can be
transferred, with no fundamental changes, to potential inter-
action between extended particles. However, for the former
the configuration representation is quite satisfactory, in case
of the latter stochastic phase space emerges as an essential
tool for deriving many of the fundamental results.
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APPENDIX

In this appendix, we intend to evaluate (4.10) explicitly
and show that it is given by (4.12). We have the following

[since the proper wave functions are the optimal ones given
by (2.19)]:

GO,K (q’pppz;q,rpi 2 ;; )

-3 1413
= - m (%) exp[—(—;’——’(p +9?)

(1§m1 _I%mz)

pK~P)+p'-(K~—P)
my+m,
12m? + 12m?
_ ( 1 1 2 22) ((K _ P)2 + (K _ PI)Z)]
2(m, + m,)
k2 -1
x[(5-¢) ewl—ak+iB Kk, (Al
2m
a= lf + I% (A2)
451 J. Math. Phys., Vol. 26, No. 3, March 1985

)V(q b &5a'p; ,pz)]

2m
(5.48)
—
B=q-¢ —i[(lﬁ -1 +p)
13 13
_i‘_m’i_im_Z)(zl(_p_p')]_ (A3)
ml + mz
We shall first evaluate the following integral:
2 —1
J-dk(k——g‘) exp( — ak? + iB < k)
2m
47m
= —— d —————exp( —ar* —i| B|7)
i|B| 7 —2m¢ 2 4 (Ad)
for vectors 3 with real-valued components. Let us set
£18)= f_ ) r2+2m§ exp(—ar —Brdr.  (AS)
Then we obtain
” T 172 32
£ - 2mif(8)=(Z) " exp(2-). (A6)
a 4a

The homogeneous differential equation associated with
(9.16) has the solutions

f(B)=exp(L£~v2m{ B). (A7)
Consequently, solving (A6) by variation of parameters, we
set

F(B)=u,(Blexp2m{ B) + uy( Blexp( —v2m& B),(A8)

0=ui(B)exp(y2ms B)+ uy(Blexp(—2m¢ B). (A9)
Therefore, combining (A8), (A9), and (A6) we obtain
v2mg (ui(Blexpy2mS B) — uy(Blexp( —2mé B))

= Jm/a exp( f?*/4a) . (A10)

Solving the system consisting of (A9) and (A 10), we get

e 2 57 5)

ui (ﬁ)—— (Al1)

uz(ﬂ)“—— — —“-+\/*ﬁ (A12)
ez g+ ).

And hence inserting the solutions of (A11) and (A12) into
(A8) we obtain

flB)=—Z—
o

2i\2m

exply2mé B — 2méa)
X erf(—z—f/g B—iy 2m§a)

?—2——5— exp( —v2mé B — 2méa)
X erl(—ilﬁ B+ i\/2m§a)

+ ky expy2m¢ B) + k;, exp( —y2m¢ B),

(A13)
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in terms of the well-known “error function”

2 4 6
efx=22[1_X 4 X _x ] (Al14)

JFl s Tas 3

Now, since f'(0) = 0, we must have that k, = k,. To evaluate
ky, it is sufficient to evaluate

£l0)= f _: '2—‘1—2-’% exp( — ardr . (A15)

When regarded as a function g of @, the above satisfies the
differential equation,
g'la) +2migla)= —Vr/a
having for solution
gla) = exp( — 2méa)[ (in/2mE Jerfii2méa) + 8] .
(A17)

To evaluate the constant § we have to evaluate (A15) for
a = 0 which lead by the residuum theorem to

(A16)

8 = mi/\2m¢ . (A18)
Therefore, combining (A 13) with (A17) we obtain
k, = (in/2\2m¢ Jexp( — 2méa) . (A19)
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Therefore, since the right-hand side of (A4) is given, for B
with real valued components, by

(4rm/i|B|).f"¢IB) (A20)

then we obtain by analytic continuation the expression
4.12).

'E. Prugovecki, Quantum Mechanics in Hilbert Spaces (Academic, New
York, 1981), 2nd ed.

2E. Prugovecki, Stochastic Quantum Mechanics and Quantum Spacetime
(Reidel, Dordrecht, 1984).

38. T. Ali and E. Prugovecki, J. Math. Phys. 18, 219 (1977).

“E. Prugovecki, Phys. Rev. D 18, 3655 (1978).

SF. E. Schroeck, Jr., J. Math. Phys. 22, 2652 (1981).

SK. Menger, Proc. Nat. Acad. Sci. USA 28, 535 (1942).

7A. Wald, Proc. Nat. Acad. Sci. USA 29, 196 (1943).

¥M. Born, Danske Vid. Selsk. Mat. Fys. Medd. 30, (2) (1955).

°M. Born, Physics in My Generation (Pergamon, London, 1956).

10J, M. Levy-Leblond, in Group Theory and Its Applications, edited by E. M.
Loeble (Academic, New York, 1971), Vol. I

1A, Landé, Phys. Rev. 56, 482 486 (1939).

2R, Gagnon, “Path Integrals and Scattering Theory in Nonrelativistic Sto-
chastic Quantum Mechanics,” Ph.D. thesis, University of Toronto, 1983.

3L. D. Faddeev, “Mathematical Aspects of the Three-Body Problem in the
Quantum Scattering Theory,” Israel program for scientific translation
(Jerusalem, 1965).

R. Gagnon 452



Schrodinger semigroups for vector fields

T.A. Osborn® and R. A. Corns®
Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742

Y. Fujiwara
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109

(Received 8 May 1984; accepted for publication 17 August 1984)

Suppose H is the Hamiltonian that generates time evolution in an N-body, spin-dependent,
nonrelativistic quantum system. If r is the total number of independent spin components and the
particles move in three dimensions, then the Hamiltonian H is an 7 X r matrix operator given by
the sum of the negative Laplacian — 4, on the (d = 3N )-dimensional Euclidean space R? plus a
Hermitian local matrix potential W {x). Uniform higher-order asymptotic expansions are derived
for the time-evolution kernel, the heat kernel, and the resolvent kernel. These expansions are,
respectively, for short times, high temperatures, and high energies. Explicit formulas for the
matrix-valued coefficient functions entering the asymptotic expansions are determined. All the
asymptotic expansions are accompanied by bounds for their respective error terms. These results
are obtained for the class of potentials defined as the Fourier image of bounded complex-valued
matrix measures. This class is suitable for the N-body problem since interactions of this type do
not necessarily decrease as |x|-» o0 . Furthermore, this Fourier image class also contains periodic,

almost periodic, and continuous random potentials. The method employed is based upon a
constructive series representation of the kernels that define the analytic semigroup

{e~**|Re z> 0}. The asymptotic expansions obtained are valid for all finite coordinate space
dimensions 4 and all finite vector space dimensions r, and are uniform in RY X R?. The order of
expansion is solely a function of the smoothness properties of the local potential # (x).

1. INTRODUCTION AND SUMMARY

Take H to be the self-adjoint semibounded operator
that generates time evolution for the N-body problem in non-
relativistic quantum mechanics and let the complex variable
z take values in the open right half-plane D, then the family
of bounded operators

fe~*H|zeD} (1.1)

constitutes the analytic semigroup induced by H. The re-
striction of z to the positive real axis leads to the one-param-
eter semigroup associated with the heat transport equation
and the partition function of the canonical ensemble. In the
heat transport problem the positive value of z is the time
variable, whereas in the partition function z is proportional
to the inverse temperature of the system. On the other hand,
if z belongs to the boundary dD and takes on purely imagi-
nary values then the family of operators (1.1) forms the one-
parameter unitary group which describes time evolution of
the system.

A second, equally basic, family of bounded operators
are the resolvent operators

{(H—A)"Y4eC, ImA #0) (1.2)

that appear in the time-dependent formulation of quantum
mechanics. This paper studies the uniform asymptotic ex-
pansions of the coordinate-space kernels of both operator
families (1.1} and (1.2). For the analytic semigroup
{e~*¥|ze D} the asymptotic expansion variable is |z|]—0.
Physically these expansions are applicable for short times or
high temperatures. Asymptotic expansions for the resolvent
kernels then result from a Laplace transform of the analytic
semigroup kernels. The resolvent kernel expansions are val-

*On leave from the University of Manitoba, Winnipeg R3T 2N2, Canada.

453 J. Math. Phys. 26 (3), March 1985

0022-2488/85/030453-12802.50

id for [A |->o0, or convergent for high energies.

Recently the first of these two problems, (1.1}, has been
discussed at length for the case of scalar fields by Osborn and
Fujiwara in Ref. 1 (hereafter OF). Let x be the generic point
in Euclidean space R? that specifies the location of all N
particles in the system. If each individual particle moves in
three dimensions then the Euclidean space dimension is
d = 3N. The scalar problem for local potentials is realized if
the Hamiltonian H is taken to be the self-adjoint extension in
L *(R?) of the quadratic elliptic differential form

Hy = —qd, +lx). (1.3)
Here A, denotes the Laplacian in R? and v: R? >R is the
perturbing local potential. In terms of the rationalized value

of Planck’s constant #, and the particle mass m, the quantum
scale factor is

q="7#/2m. (1.4)

The notationally simplifying device of setting ¢ = 1 is avoid-
ed because it is illuminating to exhibit explicitly the ¢ depen-
dence of the heat-kernel and resolvent-kernel expansions
and thereby see the semiclassical content of these expan-
sions.

However, the general N-body problem is not described
by scalar fields unless all the particles are bosons with spin
zero. If the ith particle has spin s;, the resulting N-body wave
function is a vector-valued complex function of dimension

r= 3 @ +1)

i=1
and an element of the space L >(R?,C"). In this circumstance
the local perturbation becomes for each x an Hermitian ma-
trix W (x): C"—C", and the scalar Laplacian — 4, general-
izes to — A, I, where [ is the identity on C". The matrix-
valued analog of (1.3) assumes the form
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Hy = —qd,I+ Wi(x) (1.5)
The appearance of (1.5) seems to assume that all ¥V particles
have common mass m. This restriction is apparent rather
than real since a scale transformation of the particle coordi-
nates always allows one to write the most general diagonal
kinetic energy operator in the form — gd,. The Hamilton-
ian operator H which defines the physical quantum system is
the self-adjoint extension of H ,, in L (R*,C").

Denote the kernel of the semigroup element ¢ ~*¥ by
U(xp;2): RY XRY X D—C™". Similarly if p(H ) is the resol-
vent set of H, we define the kernel of the resolvent operator
(H — A)"'byR (x,p;A )forallA € p(H ). Thebasic objective of
this paper is to derive the precise forms assumed by the natu-
ral asymptotic expansions of U (x,y;z) and R (x,y;A ). Specifi-
cally, we obtain the existence of the kernels, the analytic
form (in z) of the asymptotic expansions, explicit closed ex-
pressions in terms of W (x) of all the coefficient matrices that
enter the asymptotic expansions, and R XR? uniform
bounds for the remainder terms. In fact we show that the
derivation of these uniform asymptotic expansions requires
only continuity and differentiability properties in x of the
potential A (x). In particular, there is no necessity to assume
that # (x) decays as | x|— oo . The restriction we doimpose on
the allowed form of W is that the potential be the Fourier
image of a complex bounded r X r matrix measure, u, on R?.

The analytic semigroup (1.1) is characterized uniquely
by its associated family of kernels { U (x,y;2)z € D }.Our ap-
proach to determining the existence and the properties of
U (x,y;z) is constructive. Let Hy denote the free kinetic energy
operator (the self-adjoint extension of — g4, I'). Weestablish
that the kernel analog of the Dyson series> for ¢ ~** in
terms of time-ordered parametric integrals of e ~*#° and W
leads to an absolutely and uniformly (in R? X R¢) conver-
gent series representation of U (x,p;z). As an immediate by-
product of this result, it follows that if W (x) has uniformly
bounded derivatives of order 2, then U {x,p;it /%), wheret € R
and represents time displacement, constitutes the funda-
mental solution of the Schrodinger equation

iﬁg; Ulxpsit /%) = H, Ulxpsit /) VxyeR? (1.6)

obeying the delta-function initial condition
U (x.y;it /A —>8(x — y as t—0. (1.7)

Parallel conclusions apply to the heat-conduction problem.
The heat-conduction or diffusion problem results if one for-
mally replaces the imaginary time variable with £ > 0. Again
U (x,y; B)is the fundamental solution of the heat problem. In
particle physics terminology, U (x,y;it /#)is the propagator of
the N-body system.

The center of interest in this investigation is the small z
uniform asymptotic expansion that U (x,y;z) admits. It is well
known that these kernels are highly singular in the limit
z—0. This is evident from the formula for the free heat kernel

defined by H;:
[(«m;)m e""( - 'i,;y‘z)] L (13

Here |x —y| represents the Euclidean distance in R?
between x and y. This convolution kernel has an essential

Uolx.p;z) =
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singularity at z = 0. Thus, asymptotic expansions of U (x,y;z)
for small z require that this essential singularity structure be
explicitly factored out in order to expose a smooth function
of z. For this reason it is useful to define a function
F(xp;z):R? XR? X D>C™" by

U(xp;2) = Uplx.p;2)F (x,;2). (1.9)
Both Uj and Fare r X r matrices. In (1.9) we adopt the hereaf-
ter standard convention that UyF implies the matrix pro-
duct. Now if the Dyson series for U (x,y;2) is written in the
appropriate form, one finds an explicit series expansion for
F. The F-series is uniformly convergent on all compact sub-
sets of D {the closure of D). As a consequence it follows that
F (x,p;2)is analytic in D, continuousin D, and F {x;0) = I for
all x,y e RY.

A further restructuring of the F-series leads to the
asymptotic expansion

M ( - Z)"

Floyz)= 3 S Pley) + Eylryz)} - (110)
Here, M is an integer proportional to the number of contin-
uous bounded partial derivatives that W (x) supports. The
error term is of order O (|z| * ') and has a uniform bound in
R? X R?. In addition, identity (1.10) can be differentiated
with respect to x, y, or z as often as desired and the resulting
equation is also an asymptotic expansion provided W (x) is
sufficiently smooth. This flexible nature of (1.10) permits one
to use it as the basis for calculating the small time behavior of
correlation functions for an arbitrary pair of observables.
The expansion (1.10) has been analyzed extensively in the
literature*S for a wide variety of operators H. Generally it is
known that the coefficients P, [Py(x,y) = I] are functions of
W (x) and its partial derivatives up to order 2(# — 1). A novel
feature of the constructive approach is that one can deter-
mine for every n explicit expressions of the coefficient matri-
ces P, (x,y). These expressions are not only applicable when
x =y, but valid for all x,y € R®. Another useful aspect of the
constructive approach is that one can prove that expansion
{1.10) is uniform in arg z. Thus the short time expansions are
on exactly the same analytical footing as the high tempera-
ture expansions. In passing we note that the x,y uniform
character of expansion (1.10) is a necessary ingredient for the
correct description of N-body systems that incorporate the
wave function symmetrization required by either fermion or
boson statistics.

The study of the resolvent kernel proceeds by using the
Laplace transform of U (x,y;z) to determine R (x,y;2), namely,

R{xyz) = f " AUy BB, x#y, Rezce,
(1.11)

where ¢ is any negative lower bound for the spectrum of H.
The condition Re z < ¢ <0 ensures that the integral in (1.11)
is absolutely convergent. The resolvent kernel is holomor-
phic in a much larger domain of z, namely z € p(H ). Identity
(1.11) may be analytically continued to a subset of this larger
domain in C by changing the variable of integration so that
the integration contour along the positive real axis is rotated
until it becomes a complex ray with origin at 8 = 0 and hav-
ing constant arg B € (w/2, — #/2). We find, upon using the
analytically extended form of (1.11), that the Laplace image
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of the heat-kernel asymptotic expansion (1.10) becomes
R(xy;z) = ﬁ = p ey (i)n Ro(x.y;2)
n=0 n! Jz

+ Tyxy:z), x#y. (1.12)
Here, Ry(x.y;z) denotes the kernel defined by (H, —z)~".
This free resolvent is an analytic function of z in the open cut
plane C\R™* and for H,= — g4, it is given by a Bessel
function multiplied by 1.

Although it is not so apparent from the form of (1.12),
the small parameter in the expansion is z~ . Furthermore if
M + 2>d/2 then the error term in (1.12) has a uniform
bound in R? X R? and is of the order (|z| ="} +2~9/2_ The
boundedness of the error T, as x—y implies that the singu-
larities of R (x,y;z), Ry(x.p;z), and the derivatives of R(x,y;z)
in the neighborhood of the diagonal x = y are identical on
both sides of (1.12). The uniformity in z of (1.12) can be char-
acterized as follows. For any & € (0,7/2) let V5 denote the
subset of C given by

{zlze C, arg(z + ||u||(sin 8)~") € (28,27 — 28)}.

Clearly V; is the complement of a wedge symmetric about
the positive real axis with its apex at z=_— [|u||(sin &)~
The expansion {1.12) is uniform for all z € V. Although the
opening angle of the wedge, 46, is arbitrary and can be made
as small as desired, there will always be a strip about the
positive real axis disjoint from ¥ . Thus the values of R (x,p;z)
as z converges to points on the spectrum, o{H ), are not esti-
mated by (1.12). This is to be expected since stating only the
smoothness properties of W (x) is insufficient information to
determine the detailed nature of the spectrum. In examples
where formula (1.12) has been continued to the spectral
boundary (such as Buslaev’s treatment® of R®), extensive in-
formation about the |x|—co decay of W(x) is required in
order to extend the z domain of (1.12) to the boundary of the
open domain C\o(H ).

A balanced overview of the results outlined above
emerges if we consider their connection to the spectral
asymptotics of H. Local geometrical spectral asymptotics is
the study of the relationships that link three basic structures
generated by the differential operator H ,,. These structures
are (a) the local coefficient functions that define H ,, and the
boundary conditions which are obeyed; (b) the Weyl expan-
sion'®!! predicting the density of eigenvalues A, satisfying

HY, =A%, |¥l=1, (1.13)

as A,— w0, or the appropriate generalization of the Weyl ex-
pansion when the spectrum has a continuous component;
and (c) the asymptotic expansions of the integral kernels for
the basic operator functions of H such as the semigroup or
resolvent operators.

In general, the coefficient functions that enter H ,,
come from the functions that define the Laplace—Beltrami
operator for a non-Euclidean manifold (either compact or
noncompact), the functions appearing in the first-order
terms (such as the magnetic vector potential), and the poten-
tial W (x}. In our N-body problem the manifold is flat so the
Laplace-Beltrami operator reduces to the Laplacian, the
first-order derivative terms are absent, and so the only non-
trivial coefficient function is W (x). The boundary condition
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for R? reduces to the requirement that H ,, have a unique
self-adjoint extension in L *(R?,C"). If the manifold support-
ing the functions on which H , acts is noncompact (as in the
RY case), characteristically one finds that the spectrum has a
continuous part. The appropriate extension of the Weyl
problem is to replace the study of the density of eigenvalues
by the asymptotic expansion of the spectral kernels e(x,y;4 )
asA—co.

In essence the asymptotic expansions (1.10) for the heat
kernel and (1.12) for the resolvent kernel display the relation-
ship between (a) and (c). In particular, the explicit expres-
sions we derive later for P, (x,y) show how the local form of
H ,, controls these two expansions. In this sense this paper is
a special application of the local geometrical asymptotics
program. The approach emphasized in this work is to deter-
mine first (via the Dyson expansion) the detailed properties
of the semigroup family of kernels and then by various trans-
forms obtain the other asymptotic expansions of interest.

It is worth observing that the connection (a)}—(b), al-
though of fundamental importance, is still not well under-
stood in the noncompact domain problems. Following the
technique introduced by Carleman,'? most investigations of
the large A behavior of e(x,y;4 ) have utilized the Tauberian
theorems.'>~'¢ This approach is capable of predicting only
the leading-order behavior of e(x,y;4 ). An alternate method
of investigating the continuum-Weyl problem and obtaining
a higher-order asymptotic expansion was developed by Os-
born and Wong'” (hereafter OW). The technique of OW is to
obtain the link (a)—(b) by the chain of results (a}—(c) then
(c)—(b). In particular, one may prove that the kernel U {x,y;z)
has the spectral representation’”®

Uxypz) = J e *de(xyA), zeD. (1.14)
o(H)

In order to implement the stage (c}—(b) the inverse of this

transform is required, namely,

+ i

c>0. (1.15)

xh) = o= ? Ulxizdz,

The validity of (1.15) is established in OW. This formula has
the feature of transforming semigroup kernels into spectral
kernels.

Under the hypothesis that the continuous spectrum
contribution to U (x,y;it /i) has nice decay properties as
t— + oo (this assumption just reflects the physically reason-
able expectation that particles and stable clusters of particles
that belong to the continuum of H will diffuse as t— + )
then e(x,y;A ) admits a higher-order Weyl expansion given by

eop)= 3 P () st
+ EylxpiA). (1.16)

Here ey(x,y;A ) is the spectral kernel of Hamiltonian H, and is
a known analytic function of A. This expansion is uniform
within compact regions of R? XR?. The error term is of
order O (|4 | ~ %), where N depends in a complicated way on
the number of bounded derivatives of W (x) and on the nature
of the t-decay of the continuous spectrum contributions to
U (x,y;it /#i). A more detailed overview of local geometrical
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spectral asymptotics may be found in the excellent review of
Fulling.*

The construction of this paper is as follows. In Sec. II
the complex matrix-valued measure representation of the
potential W (x) is introduced. Section III describes the con-
structive series representation of the kernel U (x,y;z) and ob-
tains the x,y-uniform asymptotic expansion associated with
Eq. (1.10). Furthermore, under appropriate smoothness re-
strictions on W (x), it is established that U (x,y;it /#i) and
U (x,y; B) are fundamental solutions of their respective par-
tial differential equations. The explicit formulas for the coef-
ficient matrices P, (x,y) are determined. Finally in Sec. IV we
utilize an analytic continuation of the Laplace transform to
find thelarge |4 | expansion of the resolvent kernels R (x,y;A4 ).
Formulas bounding the total error in the resolvent asympto-
tic expansion are derived. :

Ii. FOURIER IMAGE POTENTIALS

For a particular class of potentials W (x), the operator
H ,, is studied. Let .# (R?,C"™") be the set of all bounded
complex matrix-valued measures defined on the Borel field
% on R?. Each measure u € #, defines a matrix-valued
potential function by the Fourier transform of x,

Wix)= f e duk),

where k € R? and kx denotes the scalar product in R?. The
equality above is understood as that appropriate for the
space of complex matrices, C"™*". If v,y = 1,2,...,r specify the
row and column of a matrix, then (2.1) implies

W,,(x)= ,Ld e~du, k) alwvy.

Each 4,, is a bounded complex-valued measure on #Z and
each vy component of the matrix W is a complex-valued
function of x. Hereafter, in order to simplify our notation the
integration domain R? will be omitted.

We employ the symbol |-| to represent several different
norms. If the argument of |-| is in C, then |.| denotes the
absolute value; if the argument is inC” or C™*” then the norm
is the appropriate Euclidean vector length. For example, if E
is any set in 4,

we={3 3 lp,,,(E)P]”.

v=1y=1

(2.1)

(2.2)

(2.3)

A somewhat different meaning of the absolute value sign
applies to |u|. Here, || is defined to be the total variation of
U, namely the non-negative scalar-valued set function on #
given by

Hl(E)=sup 3 |u(E,),

i=1

(2.4)

where the supremum is taken over all partitions {E,} of E.
The statement that pge.# is bounded means that
|£|(R?) < oo. In fact, the total variation |u| may be used to
define a norm ||-|| for .# if we set

leel] = e | (R?). (2.5)
Equipped with this norm .# is a Banach space." It is clear
from the definition of (2.1) that the Fourier image of .# con-
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sists of R —»C"*" functions that are uniformly bounded and
uniformly continuous. In particular,

|W(x)|<llel, VxeRe. (2.6)
The transformation (2.1) defines a class of potentials

F = [W(x) = je”‘" dp(k )| € /]

The elements of the spaces .# and .# are in a one-to-one
correspondence. This is a consequence of the uniqueness?® of
the transformation (2.1) that states W {x) = 0 if and only if
# =0. Again by adjoining norm ||u|| to # one defines a
Banach space.
Consider the subset of potentials in % that are Hermi-
tian matrices for all x € R?. For a set E € # the reflected set
— Eisdefinedtobe —E= [k |keR? —keE}. We say
the measure u satisfies the reflection property if

ul—E)=p*E), VEe %, (2.8)

where * denotes the adjoint on C™*". Then the Fourier trans-
form of a u satisfying the reflection property is a Hermitian
matrix for all x. And, conversely an element W e & that is
Hermitian for all x has an associated measure u € .4 that
obeys the reflection property. Define the subset of .4 that
consists of measures u of the type (2.8) as .#* and let ¥ * be
the Fourier image of .#*. The potentials W e . * are the
physically significant ones since they comprise all the Her-
mitian potentials in 7.

The asymptotic expansions derived in the next several
sections are a manifestation of the smoothness of the poten-
tials W (x). For this reason it is convenient to further classify
the potentials in % * into subclasses in which derivatives up
to order M are bounded. We define F%C.F*
M=0,1,2,.., tobe

2.7)

7 = [W|We.9‘"*,fd|y|(k)|k|"<oo, n=0,1,...,M].
(2.9)

In fact, for We 5%, there exists a smallest finite positive
constant X (W,M ) such that

[ d itk i<k WPl n=01...0. 210)

We call K (W,M ) the bound constant of potential # in the
space 7 %.

If DL represents an arbitrary partial derivative in R,
multi-indexed by L =(/,l5....l;), 1;>0, with length
|L| =14 + 1, + -+ 1;, and given by

1, 1
DL= (i) ( d ) (2.11)
ax, dx,
then We 7%, implies
(D W )x)| <K (W,M)Eull, |L|<M. (2.12)

It is useful to decompose the matrix measure x into the
product of the total variation measure |¢| and a matrix func-
tion with unit Euclidean norm.

Lemma 1: Let u € #, then there is a unique |z|-mea-
surable matrix function 4:R?—C">" such that

|d(k)| =1, VkeR?, (2.13)
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and

[[dute)= [ dwikraie) vEea.

Proof: Since p<|u| the Radon-Nikodym theorem im-
plies the existence of a |12|-measurable L '(|u|) function 4 (k).
The proof that 4 (k ) has Euclidean norm equal to unity fol-
lows from a simple modification of the argument Rudin?!
(Theorem 6.12) gives for the scalar case. a

For scalar problem (r = 1} the potential class ¥ was
introduced by Ito?* to study the Feynman path integral re-
presentations of e /%, Later, Albeverio and Héegh-Krohn?*
used .7 for the same purpose and in a fashion similar to our
treatment of the kernel form of the Dyson series.

(2.14)

Ill. ASYMPTOTIC EXPANSIONS FOR e~

Throughout the remainder of the paper it is always as-
sumed that W e & *. For this class of potentials the Hamil-
tonian H is defined as the self-adjoint extension of H ,, in
L*R9,C"). We also let the symbol W stand for the linear
operator on L *(R?,C") given by multiplication in C” with the
potential function W (x). Inequality (2.6) implies that W has
the operator norm bound || || <||x||; this in turn means that
H is semibounded with lower bound H> — ||u||. Because W
is bounded, the unbounded operators H and H, have com-
mon domains & (H ) = 9 (H,)CL*R?,C"). Take A = o(H )
to be the spectrum of H and {E, |1 €A } to be the unique
family of spectral projectors generated by H. The semiboun-
dedness estimate above tells us that A C[ — ||¢||, ). The
analytic semigroup operators are then defined by their spec-
tral integrals

e = Je‘”‘dE,l, zeD. (3.1)

A
Restricting z = B> 0 gives us the heat operator e ~#, Re-
placing H by H,, in (3.1) determines the free heat operator
e FHo,

Before proceeding with the derivations we introduce a
number of the notational conventions that will be employed.
The Hilbert space on which the semigroup operators act is
# = L*}R?,C"). On this space {-,-) represents the inner pro-
ductand ||f]| = (£, f)"/* the associated norm. For example,
if f,g € 7 then these functions have r components [i.e.,
F=(fi»Sos[,), where f; € L*(R?) and similarly for g] and
the 7-inner product is

f& =3 (£l

i=1
where (-,-) is the inner product on L *(R?). The general L?
norm for fe L?(R?,C") will be indicated by ||f||,. The nth-
order iterated parametric integrals which enter the Dyson
expansion will be abbreviated by

(3.2)

1 1 3 n—1
[are=[ e, [ atr["" e, 3.3
> 0 0 0
and the iterated 2 measure integrals
[aru= [ dutk) [ dutt,_ p- [t .4

Note that for differing values of x, and x,, generally
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W)W (xa) # W (x) W (x,), (3-5)

or equivalently du(k,)du(k,)#du(k,)dutk,). This noncom-
mutivity of the potentials W (x,), W (x,) is the most significant
structural distinction with the scalar problem. Our choice of
the Euclidean norm (2.3} for the matrix measures 4 is made
on the basis that this norm definition for u is the one that
makes the bound estimates for the vector problem closely
parallel to those that enter the scalar case. As a result, we are
able to adopt many of the proofs for the scalar problem with
only minor alterations.

Several simple mathematical functions occur repeated-
ly in our analysis so it is convenient to introduce an abbrevi-
ated notion for them. For i = 1,...,n, let £, €[0,1], set

O (£,.€,) = min{&)(1 — £,).6.(1 — &)}, (3.6)
For k;, € R? define the polynomials in k; by
ap(Eresbnikrsky) = E O (b m)kikm, (3.7)

Im=1

b,,(fl,--.,é-,,;kl,---,k,,) = IZI [(1 - §I)x +§Iy]kl’ (3.8)

where k, k,, denotes the scalar product in R?. Furthermore
we denote the scalar free diffusion kernel by

h(x;2) = (4mzq) ~*/ exp{ — |x|*/4zq}. (3.9)

The Dyson series for e ~## is obtained by iterating the
identity®*

e—ﬁff:e*ﬁ”o—rdﬁle‘B’HVe_‘B"ﬁ‘W°- (310)
0

The constructive series representation for U (x,y;z) given in
Lemma 2 and Theorem 1 results from the analysis of the x,y
kernel analog of the Dyson series {3.10) followed by an ana-
lytic extension from the positive real axis 8 € (0,0 ) toz€ D.
Except for some minor technical details in handling the vec-
tor normon C", Lemma 1 permits one to adopt in an obvious
way the proofs given in Ref. 1. We have the following results.

Definition 1: Let We F* For each zeD, let
F(2):R? X R »C™" be the function defined by the series

Flxyz) = 2 B, (xy32), (3.11)
where By(x, y;z) = I and
(x,y,z)—(—z)"f d"s*fd meTHE . (3.12)

Lemma 2: Let W e % *. The function F (x,y;z) has the
following properties.

(i) Let D, be any compact subset of D. The series (3.11) is
absolutely and uniformly convergent for all
(xy;z) e R* XR? XD,. Furthermore, F,,(x,y;z) has the
bound

|F,, (x,p;2)| <elllil, (3.13)

(ii) F (x,;2) is a C™" valued holomorphic function in D
and continuous in D. It is jointly continuous in R? X R?.

In order to proceed further, let us define the free analyt-
ic semigroup kernel by

Uglx.ysz) = h(x — p;2), zeD\{0}, (3.14)
where & is (3.9). With this notation we have the following
theorem.
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Theorem 1: Let We F*
UR? XR? X(D \ {0})—»C™" by

Uxy;z) = Uglxp;2)F (x,:2).
(i) For all z€ D and all fe 77,

(e~ )x) = fdy Uxypz)fly), aa xeR?. (3.16)
(i) Suppose € R, t #0, and fe L (RY,C" )n%,

€)= [ BUpY) aa xeRe. (317
If f€  then

(e~ itHf)(x) =s-lim dy Ux,yit if ().
Yoo J)y<y

The form of Theorem 1, in particular part (ii), for time-
evolution kernels is the best result that can be expected since
if H is replaced by H,, then (ii) is the standard®® representa-
tion of the free time evolution kernel. Related results on the
existence of time evolution kernels have been obtained by
Kitada,?® Kitada and Kumanogo,?’ Fujiwara,”® and Zel-
ditch.”

Turn now to the problem of demonstrating that
U (x,p;it /f) and U (x,p;f ) are fundamental solutions of their
respective Schridinger and heat partial differential equa-
tions.

Proposition 1: Let W e F ¥, the function U (x,y;it /#) is
the fundamental solution of the Schrédinger equation

Define the function

(3.15)

(3.18)

# % Ulngsit /) = H o Ulxgsit /), 1 0, (3.19)
that satisfies the delta-function initial condition
Ulxy;it /Ay —b(x — yM, ast—0. (3.20)

Proposition 2: Let W € 7 %, the function U (x,y; B ) is the
fundamental solution of the heat equation

d
- ‘ZEEU("»}’;B)=H(J=)U(X:.Y£), B>0, (321)
that satisfies the delta-function initial condition
Ulx,y; B)—>b(x —y)I, aspf—0. (3.22)

Proof: Propositions 1 and 2 have similar proofs. We
shall write out the proof of Proposition 1. First substitute
expression (3.15)into Eq. (3.19). So U {x,y;it /#)is asolution of
(3.19) if and only if F (x,y;it /#) is a solution of
iﬁ%F(x,y;it /fi) = {H(x, — _z_?_ (x —y)V,I] F(x,y;it /).

(3.23)
The function F (x,y;it /#) as defined by series (3.11) converges
uniformly in R? XR¢ to I as t—0. Furthermore it is well
known that Uy(x,y;it /#) is a delta function in the limit +—0.
Thus U (x,y;it /#) obeys the initial condition (3.20). So it suf-
fices to prove that F(x,y;it /fi) satisfies (3.23) for all £.

To proceed further, consider the terms B, (x,y;it /#) in
the series expansion (3.11) for F. Make the change of variable
& =(1 —1¢,/t), i = 1,..,n for the integral expression of B,,.
One obtains
B, (xy;it /)

= (_ i)"f dt,,fndt,,,,.--fzdt,
%/ Jo o o

X fd"p exp{S,}, {3.24)

458 J. Math. Phys., Vol. 26, No. 3, March 1985

where the exponential argument is
S, eyt bk k)

1t
(t, At,, — -’T’”—) kk,,

n

=—ig Y

Im=1

+13 [ Lxst (1—i’-)y]k,. (3.25)
=il t
Here the notation ¢, At,, is
t; At,, =sgn(t )Min{ |z, |,[¢,.[}- (3.26)
Note that S, has the algebraic property
S, (xpitye bk k), -
=8, (xytit,_ 3Kk ) +ixk,. (3.27)

Now assume W e .7 ¥. Using formula (3.24) together with
identity (3.27) gives one the recursion relation for 21,
a it
i — B, ( s ——)
! ot o #i
= [ — qdx — (i#/t)x — )V, ) B, x.p;it /#)
+ W(x)B, _ {x.y;it /5). (3.28)

The assumption W € ¥ ¥ is needed in order to justify passing
the derivative operators through the multiple integral in
(3.24). The last step is to sum (3.28) from # =1 to oo. If
W e F%, all the infinite sums are absolutely and uniformly
convergent in R? X R?. In addition, the n-summation may
be interchanged with all the differential operators appearing
in (3.28). Thus (3.23) is satisfied for all x,p,z by F (x,y;it /#)
defined through series (3.11). a

The solution of (3.19) and (3.20j is appropriately termed
fundamental. All other forms of solution of the time-depen-
dent Schridinger equation are implied by Proposition 1. For
example, one immediately obtains the following statement of
the Cauchy-data problem.

Corollary 1: Let W € F ¥. Suppose f is any wave packet
(element) in L Y{R?,C" )", Then

Yix,t)= f dyU (xy;it /8 (y) (3.29)
is a solution of

iﬁgt— Yt ) = H o Yixot), (3.30)
with the Cauchy initial data

¥(x,0) = f(x). {3.31)

Proof: This follows from an obvious modification of the
argument demonstrating Proposition 1. O

The remainder of this section implements a reordering
of the series expansion for F (x,p;z) and obtains the higher-
order asymptotic expansion (1.10). It is proved that the num-
ber of terms M in the expansion is solely a function of the
order of the bounded partial derivatives that W (x) supports.
Explicit formulas for the diagonal and nondiagonal values of
P, (x.y) for all n are found. The remainder term E,, (x,;z) is
given a bound that is uniform in both R?XR? and
arg z € [#/2, — w/2). It is observed that the asymptotic ex-
pansion (1.10) may be freely differentiated with respect to all
the variables of F {x,y;2).
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Proposition 3: Let W e # % ,.,, and let X be the corre-
sponding bound constant of W in the family ¥ %, ,). For
allze Dand n>1,

(=2"*"

z (n + m)! q Dm,n+m(xay)+En,N(xxy;z)-

m=0

B, (xy;z) =

(3.32)

The coefficient functions D,, , , ., (x,y) are jointly and uni-
formly continuous in R? X R? and are represented by the
parametric integrals,

Drm s b= (m;n)f "é’fd "ula, e,

n>0, m>0, (3.33)

where the factor in front of the multiple integral is the bi-
nomial coefficient. Furthermore, D, (x,y) =1, and for
m>1, D, ..(xy) = 0. The coefficient matrices and remain-
der term have estimates

Dmcatio< ("5 k(K7 34
ate Uzl lel)” (lzlgn’K2\V+!
|E, »(x52)| < AN £ 17 ( 7 ) , (3.35)

for m<N and n50.
Proof: The argument for Proposition 5, Ref. 1, is easily
modified to accommodate the matrix nature of (3.32). 0O
The asymptotic expansion of the analytic semigroup
kernel U (x,y;z) follows from Proposition 3 and Lemma 2 for
F(x,y;z). Suppose W € F %, .. ;, then F-series (3.11)is decom-
posed into two parts:

0

i B,xyz)+ Y

n=M+1
Inserting (3.32) into (3.36) with NV = M — n constructs the
M-term power series in z for F (x,;2) [Eq. (1.10)]. The defini-
tion of the error term in (1.10) is then

Flxyz) = B,(x.yz). (3.36)

M )
Eyxyz)= Y E.m_a.lxp2)+ Y B,x»2)
n=0 M

n=M+1
(3.37)

It is straightforward to see that E,, is of order O (|z|¥*').
Concise bounds for E,, follow from the bounds (3.35) and
the absolutely convergent integrals that define B, (x,y;z). By
this process it is found that the following theorem holds.
Theorem 2: Let We #%,,, , and K be the associated
bound constant in the space F%,,,,,. Let U(x,y;2) and
0(x,y,z) be the integral kernels of operators e~ *H and
~*Ho | respectively. Then for all z € D \ {0},

U xyiz) = Uy [ >t (xy)+EM(x,y,z)]

(3.38)
where the ™" valued coefficient functions are [P,(x,y) = I]

n—1

2 q"D,,.(xy), n=1,..M
m=0

The coefficient functions P, and the remainder E,, have
R? XR? uniform bounds for z € D

|P, (e )| <(lle]] + gn*K 274y

P,(xy)= (3.39)

(3.40)
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and

|Epxp;2)| < Uzl “1 + quKz]MH + elzlllull} i

(M + 1)t el

(3.41)

Several comments are in order. Although we do not
formulate it as a theorem, it is apparent that if
WeF 3ty +140 » then one may differentiate the F-asympto-
tic expansion j times with respect to z (for details see the
proof of Theorem 2, Ref. 1). The resultant identity is an
asymptotic expansion with uniform (in x,p,arg z) error term
of order O (|z|™* ! ~/). Similar conclusions apply to differen-
tiating (1.10) with respect to the variables x and y.

Equation (3.39) contains the general formula for the co-
efficient matrices that appear in the heat-kernel expansion
(3 38). The x#y off-diagonal formulas for the coefficients

P, (x.y) have a geometrical character. Denote by § ; the linear
path from x to y parametrized by &,

E=(l—gx+&y (3.42)
In terms of this linear path the formulas for P,{x,y) and
P,(x,y) become

Pyxy) = f dg, W) (3.43)
Py =2 f dé, f dg, Wk W (&)
- 2qfo A E(1—ENAWNE).  (3.44)

So, Py(x,y)is just the linear average of W along on the straight
line drawn in R? between x and y. In P,(x,y), the ¢ part is an
average of AW weighted by the polynomial &,(1 — &,). Of
course, the parametric integrals over £, are inherited from
the time-ordered parameters that appear in the Dyson
expression (3.11).
The functions simplify markedly on the x = y diagonal.

If x = y then &, = x and is thus independent of the value of
£&;. So in the integrals (3.43) and (3.44), and in general, the
potentials W can be taken outside the parametric integration
d" £. The parametric integral 4" £ multiplies a given polyno-
mial in £,,§,,...,£, and yields a numerical coefficient. In this
way one is able to determine all the formulas for diagonal
values of P, . Specific formulas for P, through P, are

Pyx.x) = W(x), (3.45)
Pyxx) = W(x) — lgA W )(x), (3.46)
Py(x.x) = W(x) — q{iW (AW ) + YAW )W + J(VW 2} (x)

+ $2%(4 *W)(x), (3.47)
Pxx) = Wix) — q(3W*AW)

+iW AW )W + AW ) W2

+W (VW + (VW)W (VW) + VWP W }(x)
+ WA W)+ JA W)W + JAW
+{VW)VAW)] +3[VAW) (VW)

+ /W) x) — A4 W )x). (3.48)
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If these coefficients are compared to the known formu-
las®3° for the r = 1 case we see the first structural change
occurs in the P;(x,x) coefficient, where the noncommutivity
of W and AW lead to the symmetric combination
IWAW + LAWW rather than WA W. The result available in
the literature that comes closest to (3.45)—(3.48) is the deter-
mination by Fulling®' of the coefficient matrices P, for 7> 1
but with space dimension d = 1. In this special case, com-
plete agreement is found with Fulling’s coefficient expres-
sions, including the n = 5 coefficient which we have not giv-
en above because of its substantial length.

Finally observe the symmetry that the P, obeys as a
consequence of the self-adjoint nature of H. Since H is self-
adjoint, so is e “#¥, B> 0. If * denotes the adjoint on C™",
then the integral kernel of e ~#¥ satisfies

UlxyB)=UpxB)* (3.49)
Inserting (3.15) and series (1.10) in the above identity gives
P,(x.y) = P, {yx)*. (3.50)

This follows since 4 (x — y;3) is real and invariant under
x<>p. If r=1, then (3.50) and the symmetry P,(x,y)
= P, (y,x) requires that the P, (x,y) be real valued.

The semiclassical facet of the heat-kernel expansion
(1.10) resides in the fact that the P, (x,y) are polynomials in g
of order n — 1. It has been shown>>3? in the r = 1 case that if
the asymptotic series for (1.10) is exponentiated, then a non-
perturbative semiclassical approximation for U {x,y;z) is de-
fined. Furthermore, if x =y the Wigner—Kirkwood semi-
classical expansion®*?* is recovered as a special case.

IV. RESOLVENT KERNEL EXPANSIONS

This section describes the large z asymptotic expansion
of the resolvent kernel R (x,p;z). The technique utilized is to
investigate the behavior of R (x,y;z) by using the Laplace
transform (1.11) that connects the heat kernel to the resol-
vent kernel. In the first instance, the Laplace transform
(1.11) is defined as a convergent integral only on the restrict-
ed set Rez< — ||u||. However by exploiting the holomor-
phic character in z of the kernels U (x,y;z) it is possible to
analytically continue the Laplace transform representation
of R (x,y;z)to the domain V5. With this approach the Laplace
image of asymptotic expansion (3.38) for U (x,y;z) becomes
the asymptotic expansions for R (x,y;z). Furthermore the er-
ror term bound (3.41) for E,, (x,y;z) suffices to provide an
R? X R? uniform error term bound for the R {x,y;z) asympto-
tic expansion.

Let { E |1>0] be the family of spectral projectors that
is defined by H,,. In terms of E §, the spectral representation
of the free solvent is

= 1

rolz)=(Hy—2)7 ' = J. ——dES, z¢[0,c0).
o A—z

Consider first the kernel representation of the free resolvent.

Lemma 3: Suppose Re z <0, then we have the follow-

4.1)

ing.
(i) For each fe L*R?,C"),

(roz) £)x) = f T et f)x)dB, aa x.  (42)
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(ii) Let Co= {z|ze C,Rez<0}. Define the function
RyR? XR? X Co—C™" by the integral

Rofrpsz) = f FUrfx.y; B)dB. (4.3)

R,(x,y;z) is translation invariant in R X R? (i.e., it depends
only on the variable x — y). For each pair x,p (x #y) Ry(x,;z)
is an analytic function in domain C,. Finally, R(x,y;z) satis-
fies the integral estimate

fdy |Rofx.p32)| < Vr .
—Rez

(iii) For z € C, ro(z) is an integral operator with an L *-
convolution kernel R(x,y;z). For each fe L*R?,C"),

(rol2) £ )x) = j dy Rolxy2) 0,

Proof: These results are all elementary but we will write
out a detailed proof in a form that allows an easy extension to
include the (H — z)~! case. Start with (i). Observe that the
right-hand side of (4.2) defines an L * function of x:

J dx L " e~ B f)x)dB

< f dﬂl f dﬂz el B+ B)Rez
0 ]

(4.4)

aa. x. (4.5)

2

x [ ax fle= % £)wllle =5 o)

© 2
<”f||zq dﬂem,) <o (4.6)
(4]
The second inequality follows from Jje ~##||<1. Let g be an
arbitrary element of L *(R?,C"). Then

a=(a [ e mriap)

= f dx g(x)* [f e%(e ~PHe f)(x)dp ] 4.7)
(4]

Using the Schwartz inequality and |le %% f||<|| | it fol-

lows that the dx df3 integral in (4.7) is absolutely convergent.

Fubini’s theorem allows us to interchange the order of inte-

gration giving

A= f " (ge—PHf)dg

= f: e&[fe—&ug,Eg f)]dﬁ.

The last equality employs the spectral theorem for H,,. The
spectral measure has finite total variation bounded by
|| gll 1| £||- Further, é®<*dB is absolutely integrable, so the
order of integration in (4.8) again can be reversed. Using

(4.8)

® B—a) - 1
L ¢ % A—z (4.9)
(4.8) takes the form
4= Lw ,11 2 d(g.E} [} = (gri2)f). (4.10)

The equality of (4.10) and (4.7) for all g € L *(R?,C") implies
(4.2).
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(ii) The expression (3.14) for Uy(x,y;,8) shows that the
integral (4.3) for a fixed pair x,y {(x#y) is absolutely conver-
gent for Re z < € < 0. Since the integrand of (4.3) is analytic in
C, it follows that the integral defines an analytic function for
Re z < €. Since € may be selected to be as small as desired, the
allowed domain for z may be extended to C,. Here, R(x,y;z)
is translation invariant because Uyx,p;8) is a function of
x — y. Finally, since A (x — y;8) is real and positive,

[ @irdal< [~ emir [ ayhix—y)] s
(4.11)

Thediffusion function {(x — y;f }isnormalized sothatthedy
integral is unity. Equation (4.4) follows by carrying out the
dp integration.

(iii) Identity (3.16) with W = O states for fe L %(R?,C")

(e~ 5% £)(x) = f dy Uy B)f0), aa x  (4.12)
Combining this with (4.2) gives us

iV = [ { [ @y v o) a3

Changing the order of the df3 dy integrals here leads at once
to formula (4.5) with R (x,y;8 ) defined by (4.3). Now, consid-
er the justification of this interchange of integral order. The
iterated integral on the right of (4.13) is majorized by

)= [T e {[ayhx -y 0] ds. 14

All the functions in (4.14) are non-negative so it may be writ-
ten

)= [ |[" emnix—pus) 110

- de rolx — y;Re z)| f)|,

where 75(x — y;Re z) is just the resolvent kernel R {x,y;Re z)
in the 7 = 1 case. Estimate {4.4) means that (4.15)is an L -
convolution. Now the Hausdorff-Young inequality for con-
volutions®® states that if we have a convolution

(4.15)

W)= [dy K- 0) (4.16)
where K € L '(R%) and ¢ € L? (R?), p>1, then
11, <UK |11l 1l,.- (4.17)

Applying (4.17) to (4.15) with p = 2, it follows that 4 (x) is
L?R?) and thus 4 (x) < o for all but an exceptional set of
measure zero in R?. So, the majorant {4.14) of the iterated
integral is absolutely convergent almost everywhere in x.
Outside this exception set we apply Fubini’s theorem in or-
der to justify the change of integral order in (4.13). O

The next step is to extend our analysis to treat the full
resolvent rz). For the self-adjoint operator H, we let
{E;|A> — ||u]|} be the family of spectral projectors. The
resolvent then has the spectral representation

r(z):(H——z)“‘=fjH " 1_4E,, zepH).

4.18
12 (4.18)

Lemma 4: Let We 5 * and Rez< — ||ul|, then we
have the following.
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(i) For each fe L*R%,C"),

(H2) f)lx) = f e~ H f\xdf, aa. x.

(i) Let C, = {z|ze C,Rez < — |ju||}. Define the func-
tion R:R? XR? X C, —~C™" by the integral

R(xysz) = f AU (xy;8)dp.

For each fixed pair x,y {(x #y}, R (x,y;z} is an analytic function
of z with domain C,, . Furthermore, forz € C,,, R (x,y;z) satis-
fies the pointwise bound

R y;2)|<Jr|RolxpsRez + ||, VxyeRY.  (4.21)

(iii) If z € C,, r{z) is an integral operator with the kernel
R (x,y;2). For each fe L3R?,C7),

(4.19)

(4.20)

)= [ dy Risa) S0 . x. 4.22)
Proof: The estimate
le=fll<e®esl) £, fe#, BeD,  (423)

and estimate (3.13) for |F,, (x,;8)| allow us to follow the
same line of argument used to prove Lemma 3 provided that
the restriction Rez <0 is shifted to Rez< — jju|l. The
pointwise bound (4.21) results from

fo "B | < |G

< f°° LR+l (x _ yB)dB
(4]

<rIRfxyRez+ lul)l,  (4.24)

where the second inequality is a consequence of (3.15) and
(3.13). 0

The existence of the Laplace transform {4.2) requires
the restriction Re z < 0. However, the domain of analyticity
of Ry(x,p;z) is considerably larger. First fix the polar coordi-
nate representation of z by choosing arg z € [0,27) with the
positive real axis corresponding to arg z = 0. With this nota-
tion, the transform (4.3) may be evaluated explicitly®’ yield-
ing a modified Bessel function. For x#y,

2 ilx—y| 1—d/2
(4’17?)‘1/2 qu/zzuz

XK(d/Z)—l( _iq_1/221/2!x_y“1, (4.25)

where z*/2 is the square root with positive sign. The right side
of (4.25) is an analytic function with domain C\ [0, w0 ).

In the subsequent anlaysis it is shown that one may
exploit the analyticity of U (x,y;8) in order to implement an
analytic continuation of R {x,y;z) from the domain C,toa
larger subset of C. The method utilizes contour rotation and
depends only on the analytic semigroup properties obtained
in Sec. III.

We introduce some convenient terminology. Hereto-
fore, B has denoted a positive number. Now let 8 € D and
specify the polar form to be B = |8 |¢'*%f with arg B € [7/
2, — m/2). For any § € (0,77/2) define two linear rays in D by

L*8)={BeD|+argB=n/2—6}. (4.26)
Here, L *{6) is a ray in the upper right quadrant of the com-

Rofr,yz) =
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plex S-plane and L () lies in the lower right quadrant. Let
us introduce special notations for several different domains
in C for the z-variable appearing in R (x,y;z). For 6 € (0,7/2]
define
V+)={zeC|25<argz< 7},
V~(6) = {zeClr<argz <27 — 26}.

(4.27)
(4.28)

Finally indicate by V'* (§) + ( — 2’} the set in C defined by
translating the set ¥+ (§)by —z' € C,ie,z+2 € V* (§).
Proposition 4: Let W e . * and parameter 8 € (0,7/2).
Define D i = V* (8) + (— ||e/l(sin 6) 7).
(i) Ifeitherze D ;- orze D ; and fe L*R%,C"), then

H2) f)x) = J; v e P f)\x)dB, aa x, (4.29)

where the integration path L *(8) is applicable for domain
Dg andL ~(§)forD; .

(ii) Define the functions R * :R? X R? X D & —C"™" by
the integral

R *(xyz) = fL ., EUIBYE.

For each fixed coordinate pair x,y (x#y), R *(x,p;z) is an
analytic function of z in D ;- and R ~(x,y;z) is an analytic
function in D ;. The functions R+ satisfy for allze D ;F
the pointwise estimate

IR *(x,p;2)| <(r/(sin 8)¢"? ~ )| Rolx,y; — |2o[sin® 8)],
(4.31)

(4.30)

where z, = z + ||u||(sin 6) .

(iii) For z in either D ;- or D ;, then r{z) is an integral
operator with a kernel given by R *(x,p;z) or R ~(x,y;z), re-
spectively. For each fe L*R?,C") and z in the appropriate
domain D § or D 5, then

(z) f)lx) = f AR ey fO), aa x (@432

(iv) R* (x,y;2) are analytic continuations of R (x,y;z)
from domain C, to the domains D ;*. Specifically, for x #y,

R*(xpz) =R (xp;z), zeC,nD;", (4.33)

R (xyz)=R(xy;z2), zeC,nDs . (4.34)

Proof: (i) Define u:R? —C" by the integral

)= [ e £ (4.39)
L *(8)

By employing the Schwartz inequality it is easily shown that
the L 2(R?,C") norm of u has the bound

lull< [, 1e*] le=" 7] lds .
L *(8)

In order to establish the finiteness of the L *(6) integral in
(4.36)it suffices to find an |df3 | integrable bound. To this end,
introduce the following polar coordinates: 8 = t expli(7/
2-8), t=I|Bl, BeL*(d); zo=z+|lsins)™"
= |zo|exp(i€@). If z, € V' *(J), then 8 € (28,7). Thus for all
ze D g one has

|e%| <exp( — ¢ |zolsin(6 — &) — ¢ [|ue]])-
Furthermore, inequality (4.23) provides the bound

(4.36)

4.37)
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lle =27 fli<e W= |l £]l, BeL ™).
Taken together, (4.37) and (4.38) give the estimate
€% lle =7 fl| <exp( — ¢ |zo[sin & — ¢ [lue||(1 — sin & )| £,
(4.39)

where we have used the fact that sin(@ — &)>sind for
z,€ V *(5). So (4.36) acquires the bound

lell <A1/l (1 = sin 8) + |zolsin 6} < 0. (4.40)

Letgbean arbitrary L >(R?,C") element. Form the inner
product

() = [drgee {[ e ryop). (841

Inversion of integral order is permitted here since bound
(4.40) together with the Schwartz inequality shows that the
dx|dp | integral is absolutely convergent. Introducing the
spectral representation for { g,e ~#2f) gives

(gu) = fm’ o U_w”#” e—#d (g,E, f)] B (442)

Upon utilizing

1
fE-Adp —
J;,*(E) o A

(4.38)

(4.43)
—z

and a final inversion of integral order [valid because the mea-

sured { g,E; f) is of finite total variation and |¢®| has esti-
mate (4.37)] one obtains

()= [ Lacem ) =(arary, sy
— el A —2
or since g is arbitrary,
u=riz|f. (4.45)

This is (4.29) with contour L *(5) and z-domain D ;. A simi-
lar argument applies to contour L ~(8) and domain D ;.

(ii) Given relationship (3.15) and estimate (3.13) it fol-
lows for z € D & that the integral (4.30) is uniformly conver-
gent. Since the integrand is analytic the integral defines a
holomorphic function of z. The convolution bound (4.31)
results from majorizing the integral with estimate (3.13) and
inequality (4.37).

(iii) Combining identity (3.16) of Theorem 1 with Eq.
(4.29) leads to

(rz)f )x)
- L S { f dy U(x,y;B]f(y)] dB, aa. x. (4.46)

Inverting the order of integration gives {4.32). In view of
estimate (4.37) for |¢®| and the bound

|FxyB)f )| <e 1] £(p)], (4.47)

the convolution argument given in (4.14) and (4.15) may be
used to show that the integral order in (4.46) may be reversed
except possibly on a set of x having zero measure.

(iv) Consider the case with z € D 4 . Let s and S be real
parameters 0 <s<S < «. Define a closed contour in the
analytic semigroup domain D by joining the four segments:
Ci = (BIs<B<S}, C, = (BIB=S ¢*, $[0,/2) 5]},
C,={B|B=1te"?~9 s<t<S} and C,= {B|B=s¢",
¢ €[0,(m/2) — 6]}. The kernel U(x,y;8) is analytic in D.
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Cauchy’s theorem  applied to the  contour
C, 4+ C, + C; + C, states
§ & UxyB)dB=0. (4.48)

We restrict z so that it lies in a subset of the union of D ;- and
C,, ; specifically we take

Rez< — ||u||/sind, zeDj. (4.49)

Now estimate the contribution of the C, integral as S— .
Let the variable z,, be that defined after (4.36). Assume €>0
and note that condition (4.49) is obeyed if

0'€(0,m/2), |zo|>e€ (4.50)
Employing estimate (3.13), a computation of the Euclidean

norm shows that
— 25)Se — S
eBzU -8 \d, < r(_ﬂ._____
J;:, BB 2dmgS )7

where a > 0 and is the minimum value of the two numbers
sin @' and sin(@’ + #/2 — 6 ). Thus the C, contribution to
(4.48) vanishes as S—> . For x#y, similar reasoning and
conclusions apply to the C, contribution as s—0. Thus after
taking the limits S0 and s—0, (4.48) becomes

PR f: U (x.y8 ).

This is just equality (4.33) for the z allowed by (4.49). For
z € D ; the argument proceeds by taking the contour in D
that is the conjugate image of C, + C, + C; + C,. O
In view of the fact that R * (x,y;z) and R (x,p;z) represent
the same analytic function we will drop the + superscripts.
Furthermore, we denote by F(§) the z-plane sector
V T(8)u¥ ~(8). Observe that inequality (4.31) provides in
V({6)+ (— |lullsin8)~ ') an L '-convolution bound for
the resolvent kernel R (x,y;z). Convolution bounds common-
ly occur for resolvent kernels of elliptic differential opera-
tors. For a recent discussion of this topic see Gurarie.>®
If the potential W (x) is set equal to zero, the the conclu-
sions of Proposition 4 specialize to the following corollary.
Corollary 2: Let 6 € (0,7/2), then we have the following.
{i) For z € V' (8) the resolvent operator r,(z) has a kernel
RyRY XRY X V+ —C™<" given by the integral representa-
tion

Zp= Izo|ei(1r/2 + e'l’

, (4.51)

(4.52)

Rox,ps2) = jm) S Uyxy:8)d, (4.53)

where the path L *(8)is associated with domain ¥ *(§ ), and
L —(6) with ¥V —(5).
(ii) For all x,y with x#y and positive integers #,
a n
(2 Roswai= [ | srervymmsvip,
dz. L %)

for z in the appropriate ¥'* (§) domain.
(iii) Ifn + 1 >d /2 and z € ¥ (§),

|(2) Rl
< Jrl(n+1—(d/2) ( 1
(4mg)?”? |z|sin &
uniformly in R? X R?.
Proof: (i) This is the statement of Proposition 4 that re-
sults if W =0.

(4.54)

n+1—(d/2)
) (4.55)
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(ii) The absolute integrability of the integrand of (4.54)
justifies passing the partial differentiation (3@ /3z)" through
the integral sign in (4.53).

(iii) The right side of (4.55) is the outcome of taking the
modulus of the integrand in (4.54) and completing the [df |
integration. Symbol I" denotes the gamma function. O

In the following we set ¥; = D ;-uD ;. This is the al-
lowed domain for the variation of z. Further it is convenient
to denote the nth z-derivative of Ry(x,y;z) by

R{xy;z) = (—a*) Rofx.y;2).

oz
The asymptotic expansion of the resolvent kernel of r{z) for
large z is described by the following theorem.

Theorem 3: Let We #3%,, ., ,, and let K be the associat-
ed bound constant of potential W in space . 35, 1)- Sup-
pose & € (0,77/2).For z € V5 and all x,y (xy) the resolvent
kernel of (H — z)~ ' admits the expansion

(4.56)

Riyz)= 3 (_,,,l)n P, ()R §x.p;2) + Tog (x,932).
B (4.57)
Define the constant C = C (||u||,M ) by
= leg™+! MK 2\M
=m0y [(1 KT ) + 1]' (458)

(i) For z € V5 and all integers M > 0 the error term has
the x %y nonuniform bound

C(sin 6 )M+ 2—(d/2)
Jr
X IR Moxp; ~ (sin® 8 )z + (sin & )[[ue(| )] (4.59)

(ii) If M + 2>d /2, then for z € ¥ the error term has
the RY X R? uniform bound
CI'(M+2—(d/2)

( 417'q)d /2
1

(sin 8z + [ju]| |+ 2=

Proof: If z& V,, then either ze D ; orze D ;. Sup-
pose the first. In this case, the resolvent kernel R (x,y;z) has
the integral representation (4.30) with contour L *(5). Since
We F 3%, the semigroup kernel U(x,;z) obeys the

asymptotic expansion (3.38) of Theorem 2. Thus R (x,y:z)
may be written

R (xyz2) = LW FUyx.p:B)

[Talx.52)|<

|TM(x’y;z)|<

X | (4.60)

- (—=B)
x| 3 ZLL sy + Buros)| .

(4.61)

The 7 series is finite and may be passed through the L *(5)

integral. Furthermore the individual terms in n are exactly

of the form (4.54), so

o (— l)" ”
R (xy;z2) = Zo PR Sxyiz) + Ty lx.p;2),

(4.62)

where the remainder T, is defined by

Ty lewsz) = f o VI BIEu ey BYB. (463
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If the upper bound (3.41) for E,, is used in (4.63) we have
Tube<C [ (6] [htc—pB)

X |8 |M+ 118 Hieel |dB |, (4.64)

where C is (4.58). Formula (4.59) for | T, | results if [¢*| is.

estimated by (4.37) and |h | is bounded by
2
[k (x — yB)I< B2 g 5),
4|8 |
(4.65)

Carrying out the |d | integration gives (4.59). Formula (4.60)
follows from (4.59) and (4.55). This argument extends to
ze D ; provided that contour L ~(8) is used to represent
R (x,y;2). a

A number of comments are in order. An examination of
the union of all allowed z domains ¥ shows that there is a
strip in C parallel to the positive real axis that is forbidden to
z. All z whose least distance to the positive real axis is less
than ||| are in the complement of all ¥;. Thus Theorem 3
does not allow one to take z arbitrarily close to the real z axis
in spite of the fact that R (x,y;z) is analytic for all
z¢[ — ||u||; oo ). This domain restriction appears in the analyt-
ic continuation technique of this section because of estimate
(3.13) for F(x,y;z). An examination of the proof of Lemma
2(see Ref. 1, Proposition 2) shows it has not used the fact that
W (x) is Hermitian. Series {3.11) will construct representa-
tions of e ~ *# for non-self-adjoint operators H as well as self-
adjoint ones. In the case of non-self-adjoint H the spectrum
is not confined to the real axis but may be any point in C not
exceeding a distance ||u|| from the positive real axis. Thus the
analytic continuation based only on estimate (3.13) cannot
penetrate the allowed spectrum of the non-Hermitian opera-
tors H.

Consider briefly the behavior of identity (4.57). If
n+ 1>d /2, (4.55) shows that the term R Y(x,y:z) has a
R? X R? uniform O (|z| ~" ~ !+ /%)) estimate. However, the
terms with n + 1<d /2 are singular at x = y. Since T,, is
bounded at x = y, one has the conclusion that the x = y sin-
gularities of R (x,y;z) and the singularities of the first n<(d /
2) — 1 terms of (4.57) must cancel. Finally, it should be re-
called that the asymptotic expansion (4.57) has been derived
assuming no other information about the potential W (x) ex-
cept the smoothness properties implied by the condition
WeF 3

In the physics literature an asymptotic procedure simi-
lar to the one used in this section but applicable to quantum
field theory in curved space-time may be found in DeWitt>®
and Christensen.*° In the r = 1 case, formula (4.57) is given
in Ref. 30 and obtained heuristically. The treatment in Ref.
30 gave no estimate of the remainder nor a determination of
the allowed z domain. In the d = 3, r = 1 case, Buslaev®
found a formula equivalent to (4.57). Specifically for a C*
rapidly decreasing potential Buslaev succeeded in finding a
bound of |T,,| for z lying on the spectral boundary
(z=A + 70). This bound decreases as A— + «. Agmon and
Kannai*! have obtained a somewhat related expansion for a
general class of elliptic differential operators defined on a
compact manifold.

L _exp ( _
(4mq|B )*7*
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The explicit expression of a Petrov type G solution to the Einstein-Maxwell equations is given.
This new solution is endowed with eight arbitrary parameters; mass, Newman-Unti~-Tamburino
(NUT) parameter, angular momentum, acceleration, electric and magnetic charges, and electric

and magnetic field parameters.

I. INTRODUCTION

In this paper we give the explicit form of a new station-
ary axially symmetric exact solution of the Einstein—-Max-
well equations. This solution has been obtained by applying
a Harrison transformation’ to the most general type & elec-
trovac solution in the coordinate form given by Plebaiiski
and Demianski.? Since the electrovac & solution possesses
six free parameters and the Harrison transformation incor-
porates to the seed metric additional electric and magnetic
field parameters, the generated new metric is endowed with
eight arbitrary continuous parameters corresponding to
mass, Newman-Unti-Tamburino (NUT) parameter (mag-
netic mass), angular momentum (Kerr parameter), accelera-
tion, electric and magnetic charges, and electric and magnet-
ic field parameters.

Il. THE METRIC ELEMENT

The metric can be expressed in the form
2 2 2 2
(I—pg\ P Q@ (1 — pq)

— 2 " do — Wdrl~ (1

The basic structural functions P and Q are

P=y— v+ 2np—«p*>+2mp* — (y +vip*, )

Q=7 +v—2mg+Kg’ —2ng’ — (v —vig*,
where m is the mass, n is the NUT parameter, 2v: = & + g2,
e is the electric charge, g is the magnetic charge, and x and ¥
are related with the angular momentum and acceleration

parameters (see Ref. 2).
The secondary function fis determined by

)

f=—(P+¢)'(1 -~ pg)?g*P - p*Q). (3)
The factor function {2 is defined as
N%=yy, y=1—2d¢—ad¥, (4)

where the complex parameter a = E + iB, with the con-
stants E and B representing the additional electric and mag-
netic field correspondingly.

The functions ¢ and & in formula (4) are the complex
Ernst potentials® of the seed 2 metric for the Killing direc-
tion d,,. They are given by

* Also at Secci6n de Graduados, Escuela Superior de Ingenieria Mecanica y
Eléctrica, Instituto Politécnico Nacional, México D.F., Mexico.
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1

& =f—2vp’¢/(P*+ &)+ ip* +¢) (1 —pg)~
X [A1 + pg)( P* + &) + 2vpa( p* — ¢
+2p°q’(ng — mp)), (5)
and
¢ = e+ iglpg(p — ig)~". (6)
At this point it is convenient to introduce the symbol &;
5:=E*+ B2
The function W, whose determination entails consider-
able labor, is
W=(g*P —p*Q)"'{(g°P + P*’Q) + 4(Eg — Be)p*Q
— 4(Ee + Bg)g’P + 6v8(¢*P + p*Q)
+ 45(Eg — Be)[yg’P + (y + vip’Q
+ (1 —pg)~°P’4QP]
+ 45(Ee + Bg)[yp°Q + (v —vIg°P
+(1—pg)~*¢’p’PQ ]
+ 81— pg) ’[MP+ NQ + S}, (7)
where the polynomials M, N, and S are given by

M =g — ¥ — Yy + 4vipq + dnyg® + Smypq?
+ (¥ — Vg — duypg’ + vy + 2vp°q
— 4nypq* — 6m(y + vIp’g’ + (v — vily — 3vipg’
+ 3x(y + vip’g* + [4mn — v{v + 29)1p°¢°
— 4m’p*q® + 6nly — vip’q® + 2m(y + vip’q*
+ 2mkpiq® + [4n* — k(v + v)1P%¢°),
N=p*{ — ¥ — yly — 4vgp — 4myp® — 8yngp*
+ (P — V2" + dxygp’® + 3vlv — 29)p’q* + 4mypq
+ 6n(y — vIg’p® + (v + V(v + 3vigp® — 3xly — vig?p*
+ [4mn — v{v — 29)1p*°q* — 4n’q"p* — 6m(y + v)g*p®
—2n(y — vig’p* + 2xng’p® + [4m* + «ly — v)1g°p°},
§= (v + v){2m(y — v) — 2mkp® — dmnp’q + 2n(y + vip’q
— 4m’p'q + 2np’ + 2mip*g*lp'’
+(r — V) — 2n(y + ) — 2nkg? — 4mngp
—2m(y —vig’p — 4n’q’p + 2mkp°q® + 2nkq’p*}qp?
+ 4m*[2n + 2mp* — xp*qlp°q*
— 4n*[2m + 2nq” — kpq*1q°p". (8)
The electromagnetic field is given by the two-form w,
® =Y £y + X" Adx”
= [do — Wdrl\d [¢™'[¢ + (E +iB)¥]]
+ #{[do — WdrI\d [y~ '[¢ +(E +iB)Z11}, (9)
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where » denotes the duality Hodge operator (see Ref. 3).
Alternatively, the electromagnetic field tensor can be deter-
mined according to the formula (2.3} of Ref. 4, or by using
the vector potential.®

The curvature quantities can be evaluated from the re-
lations given in Ref. 6. Because of their length we do not
include them in this report.
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The application of the Belinsky~Zakharov solution-generating technique, i.e., the inverse
scattering method, to generate stationary axially symmetric solutions to the vacuum Einstein
equations is reduced to a single quadrature when the seed solution is diagonal. The possibility of
having real odd-number soliton solutions is investigated. These solutions represent solitonic
perturbations of Euclidean metrics. The possibility of using instantons as seed solutions is also
investigated. The one- and two-soliton solutions generated from a diagonal seed solution are
studied. As an application, a unified derivation of some well-known static solutions, like the
Schwarzschild metric and the Chazy—Curzon metric, as well as other new metrics is presented. By
using these metrics as seed solutions, some known stationary solutions, like the Kerr-NUT
metric, the double Kerr metric, and the rotating Weyl C-metric, as well as other new metrics are

also derived in a unified way.

1. INTRODUCTION

Recently, the inverse scattering method'— (ISM) as well
as Biicklund transformations* (BT) have been applied with
success to generate new stationary axially symmetric solu-
tions to the vacuum Einstein equations. An example of new
metric generated using these techniques is the N Kerr met-
ric.>$ Also the ISM and the BT have been used to better
understand some known solutions, e.g., the Tomimatsu—
Sato (TS) solution’ with distortion parameter § = 2 can be
interpreted as the coalescence of two Kerr metrics.%®

The purpose of this paper is to use the Belinsky—Zak-
harov? version of the ISM to present a unified derivation of
some known stationary solutions, like the Kerr—-NUT met-
ric,>!" the double Kerr metric,®® and the rotating Weyl C-
metric,'"!? as well as other new solutions.!® To derive the
above-mentioned metrics we study a particular case of a di-
agonal multisoliton solution. Specializations of this solution
are some well-known metrics, like the Schwarzschild metric,
the Weyl C-metric,'* ' and the Chazy—Curzon metric,!”'®
as well as other new metrics. Then, we use this diagonal N-
soliton solution as a seed solution to generate new stationary
one- and two-soliton solutions. Specializations of these solu-
tions are the above-mentioned known stationary solutions.

In the application of the ISM to generate stationary
solutions one finds mainly two difficulties. First, the ISM
requires the explicit integration of an overdetermined sys-
tem of linear partial differential equations. To find integralis
that can be expressed in a closed form for the above-men-
tioned system of equations is not an easy task. Second, the
algebraic complexity of the solutions seldom allows us to
display their main features. In this paper we also study the
overcoming of the above-mentioned difficulties for the spe-
cial class of diagonal seed solutions.

In Sec. II we present a summary of the main formulas
used in the ISM and we study the possibility of having odd-
number soliton solutions. We arrive to the conclusion that
we can have real solutions that can be interpreted as arising
from solitonic perturbations of Euclidean solutions. In Sec.
III we study the “Schrodinger equations” for the wave func-
tions ¢, and in the diagonal case we reduce the integration
of these equations, along the poles’ trajectories, to a single
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quadrature. And we point out, since the ISM requires only
the knowledge of ¥, along the poles’ trajectories, the prob-
lem of finding soliton solutions is reduced to this single qua-
drature.'®

In Secs. IV and V we examine the one-and two-soliton
solutions generated from a diagonal seed solution, respec-
tively. In particular we give compact formulas for these solu-
tions.

In Sec. VI we study a particular case of diagonal N-
soliton solution that contains as special cases the above-men-
tioned static metrics. Also, we find that odd-number solitons
can be used to represent accelerated metrics. In Sec. VII we
present particular cases of one- and two-soliton solutions
generated using a diagonal N-soliton as a seed solution.
Among these particular cases are all the previously men-
tioned stationary solutions. In Sec. VIII we briefly discuss
the asymptotic and the singular behavior of the solutions
generated using the ISM. Finally in the Appendix we study
the possibility of using self-dual or anti-self-dual solutions to
the Einstein equations on Euclidean space as seed solu-
tions.?°

Il. THE INVERSE SCATTERING METHOD

In this section we present the main formulas of the ISM
used to solve the vacuum Einstein equations for the metric

ds* = e°ldr* + dz%) + v, dx* dx®, (2.1)

where the indices @ and b take the values 3 and 4. Here, 7,
and o are functions of z and r only (6,¢ )=(x>,x*). The Einstein
equations for the metric (2.1) tell us that if the determinant of
¥ is different from a constant, without losing generality, it
can be set equal to + 7, i.e.,

dety= —er?, (2.2)

where ¥ is the 2 X 2 matrix associated to ,,, and € takes the
value + 1 for the usual axially symmetric metric with Lor-
entziansignature( + + + — Jand — 1 for the axially sym-
metric metric with Euclidean signature (+ + + +).
When (2.2) is satisfied, the rest of the Einstein equations can
be cast in the form

vy + (v, =0, (2.3)
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g, = —r '+ @) " t(U*-V?, (2.4a)
o, =2 ' tr(UV), (2.4b)
Usry,y~', V=ryy™, (25)

where the subscripts  and z denote partial differentiation.
The condition of integrability of o, i.e., 0,, = 0,,, is exactly
Eq. (2.3), thus any solution to (2.3) will give us a o that can be
obtained as a simple quadrature of Egs. (2.4). Note that Egs.
(2.3)2.5) are completely equivalent to the corresponding
equations of Ref. 2.

Soliton solutions to (2.3) are obtained by solving the
“Schrodinger equations™

D,y = [(rUs + AVo)/(A* + )¢, (2.6a)
D,y = [(rVo — AUN(A %+ 7)1ty (2.6b)
Yoli—o ="%o» (2.6¢)
D,=4d, + [2Ar/(A2 + )13, , (2.7a)
D,=3d, — [2A%/(A?+)]d, , (2.7b)

for the wave function ¢,,. This wave function is a 2 X2 com-
plex matrix function of z, r, and the spectral parameter A.
Here, U, and V, are obtained by replacing ¥ in (2.5) by a
known solution to (2.3), ¥,. The solution ¢, is called the
“seed” or “background” solution. The knowledge of ¢, al-
lows us to find the new solution ¥ to Eq. (2.3), given by?

NOL YN

Yab = (Yolap — ; v (2.8)
Ly = mEYo)aymS /(7 + piss) (2.9)
N5 = mi Yolsa » (2.10)
m* =mEM ), (2.11)
MO =5 iy, (2.12)
B =a, — 2+ €[ — 27 + 17, (2.13)

where the sum convention on the indices @ and b has been
adopted. The indices & and / run from 1 to &, N being the
number of solitons, i.e., the number of simple poles that ap-
pears in the “scattering matrix” used to find? (2.8)(2.13).
Here, m{) and a, are sets of arbitrary constants and €,
= + 1. The only restrictions on ¥, used to find (2.8) are?
Yo = 7+ and det ¥,7#0. Equation (2.8) tells us that y =7
and

N
dety =(—1)""" [] pc*detv,. (2-14)

k=1

Since the actual space-time metric satisfies the condition
det ¥y = — r*, we can define a new matrix,

Y =ry/( — det p)*/?, (2.15)
that is also a solution of (2.3) and satisfies the conditions 3
= ()" and
~ dety™ = -7, (2.16)
whenever det ¥ <0. From (2.14) and the condition (2.2) for

Yo» We get
N
dety =¢e(— 1)V 1P+ T i ?. (2.17)
k=1

Thus, we can fulfill the reality condition (2.16) by taking
either an odd Nwithe = — 1 oraneven N with € = 1 (usual
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case). Hence, the odd-number soliton solutions can be inter-
preted as arising from solitonic perturbations of Euclidean
metrics.?*> We shall return to this point in the next sections
and in the Appendix.

The integration of (2.4) can be performed in an explicit
way. We get

2 N N+1
o =au+ il (] 1)

k=1

N
X H (e — )2 detl"]+1nCN, {2.18)
kil=
k>1l
where Cy, is an arbitrary constant and the expression
N
II (e —u)?
k=1

should be set equal to 1 for N = 1.

lll. THE FUNCTION v,

In this section we study the function ¥, solution to Eqgs.
(2.6) associated with the special class of diagonal metrics

ds’ =e™dr + dz}) + rPe—*d0* — ee® di?, (3.1)

where o, and ¢ are functions of z and r only, and obey the
equations

¢rr +¢r/r+¢zz=09

oold ] = —¢+%fr[(¢f—¢§)dr+2¢,¢, dz] .

(3.3)

Note that (2.3) and (2.4) for the metric (3.1) are equivalent to
(3.2) and (3.3). When € = 1, these solutions to the vacuum
Einstein equations are known in the literature as Weyl solu-
tions or Weyl metrics.'*

Since the metric (3.1) is diagonal, one may assume that
its associated function ¢, is also a diagonal matrix. With
these assumptions, Eqs. (2.6) give us

(3.2)

(ro, —A3d, +213,)det Y =2det ¢, (3.4a)

(rd, + A3, )detpy=0, (3.4Y)

det Yol 0 = — €. (3.4¢)
A solution to (3.4} is

detyy=€(—rP + A%+ 24z). (3.5)

A more general solution to (3.4) can be obtained adding ecA
to the rhs of (3.5), where ¢ is an arbitrary constant. We have
omitted such a term because in the final results it will only
introduce a redefinition of arbitrary constants.

From the fact that (¢,);4 = (¥o)4s = 0 and Eq. (3.5), we
conclude that there is not loss of generality in setting

(Yolss = (* — A% —24z)exp F, (3.6a)
(olas = — € exp(— F). (3.6b)

With this parametrization of ¥, the matrix equations (2.6)
for the metric (3.1) reduce to the scalar equations

(ré, —29,+219,)F=rg,, (3.7a)
(ro, +Ad,)F=rg,, (3.79)
Flico=¢. (3.7¢)
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The integrability condition of F is just Eq. (3.2). Equations
(3.7) are invariant under the transformation z—z + ¢ and
they are also linear. These two facts can be used to generate
new solutions from known ones.?

In the final formulas (2.8)}2.12) and (2.18) the matrix
1, appears in the form |, _ . Thus, to construct the soli-
ton solutions we only need

FkEFh:#k , (3.8)

i.e., the function F along the poles’ trajectories. These trajec-
tories obey the equations?

y’k,r=2rﬂk/(,u'i+r2)’ Hy: = —2ui /(i + 7).

(3.9)
From (3.7)—3.9) we get
rarFk —H asz = r¢,r H (3.108)
i 0.F. +rd,F.=rd,. {3.10b)
Thus

1
Ful8) = [ [, — s oldr

2 J p

+ (HirPz + Hio$,)d2] . (3.11)

The existence of (3.11) is guaranteed by Eq. (3.2) and the fact
that In g, is also a solution to (3.2). Note that

/J’ k,r 2_ .u' k,z
B

=0. (3.12)

Hik—0 r Hi i

Thus, (3.11) is compatible with the initial condition (3.7¢). In
other words, the overdetermined system of equations (2.6)
for diagonal matrices U, ¥V, and ¢, is completely deter-
mined along the poles’ trajectories; its solution reduces to a
single quadrature.'® Hence, in principle to any Weyl metric
we can associate an N-soliton solution that, in general, will
be stationary.

In the closely related method of BT we have a similar
result, i.e., the application of this method, in the case of diag-
onal seed solutions, reduces to the finding of a single func-
tion.2*-2¢

IV. ONE-SOLITON SOLUTION

One-soliton solutions are defined as those solutions ob-
tained using the ISM with a “scattering matrix” with one
simple real pole at A = ;. When the seed solution is (3.1),
the one-soliton solutions can be written in a simple form;
from (2.8)2.13), (2.15), (2.17), (2.18), (3.1), (3.6}, and (3.8), we
find

o pr/u)Y —qi(p/nY 2
33 — —

Y +qY?

(Pe—?), (4.1a)

(4.1b)

N Pagsr/iy + p1/1) ’
Y +qiY?
g PR g Y T

nY +4Y?
PYi+qiY?
[7 + (@, — 21"

o, =0+ ln[r ] +InC,, 4.2)
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where
Yo =(r/p;)"? exp(F, — ¢ /2) (4.3)
and C,, p,, and g, are arbitrary constants. These last two
constants are related to m{) and a, by
pe=—my)/2a,), q=my. (4.4)
Equations (4.1) and (4.2) can be written in the more ap-
pealing form
v5s = — [sinh(y —x + 8)/cosh(y + 8)1(e ~*),
(4.5a)
yi% = — q,r cosh x/cosh(y + §), (4.5b)
P = — [sinh(y + x + 8)/cosh(y + 8)1( — €%) , (4.5¢)
0y =00+ In [r~"? cosh(y + 8)/coshx] +1n C,,

(4.6)
where the variables x and y are defined as

x=In{u,/r), (4.7a)
=2F, —¢ —In(u,/r), (4.7b)

and the constant § and the sign function 7, as
tanh 6 =(1 — K?)/(1 +K?), 4.8)
K.=q,/px » (4.9)
M =Prde/ 1Pxds| - (4.10)

Also we have denoted the “renormalized” integration con-
stant by the same symbol used in (4.2), a practice that we
shall follow in this paper.

Note that the structure of the solution does not depend
on the special form of the seed solution ¥, as long as
(Yolas = (Yo)za = 0. In this case the ISM produces new solu-
tions that, in general, will have two new essential param-
eters, § (or K,) and a,. Let me analyze the behavior of (4.5)
for the special case of the Euclidean vacuum. In this case we
have¢ = F; = x + y = 0. Thus y5» is the only component of
y™% that presents a localized behavior, i.e., it looks like a
“bump.” The name soliton used to describe these solutions
can be only justified due to the method used in finding these
solutions, i.e., the ISM. It is interesting to point out that the
cylindrically symmetric solutions generated using the ISM
present a clear soliton behavior.?’

V. TWO-SOLITON SOLUTIONS

Two-soliton solutions are defined as those solutions ob-
tained using the ISM with a “scattering matrix” with two
simple poles. In this case the poles are either real or complex
conjugated. From (2.8)—(2.13), (2.17), (2.18), (3.1), (3.6), and
(3.8) we find, after some algebra,

Yo = [ g2 — p)Py12 — [P + py )P
[z = p)$i)% + (7 + 1 45)52)°

re=?),

(5.1a)

- AP+ o) 15 — )
M2
P o + p3)Ty — pigy po? + 3T,

(Mg, — p)Si 12 + [P + 12y 12)S, 17
(5.1b)
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h__ [’(ﬂz“#x)Qn]z‘— [(’2+ﬂ1#2)Qz]2 T szplpz(’z/#x#z)”zYle
Ve e,

Aty — )17 + [P + gy 12)S, 1 + 41qo oy o/ PVAYL Y)Y (5.5a)

(-1e) Py=p.go{ pa/ 1) Y,/ )
Oy =0y — ln{(’z +Au'% )("2 +l“§)(’2 +/1'11“'2)2 _ Q'IPz(lh/ﬂzwz(Yz/Yl) , (5.5b)
X(/py — Vpf’} + 03 +1n Gy, (5-2) Ty = (ol — @™ 'f, (5.6a)
where T,=(p,y.f — (@7." '), (5.6b)

oy=In{[r{p, —w)S, 1> + [(P +p.122S:)7} . (5.3) Ql'ﬁplpz(#lﬂz/"z)l/q:xfz
. + @ @alr /ey ) YY) (5.7a)

S=pp. Yo — a1 (.42 Q=P gal i/112) A/ V)
§2=p:q)( Y/ Y)) — qpo( Y/ Y), (5.4b) — gl /)Y Y), (5.7b)

The fact that the poles #, and u, are either real or complex conjugated can be used to simplify the previous formulas. For
real 12, and p, and real constants p,, q,, p,, and ¢, such that

PP419.>0, (58
we find
V= [ g2 — py)oosh(€; + 8.)1% — [( + p, po)sinh(; + 8_))° (Pe—?), {5.93)

[ g2 — pylsinh(x, + 8,)17 + [ + g, po)sinhix; +85_)]
o= _ I ) — ) N2 47 + g3 )sinh( y; + 1) — 9, g5 + pi)sinh(p; + w,)
-

‘ Ykt (s — pa)sinhix, + 6 )1 + (P +/a: polinbix, + 6)1° (5:29)
o [(r(”2'—/l'l)c.08h(;l +8.)1°—[(” "f‘ﬂlﬂz)s'inh(gz‘*“s—)r (—e*), (5.9¢)
[r 2 — py)sinhix; + 8,)1% + [(P + 2, po)sinhix, + 6_))?

o3 = In{[A g, — py)sinhix; + 8. )1 + [P + p, po)sinh(x, + 6_)1}, (5.10)
where the variables x,, &, , 8., and §; are defined as

X =, — }In{ g, p/7), (5.11a)

x;=0, + 4 In(po/py) (5.11b)

§,==§,—-ln(,u“u2/rz), (5.12a)

& =0+ In(p/py), (5.12b)

=& +&—In(p/r), (5.13a)

V=61~ & —In(p,/r), (5.13b)

Si=F+F,—¢, (5.14a)

§=F ~F,, (5.14b)
and the constants § , and @, and w, as

tanh§, = (K 7' - K/ (K, +K,), (5.15)

tanh w, =(1 — K%)/(1 + K%). (5.16)

In the complementary case of (5.8}, i.e.,

PP414.<0, (5.17)

we find that the relations (5.9a), (5.9¢), (5.10), and (5.15) keep the same form, but changing the hyperbolic functions by their
respective cofunctions. The relations (5.11)—(5.14) and (5.16) remain the same. And the component ¥%¢ now reads
" AP+ plp, — ) M2 w7 + p3)sinh( p, + @,) — 7, (7 + g Jsinh( y; + @)
* 24 12 [ 2 — paooshix, +8,)12 + [(* + gy pa)coshix; +8_)17

In the case that 4, and u, are complex conjugated, to end up with a real metric, we ought to choose constants p,, p,, 4,,
and g, as follows:

(5.18)

P=p,=p3, 9=0:=47- (5.19)
It is also convenient to introduce the following notations:
p=p,=pt, F'=F,=F%. (5.20)
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From (5.20), (5.21), and (5.1)~5.7) we find

yon = L2r|plsiny, coshf, +8,))° — [(” + | plYsin(fy + 8))° o) o) (5.21a)
[2r] plsin y, sinh(x, +8,)1% + [(”* + | u[*)sin(x, + 5_)1*

(* + [ p|?)sin y, cos y, cosh(x; +8.,) + (r* — | p|?)cos y, sin p, sinh(x, + 5_)

Vil =207+ | uliny, [2r] iy, sinh(r, 4 8,017 + (17 + | s sini; + )17 B2
2r| p|sin y, cosh(&, + &)1 — (¥ + | u|Psin(&, + 6_))2

R Py e Al 5:21¢)

02 =00+ 0 —2In{|7” + 2|7 + | p*)sinp,)/| pl} + I Cy, (5.22)

o'=In{{2r| p|sin y, sinh(x, + 8, )1* + [(©* + | x|?)sin(x, + 6_)1%} , (5.23)
where :

xy=§& —~In{| /1), (5.24a)

X=6~V2 (5.24b)

h=x+6_, {(5.25a)

yy=argu, {5.25b)

LH=2ReF'— ¢, (5.26a)

&H=2ImF’, (5.26b)
and

8. =(pl* =g p1* + 191, (5.27)

5_ = arg(pg*). (5.28)

Note that x,, x,, ¥, ¥2, £, and &, are real variables and that
&, and §_ are real constants.

As in the one-soliton case the structure of the two-soli-
ton solutions does not depend on the seed solution ¥, parti-
cular form, as long as (¥o)34 = (¥0)as = 0.

Letting pu, =y, in (5.1)+{5.3), in the general case
P1q, P-9:#0 we find ¥™ = y, and 0, = 04 + In C,, i.e,, the
two poles cancel out and we end up with the original seed
solution 7,. This result can be easily proved for a nondia-
gonal ¥, using the formalism of Ref. 2. In the closely related
method of Backlund transformations we have exactly the
opposite behavior, i.e., the coincidence of “poles” can always
be used to generate new solutions.?® The case %+ = 0 will be
studied in the next section.

The two-soliton solutions generated by the ISM will
have, in general, four independent new real parameters; a,,
a, and any two of ®,, @,, § ., and §_, because among these
last four parameters there are only two independent ones, as
a close examination of relations (5.15) and (5.16) indicates.
And in the case of complex poles the new parameters are
Ima,Rea,,6,,and é_.

VI. DIAGONAL N-SOLITON SOLUTIONS

Taking either p, = O or g, = Oin (4.1) we get the degen-
erate one-soliton solution

Vi = —5;(&)_8'%“’, (6.1)
r
7’5:=0’ 4:=—’2/7’33’ (6.2)

where §, = + 1. We introduce the term degenerate soliton
solution for the diagonal solutions (5% = 0) to indicate that
these solutions obey a linear differential equation. Similarly
choosing constants p, and g, such that y57 = 0 for the two-
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I
soliton solution (5.2), we get the degenerate two-soliton solu-
tion

Vi3 = 5152(&) ) Jl(&) - 62"23 -, (6.3)
r r

where 5% is given by (6.2). A close examination of (5.1)
shows that after doing 747 =0, we can have, as a limit,
[t = U, i.e., the coalescence of two one-soliton solutions.
Hence

Vi =(u/r)”Pe?. (6.4)
The above-mentioned limit is studied for a special class of
stationary four-soliton solutions in Ref. 8.

The solution (6.3) can also be obtained by considering

(6.1} as a seed solution for the same one-soliton solution (6.1).
After repeating this procedure N times we get

where #£# and yZ7 are obtained as before.
The metric associated to this solution can be written as
(3.1) with € = 1 and a function ¢ defined by

(6.5)

én = —In(y33/r). (6-6)
Thus
by=73 6 1n(”—’°) ~Siné, +4. (6.7)
k=1 r k

The function ¢, satisfies (3.2) for any value of the constants
8, Strictly speaking, ¢, can only be considered as a degen-
erate soliton solution when §, = + 1 but if one allows co-
alescence of solutions §, can be taken as an integer number.

Many well-known metrics are special cases of degener-
ate N-soliton solutions generated by the particular seed solu-
tion?®
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N
¢=blnr+ Y I, (6.8)
k=1
where b is an arbitrary constant. In this case we find
by = ; b 1n(”—") +blnr. (6.9)
r

The computation of the metric function o associated to
(6.9) can be performed directly; from (3.3) we get

Oo[dn] + dn

N 2
=%%””H[ﬁ“”V+Mr@

i=1

i=1
i

xﬁMme”, (6.10)

where

N
B=b-356,. (6.11)
3
For N =1 the factor (g, —,uj)'s"s / that appears in (6.10) is
taken to be 1. In computing (6.10} we have made use of the
relations (3.9).

Since the metric associated to (6.8) is the Levi-Civita
metric,>® also known as the Kasner cylindrical metric,>® the
metric associated to (6.9) can be considered as a solitonic
perturbation of this metric. A physical image of the solution
associated to (6.9) can be obtained considering that the func-
tion ¢ can be related to the Newtonian potential U by>'

U=¢/2, (6.12)

and that the Newtonian potential of an infinite wire of linear
mass density A located on the z axis is
U=2AInr. {6.13)

Also, the Newtonian potential of semi-infinite wires of linear
mass density A lying on the z axis and located along
[a;, + «[and [a,, — o[ are, respectively,

U=Alnyt, (6.14)

U=Alnur, (6.15)
where we have introduced the notation

b =.uk|sk= +1° (6.16)

Thus, the solution (6.9) can be interpreted as arising from the
superposition of N semi-infinite wires of linear mass densi-
ties 8,/2, 8,/2,...,6 /2 located on the z axis along [a;, 0 €[,
[as, 0 €l,....[axn, 0 €x[, respectively, and another infinite
wire of linear mass density 8 =b — 2,6, lying along the
complete z axis. The identity

it pe = —r (6-17)
can be used to represent a given distribution of wires in many
different ways, e.g., an infinite wire can be represented as the
superposition of two semi-infinite ones of the same linear
mass density. Specific examples of solutions represented in
terms of wires can be found in Refs. 31-33. Note that this
interpretation is not without pitfalls since it is notorious that
the spherically symmetric Schwarzschild solution trans-
forms to the field of a rod in the cylindrical coordinates of the
metric (3.1) with € = 1, as we shall see later in this section.
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Now we shall study some particular cases of the diag-
onal metric (3.1) with € = 1 when the metric functions ¢ and
0, are given by (6.9) and (6.10), respectively. The special
cases are obtained by assigning particular values to the pa-
rameters 8, , @, €, and b that appear in the definition of 4,
and op[dy ]

Minkowski metric: The specializations b =0 and
8, = 0(k = 1,...,N) yield the Minkowski metric in cylindri-
cal coordinates.

Accelerated metrics: Either one of the specializations &,

=0 (k=1,.,N) and b=2 or §,=b=1 and 6, =0
(k = 2,...,N) give uniformly accelerated flat metrics. The first
case corresponds to the metric studied by Rindler’* and the
second is studied in Refs. 16 and 35. Note that in this last
case the acceleration is represented by a semi-infinite wire of
density A = 4.

Weyl &-metric: Either one of the specializations
6=—-6,=6,6,=0(k=3,...,N),e,=€,and b=0or
6,=6,=6,8, =0(k=3,.,N),e, = —€,,and b = 0 pro-
duces the Weyl §-metric®® also known as the Weyl y-met-
ric,” the Zipoy metric,*® or the Zipoy-Voorhees metric.394°
This metric is the static limit of the TS solution®' with distor-
tion parameter &, that in the case § =1 reduces to the
Schwarzschild solution. The different “representations” of a
given solution are a consequence of (6.17); from now on we
shall indicate only one of such representations. Multiple 6-
metrics can be obtained choosing the parameters in the fol-
lowing way: S =68, =8%), €= — €441
(k =1,3,5,N — 1; even N) and b = 0. The particular case of
n = N /2Schwarzschild masses, i.e.,§, = 1(k = 1,...,N ) has
been studied by many authors.2?2!-*2 In this case the mass
of each particle is given by m, =(a,,., —a,)/2
{k=13,;5,..N—1).

Chazy—Curzon metric: The specialization 6, = — 6,
=m'/a, €'=¢€, = €, a, = a' —a, a, = a' + a, where m!
and a' are new constants, b =&, =0 (k = 3,...,N), and the
limit***% @—0 give the Chazy—Curzon metric that repre-
sents a single “particle” of mass €!m' located on the z axis at
z = a'. The potential ¢, in this case reduces to

oy = —2'm' /P +(z—a')?. (6.18)
A metric representing n = N /2 Chazy-Curzon particles of
masses €m* located on the z axis at z = a* can be obtained
by choosing the parameters that characterize ¢, as €*=¢,
=€y Qg =ak_a’ Q1 =a* +a, & = —6k+l
=m*/a (k=1,3,5,N — 1, even N), and b = 0, and letting
a—0. The case of multiple Chazy-Curzon metrics generat-
ed by particles of positive and negative masses (€ = + 1)
has been widely studied.!’?%%>** Metrics representing
n =N /3 accelerated Chazy—Curzon particles can be ob-
tained doing the specialization e*=e, =¢€,,,, €.,
=+1, aq=ad"—a, a,,,=d"+a, a,,.,=0 &
= -8 1 =m/a, 8, ,,=1(k=147.,N—-2;, N/3
integer), and b = n, and letting @—0 in ¢,. The case n =2
was first studied by Bonnor and Swaminarayan® (BS). The
accelerated Chazy—-Curzon metric can be generalized by the
inclusion of a “distortion” parameter in the acceleration
term, i.e., taking &, , arbitrary and b=32}_, 6, ,, in-
stead of 6, ., = land b =n.
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Weyl C-metric: The specialization 6, =8,=8;=1,
5, =0(k=4,.,N), b=1 yields the Weyl C-metric in the
Bonnor*>-Godfrey*® coordinates whenever the parameters
a,, a,, and a; satisfy the cubic equation

24°X3 —AX?4+m?=0. 6.19)
The new parameters m and A4 are identified as the particle
mass and acceleration, respectively. Note that we have iden-
tified the Weyl C-metric as a three-soliton perturbation of
the Euclidean version of the Weyl-Levi—Civita metric with
¢ =Inr. A two-soliton identification, however an indirect
one, can be found in the paper quoted in Ref. 13. Metrics
representing n = N /3 uniformly accelerated particles of
mass m, and acceleration 4, (k= 1,4,7,...,N—2; N/3 in-
teger) can be obtained letting §, =8, ,, =6, ., =1 and
b = nin ¢, and choosing a;, a; , ,, and a, , , as the roots
of the cubic equation

244X% ~A2X?*+ml =0. {6.20)
These metrics can be generalized by the inclusion of a distor-
tion parameter § * in the following way: take 8, =8, ,

=8;,, =0% b=3}_, 6 and a;, a; ., and a;, , as

before. The case of integer & * can be thought of as arising
from the coalescence of & * equal accelerated particles. Re-
cently Plebanski and Garcia D.*® discussed a metric that
contains a distorted Weyl C-metric as a particular case, alas
the coordinates used by the above-mentioned authors are
completely different to ours. Thus the relation between the
above-mentioned particular case with our n = 1 case cannot
be easily established. We have not been able to find in the
literature multiple Weyl C-metrics.

New metrics can be also obtained doing the above-men-
tioned specializations at once, i.e., we can have a metric rep-
resenting the superposition of n; Weyl S-metrics, n_,
Chazy—Curzon metrics, and so on. Also, we have not been
able to find in the literature such a mixed system of “parti-
cles.” Furthermore, taking an arbitrary b we can superim-
pose an infinite wire on the z axis. Finally, we want to point
out that we have not included in our analysis of particular
cases the constant C, that appears in (6.10). In general, for
each particular metric this constant has a particular form
that depends on the values of §,, a,, etc. This is a conse-
quence of the fact that almost all the metrics presented here
were first obtained in completely different systems of coordi-
nates. A discussion of this point can be found in Refs. 32 and
33 and in the paper quoted in Ref. 13.

VIi. STATIONARY MULTIPLE-SOLITON SOLUTIONS

The degenerate N-soliton solution studied in the pre-
ceding section can again be used as a seed solution to gener-
ate new one- and two-soliton solutions to the vacuum Ein-
stein equations. To generate these new solutions we only
need to compute the functions Y, associated to ¢, as the
expressions (4.1}—(4.3) and (5.1}~5.7) indicate.

Equations (6.8) and (6.11) tell us that the seed solution
&, can be written as

N
k=1
From (7.1) and (3.11), with the help of (3.9), we obtain
1 N
J=—2—Bln#,-+k; 8 In(p; — ), (7.2)

473 J. Math. Phys., Vol. 26, No. 3, March 1985

where the index j takes the values I for the one-soliton solu-
tion and I and II for the two-soliton solution. In computing
(7.2) we assume p; # 4, . Finally (7.1), (7.2), and (4.3) yield

7 (B—1/2 N _
Y, = ('ri) I [ e ™y — ™) -
k=1

Thus, changing the index 1 by I and the function ¢ by ¢ in
(4.1)~{4.3) we get a one-soliton solution associated to (7.1).
Similarly, replacing 1 by I, 2 by II, and ¢ by ¢, in (5.1}{5.7),
we obtain the two-soliton solution associated to (7.1). Of
course, in both cases the function o, that appears in (4.2) and
(5.2) is the one associated to (7.1), i.e., the function o, [y ]
given by (6.10). The one- and two-soliton solutions con-
structed with (7.1) actually are an (N 4 1)- and an (N + 2)-
soliton solution, respectively. Let me introduce the notation
(N + I)-soliton and (N + II)-soliton to indicate solitons that
are formed by the superposition of a degenerate (diagonal) N-
soliton and either a I or a II nondiagonal soliton. We shall
study special cases of (N + I)- and (N + II)-soliton solutions
that are obtained by particularizing the function ¢ .

(0 + I)-soliton solutions: The one-soliton solution con-
structed from (7.1}+7.3) with 6, =0 (k = 1,...,N} is a one-
solitonic perturbation of the Euclidean version, of the
Kasner cylindrical metric. This (0 + I}-soliton can be also
considered as the elliptic version of a metric studied in Ref. 1.
Three special cases are particularly interesting, the cases
b=2,b=1,and b = 0. In the first case, we have a solitonic
perturbation to the Euclidean version of the Rindler metric,
in the second a solitonic perturbation of the other acceler-
ated metric described in Sec. VI, and in the third a solitonic
perturbation to the Euclidean metric. This last particular
case may be called a half-Kerr—NUT since the Kerr-NUT
metric is a (0 + IT)-soliton with b = 0 as we shall see later in
this section. In the general case the (O + I)-soliton solution
has only one new parameter K, (the parameter a; can be
eliminated by a z-axis translation). From the discussion of
Sec. VI we can say that in the general case (b #0) the (0 + I)-
soliton solution represents an infinite rotating wire formed
by two semi-infinite wires of different constant linear mass
densities lying on the z axis along [@,, o[ and [e;, — oo [. The
static limit of this metric was studied by Godfrey*® in the
search of Weyl metrics with homothetic motions.

(1 + I)-soliton solutions: The one-soliton solution con-
structed from (7.1}«7.3) with 6, = 1, 8, =0 (k = 2,...,N),
€, = — €, and b = 0 is the Kerr metric. This identification
is studied in some detail in Ref. 2. The present case admits
the simple generalization § , =6 (arbitrary)and b=6 — 1.
Note that this solution is not simple related to the TS class of
solutions since the distortion parameter enters only in “half”
of the solution.

(2 + I)-soliton solutions: The one-soliton solutions con-
structed from (7.1)+7.3) admit three important particular
cases that are obtained by the following specializations of the
parameters that define ¢

(a)Taked, =6,=1,8, =0k =3,...,N),b= l,anda,,
a,, and a; as the roots of the cubic equation (6.19). This case
represents the rotating version of the Weyl C-metric studied
by Kinnersley.'®!?

(b) Take 6§, =6,=46,8, =0(k=3,.. .N),e,= —e€,,

(7.3)
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and b = 1. This case represents a rotating Weyl §-metric
with acceleration parameter. Note that this metric is not
simple related to the TS family of solutions since letting the
parameter a;—0 and X;—0 we do not end up with the Weyl
S-metric. Also it can be considered as a generalization of the
precedent case. A similar metric was studied by Hoense-
laers, Kinnersley, and Xanthopoulos®* (HKS) using a HKS
transformation.*’

(c) Take a,=a'—a, a,=a'+a, € =c¢,
8,= —6,=m'/a,b=1,and §, =0 (k = 3,...,.N), and let
a—0. This case represents a rotating Chazy—-Curzon metric
with acceleration parameter, i.e., a rotating version of a one-
center BS metric. By the addition of two more degenerate
solitons and doing a similar specialization of the parameters
a;, a4, 8;, 8,, etc., we shall have a rotating version of the
usual two-center BS metric.

(0 + II)-soliton solutions: The two-soliton solution
(5.1}45.3) constructed from (7.1)47.3) with &, =0
(k = 1,...,N} is a two-soliton perturbation of the Kasner cy-
lindrical metric. In the case b = 0 (Minkowski background)
this metric is equivalent with the Kerr—-NUT metric. This
equivalence can be proved directly, i.e., by change of varia-
bles.?

(1 + Il)-soliton solutions: The two-soliton solution con-
structed from (7.1)7.3) with §, =1, 6, =0 (k =2,...¥),
b = 1, and constants a,, a;, and ay; solutions to Eq. (6.19)
represents a rotating uniformly accelerated particle with
usual “electric”” mass as well as “magnetic” mass*® (NUT
parameter), i.e., the generalization of the Weyl C-metric
studied by Kinnersly in a different system of coordinates.
This rotating “Weyl-NUT C-metric” can be generalized by
the addition of a “distortion” parameter in the acceleration
term, i.e., taking §, = b =S instead of §, = b = 1.

(2 + II)-soliton solutions: The two-soliton solution con-
structed from (7.1}H7.3) with §, =0 (k = 3,...,N) admits
three significant particular cases. Two of them can be de-
scribed as the superposition of a Kerr—-NUT metric with ei-
ther a Weyl §-metric or a Chazy—Curzon metric and the
third as a double Kerr metric, i.e., as a (1 +1)+ (1 +1I)-
soliton solution. The parameters in the first two cases are
taken as indicated in Sec. VI, Due to the relation that exists
between the double rank-zero HKX transformation and the
Belinsky—Zakharov two-soliton transformation*® we con-
clude that the two-soliton solution generated from the Weyl
S-metric is closely related to metrics studied by Cosgrove®
and Dietz and Hoenselaers.®*!-2 Similarly the two-soliton so-
lution generated from the Chazy—Curzon metric is closely
related to another solution studied in Ref. 52. We shall re-
turn to this point at the end of this section.

(3 + II)-soliton solutions: The two-soliton solution con-
structed from (7.1)+7.3) with §, =0 (k = 4,...,N) admits a
relevant particular case that can be described as the superpo-
sition of a “distorted” Weyl C-metric*® and a Kerr~-NUT
metric. When the distortion parameter J is taken to be 1, we
have the superposition of a usual Weyl C-metric and a Kerr-
NUT metric. In this last case we can think of the (3 + II)-
soliton solution as a (2 + I) 4 (1 + I)-soliton solution, i.e.,
we have the superposition of a Kerr metric with a rotating
Weyl C-metric. To have such particular cases we ought to
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specialize the parameters a;, &,, etc., as indicated in the
(2 + I)- and the (1 + I)-soliton solutions already studied.

(4 + II}-soliton solutions: The two-soliton solution con-
structed from (4.1}-{4.3) with §, =0 (k =5,...,N) admits
three significant special cases that can be characterized as, a
(2 + 2 + II}-soliton, a 3+ (1 +II}-soliton, and a
(2 + I) + (2 + I)-soliton. The first case can represent the su-
perposition of the Kerr—-NUT metric with any two of the
degenerate two-soliton solutions described in Sec. III, i.e.,
the Weyl §-metric and the Chazy—~Curzon metric, depending
on the particular values assigned to the different parameters
that characterize each particular solution. Similarly by
choosing the sets of parameters (a,,a,,a,) and (@,,a;,ay)
satisfying Eq. (6.19); 6, =6, =58, =6 and b =& we have
that the 3 + (1 + II)-soliton case represents the superposi-
tion of a distorted Weyl C-metric with the rotating Weyl-
NUT C-metric mentioned before. The last and more inter-
esting case is the (2 + I) 4 (2 + I)-soliton solution. Specializ-
ing the parameters that characterize the function ¢, as the
(2 + I}-soliton case we have that this metric can describe the
superposition of two equal or different metrics as the rotat-
ing Weyl C-metric, the rotating Weyl §-metric with accel-
eration, and the one-center rotating BS metric. A space-time
described as the superposition of two one-center rotating BS
metrics, i.e., a two-center BS metric, was studied by Dietz
and Hoenselaers®' using HKX transformations.

Any of the above-mentioned metrics can be easily gen-
eralized by considering an arbitrary b, i.e., we can superim-
pose an infinite wire lying on the z axis. By choosing the
parameters that define ¢, as indicated in Sec. V1, we can also
perform a superposition of n; Weyl §-metrics, n,, Chazy-
Curzon metrics, and n, Weyl C-metrics with any of the sta-
tionary metrics described in this section.

The solutions generated using the ISM and HKH trans-
formations are closely related, since the space of solutions
generated by these two soliton generating techniques are
equivalent.*® Unhappily, this relation does not give informa-
tion about particular solutions. The actual identification of
solutions obtained using the ISM and the HKX transforma-
tion is performed in the usnal way, i.e., finding a coordinate
transformation that shows the desired equivalence. In gen-
eral to find this coordinate transformation is not an easy
task, since in the actual applications of the ISM and HKX
transformations one takes advantage of a completely differ-
ent system of coordinates.

Finally, we want to point out that in this paper we have
focused our attention only on solutions generated using the
ISM with (7.1) as a seed solution. For solutions obtained
using either a different soliton-solution-generating tech-
nique or a different seed solution or both, see Refs. 23, 25,
and 53.

Vill. DISCUSSION

Two important aspects of the solutions presented in the
paper are the asymptotic behavior and the existence of singu-
larities on the symmetry axis that do not appear in the poten-
tial g,

In general, the even-number soliton ISM maps asymp-
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totically flat diagonal solutions into asymptotically flat solu-
tions. Cosgrove proved the following theorem*: If the seed
solution is such that

Onlree ~K+M/R, (8.1)

where M and K are constants and R ? = 7* 4 2%, then the new
solution obtained using the ISM is asymptotically flat (pro-
vided that certain weak conditions are satisfied). Unhappily
the condition (8.1) is too restrictive to include many of the
metrics studied in the present paper. In general, the acceler-
ated metrics do not satisfy (8.1), e.g., the Weyl C-metric,
which is also an odd soliton. Of course, there exist in the
literature more sophisticated definitions of asymptotic flat-
ness**5 that are satisfied by accelerated metrics, e.g., the
Weyl C-metric satisfies the Ashtekar AEFANSI defini-
tion.*® Due to the peculiarities of these definitions and the
ISM a great amount of work needs to be done before we can
formulate a theorem that relates the ISM with a definition of
asymptotic flatness like AEFANSI.

Usually, metrics with an infinite wire type singularity
are not considered as asymptotically flat metrics, although
some of them present asymptotically flat behavior at r— 0.
See, for instance, the first citation in Ref. 53. In general, if
one takes a seed solution that is “asymptotically flat” at
r—, the metrics obtained using the ISM also have the
same behavior at 7—> o . For the metrics studied in this paper
we can always remove an infinite line of singularities by add-
ing a wire of opposite mass density, i.e., by choosing a suit-
able b. Studying the odd-number soliton solution presented
in this paper we see that an odd-number soliton ISM will
generate an infinite line of singularities and in consequence
will produce a nonasymptotically flat solution. In the me-
trics presented in Secs. VI and VII these infinite lines of
singularities were eliminated using the already described
method, otherwise we noticed the presence of such wires.

The problem of the existence of singularities on the
symmetry axis that do not appear in ¢, goes back to 1936
when Silverstein*? criticized, erroneously, the general rela-
tivity for allowing a solution representing two Chazy—Cur-
zon masses in equilibrium. Einstein and Rosen*? found that
the metric is singular on the line that joins both masses, i.e.,
there is a strut keeping both masses apart. The condition of
regularity on the axis of symmetry, also known as the ele-
mentary flatness condition, has been studied by many au-
thors.23%57 In particular, Bondi considered masses of both
signs in order to eliminate the struts.*

Recently, the problem of regularity on the symmetry
axis was examined for metrics representing two>**® and N
Kerr particles, and two rotating Chazy—Curzon-like parti-
cles.! In the last case it was found that the spin-spin interac-
tion can keep apart two positive masses rotating in the same
direction.?! For the case of two positive Kerr particles it
seems that the spin—spin interaction is not enough to balance
the gravitational attraction.®

Due to the simple functional form of the one- and two-
soliton solutions presented in Secs. IV and V one may use
these expressions to compute the curvature invariants and
study their singular behavior. We believe that computing
these invariants could present an interesting example in
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checking the practical efficiency of the algebraic computer
programs for the Einstein equations.5!
APPENDIX: INSTANTONS WITH AXIAL SYMMETRY

In this appendix we study the possibility of using self-
dual or anti-self-dual solutions to the vacuum Einstein equa-
tions as seed solutions. The metric

dSz = (0)0)2 + (ml)z + (0)2)2 + ((03)4 ,
o"=(Rf)"/Ydt + Wd6), «'=(R/f)'?d0,

w*=ée*dr,

(Al)
(A2)
w’=e*dz,

where k, R, f, and W are functions of r and z, represents a
“stationary” axially symmetric Euclidean metric. The con-
dition that the Riemann Christoffel tensor be self-dual or

anti-self-dual, as well as one that the Ricci tensor be zero, is
implemented by?°

Woy = NW33, @Bop =NA3y, {3 =1ND12, (A3)
where wq,, @,;, etc., are the connection one-forms and
17 = + 1forself-dual solutions (instantons)andp = — 1for

anti-self-dual solutions (anti-instantons). From (A2) and
(A3) we get

k.= —ynfW,, k,=infW,, (Ad)
R,/R+f/f=—nfW,, R/R—[f./f=—nfW,,
(A5)
R./R—f./f=nfW,, R,/R+f./f=nfW,. (A6)
From (AS) and (A6) we get
R=1, (A7)
W= [ 1725, dr 1, da), (a8
and from (A8) and (A4) we have
k= —1Inf, (A9)
(f Y + () =0 (A10)

Note that f ' and W are harmonic conjugated functions,
ie, f7'=ReH(rjand W=ImH(f)or f~'=Im H(7)
and W =ReH(r), where H is an arbitrary function of
7 =r + iz. In (A8) and (A9) we have omitted the integration
constants, because in the metric they can be eliminated by a
trivial change of variables, by the same reason we have set
R = 1. Thus,

ds’ =f(dt+ WdOy + (dr* +d22 +dOY/f.  (Al11)
First we note that this is a special case of the Hawking met-

ric’ﬁz

ds* =V ~Y(x)dr + o« dx)* + V(x)dx - dx , (A12)
since (A12) reduces to (A11) letting

Vix)=1/f(x'x?), (A13)

w(x) = [0,0,W (x'.x?)] . (Al4)

From (A11) and (A8) we conclude that the only diag-
onal axisymmetric instanton is the Euclidean vacuum. One
can easily generalize the previous result by considering the
metric

ds* = (Ao dX°F + (4, dx'} + (4, dx*)? + (45 dx)?,

(A15)
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with Ay, 4,, A,, and A, functions of x°, x!, x, and x>. Also, in
this case the only metric that is a solution to (A3) is the
Euclidean metric. Since the axisymmetric instantons cannot
be cast as (3.1) we cannot use them as seed solutions in the
context of the present paper. The nondiagonal metric (A11)
can be used to generate an odd number of soliton solutions in
the general case (nondiagonal case), since (A11) also obeys
the key equation used in the ISM, i.e., Eq. (2.3). The instan-
tons characterized by (A 11) have the following “anomalies”:
det ¥ = 1 and the equations for k£ cannot be cast as (2.4).
These two “anomalies” will force us to change Eqgs. (2.17)
and (2.18).
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Starting from a particular metric of the Kerr—Schild form, we find solutions to the Einstein
equations coupled to a Weyl field, to an electromagnetic field, to a nonlinear (Born-Infeld)
electromagnetic field, to a Yang-Mills field, and to a cosmological constant. These solutions can
be superposed to construct others with any combination of the sources considered.

1. INTRODUCTION

This paper is concerned with exact solutions, of the
Kerr-Schild form, to the Einstein field equations with
sources. Some of the solutions presented here have been pre-
viously known; however, our main purpose is to show that,
in a certain sense, these solutions can be superposed. All the
solutions given here are of type D and have four Killing vec-
tors and a Killing-Yano tensor; they reduce in the case of
vacuum to one of the Newman--Unti-Tamburino (NUT)
metrics.

Another contribution of this paper is to show that the
proposed metric can be considered as produced by a nonlin-
ear electromagnetic field of the Born-Infeld type. It may be
remarked that there are quite few known exact solutions to
the Einstein-Born-Infeld equations and that, even in flat
space-time, the solutions to the Born-Infeld equations are
rather scarce.

Most of this paper uses the null tetrad formalism as
described in Ref. 1. In the discussion of the Weyl equation
we also employ the spinorial formalism; a brief exposition of
the necessary background is given here with the purpose of
stating the notation and conventions to be used. For a review
concerning the general properties of the Einstein-Weyl
equations the reader is referred to the article by Kuchowicz.?
We also give a very concise exposition of the basic facts about
the Born-Infeld nonlinear electrodynamics. A more general
and detailed discussion on nonlinear electrodynamics in
general relativity can be found in Alarcén Gutiérrez et al.?
and the references cited therein.

We shall consider space-times whose metric is of the
Kerr—Schild form, that is, space-times whose metric can be
written in the form

g=2d¢dE + 2dudv+ 2hk?, (1.1)

where « and v are real coordinates, £ is a complex coordinate,
¢ denotes its complex conjugate, 4 is a real function, and
k =k, dx* is null (g**k, k, = 0). Since k is also null with
respect to the flat metric = 2d¢ df + 2 du dv, it can be
expressed as

* On leave of absence from the University of Warsaw, Warsaw, Poland.
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k=du+ Yd¢ + YdE — YY dv,
where Y is a complex function.

The metric (1.1) can be written as g = 2e'e® + 2¢%¢*,
with
el=df—Ydy, e=¢', =k e'=do+hk (13
The tangent tetrad d,, defined through ¢°(d,) = 6%, is then
given by

31 =3§ - i’a“, 32 = a_l, 83 =au - ha4,

(1.2)

(1.4)
J - -
dy=k*—=9,+ Y3, +Yd; — YY9,.
4 P ¢ ¢
We will restrict ourselves to the case in which
Y=¢/v+ ia), (1.5)

where a is a real constant and 4 is a function of v only. With
this choice for ¥ the curves which have d, as tangents form a
shear-free congruence of null geodesics (with respect to both
metrics, g and 7). This congruence, for a0, is what has
been called a Robinson congruence; a geometrical descrip-
tion of it has been given by Penrose.* This twisting con-
gruence can be considered as a geometrical representation of
a twistor.

The connection one-forms for the tetrad (1.2)1.4) are
then given by’

r,= -2,
Typ+Tay=[h,+(Z—-2Z)h)e, (1.6)
Iy, = Zhé?,
where
Z= —I‘421=(U+ia)—l- (1.7)

The nonvanishing components of the curvature are deter-
mined by

Rpo= —(Z+2)h/NZ+2Z)],,
Ry= —Z4[h, +(Z-2)h }/Z?),, (1.8)
C®=R/6+2Z[h,+(Z—-2Z)h),
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whereR = 2(R,, + R,,)isthescalar curvatureand C ® char-
acterizes the conformal curvature. If C ®s£0, then the metric
is of type D. The vector fields d; and 4, are geodesic and
shear-free and, when C ®'£0, they point along the two dou-
ble principal null directions of the Weyl tensor.

From the contracted Bianchi identities we find

__zz (R)

R34 —_— —= = .

Z+Z\ZZ/4
Similarly, if T, and T, are the only nonvanishing indepen-
dent components of the energy-momentum tensor, then
from the identities T,,* = 0, it follows that
_ zZ ( Ty )
z4+2z\2Z)4
thus, the equation R |, = 87T, implies R, = 87 T,. There-
fore, the Einstein equations reduce to a single ordinary dif-
ferential equation.

In the cases considered below, it turns out that the com-
ponents of the energy-momentum tensor of the matter fields
are independent of 4; therefore, % is determined by an ordi-
nary linear differential equation. Furthermore, the field
equations of the sources happen to be solvable without speci-
fying 4 (v), even though A appears in them. This fact, together
with the linearity of the Ricci tensor on A, implies that by
adding the /4 corresponding to each source we obtain a solu-
tion to the Einstein field equations coupled to any combina-
tion of that matter fields considered here (neglecting any
interaction between the various matter fields). In the general
case of the Kerr—Schild geometry, Giirses and Giirsey® have
shown that, in an appropriate coordinate system, the Ein-
stein tensor takes a linear formin g,,, .

Under the present assumptions, independent of the ex-
plicit form of 4 (v), the metric has the four Killing vectors

K, =d,,
K, =0, +8;) — (¢ +£)9, + iald, — ),
K =ivd; — 3¢) + 16 — £)3, — ald; + ),
K, =il{d, — £d;).
Furthermore, the skew-symmetric tensor field f,, whose
only nonvanishing independent components are f;, = — iv

and f,, = a is a Killing—Yano tensor® hence, Q,, =f..f,°is
a Killing tensor.

(1.9)

(1.10)

12

(1.11)

I. INTEGRATION OF THE FIELD EQUATIONS

In this section we solve the equations for the gravita-
tional field coupled to various matter fields.

A. Einstein-Weyl equations

The Weyl equation for the {two-component) neutrino
field is given by

VB, =, (2.1)

where ¥, {4 = 1,2) are complex functions which represent
the neutrino field and V43 is the covariant derivative along
the vector field V4% =g*33, (4=1,2; B=1,3), with
A'B.IP = _ 2e4SePP, where €€ and €?? are Levi-Civita
symbols, and 3 48 — 3P4 The covariant derivative of a
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spinor  field &®,,. «can be obtained from
va ¢AB~«~ = ¢AB...,a - wCA_(fa )¢CB~-- - wcﬁ (aa )¢AC-- %
where », and ©€; = © denote the spinorial connection

one-forms. We shall choose the functions g*? as
12

g =g? =g _ g2 = 7 and all others equal to zero.
Then, the spinorial connection one-forms are given by
Wy, + Ta4) r
W12 34 31
(@) = . 2.2
=\ —r.  —gra+r 22

The gravitational field equations for interacting gravi-
tational and matter fields are
R, —iRg, = — 87T, (2.3)

where T, is the energy-momentum tensor of the matter. In
the case of the neutrino field

Tos = (i#/8)[ 8. (5 V, ¥ — ¥4V, ¥s)
+8 (W V. ¥, — ¥,V ¥5)],

where ¥, = ¥,.

Using Egs. (1.6) and (2.2) we obtain the Weyl equation
in explicit form

(0s+Z)¥,—3,%, =0,

LW, + [8;— 4k, +(Z+Z)h)]¥, =0. (2.5)
In order to have T,, = T,, = T,, =0, as required by (2.3)
and (1.8), we shall take ¥, = 0. Then, from (2.5} it follows
that

U, =AZ, (2.6)
where 4 is a complex function such that 4, =4, =0.
Computing the remaining components 7,,, we find that
when 4 is a complex constant 4,, the only nonvanishing
components are given by

To= — Ty = — (afi/2v2)|4,Z % 2.7)

Solving now for 4, from the field equation R,, = 8773,
we obtain

h=im(Z + Z) +\2#ima|4,Z |, (2.8)

where m is a real constant.

Setting A, = 0, the metric defined by (2.8) becomes a
solution of the Einstein vacuum field equations which is one
of the NUT solutions. In fact, the coordinate transformation

(2.4)

x'= —u— &/ + dd),
x2=y, (2.9)
x> +ix* =v2¢ /(v + ia),

brings the metric derived above to the form given by New-
man et al.” for their metric with z° = 0.

The constant a is related to the NUT parameter; how-
ever, in the present case, by rescaling the coordinates z and v
and the constants m and A, a can be reduced to one of the
three values — 1,0,1. When a = 0 but 4,70, the neutrino
field becomes a ghost field [see Eq. (2.7)] and the metric is a
vacuum solution, which is a limiting case of the Schwarzs-
child metric corresponding to infinite mass.® In this case
there exists a homothetic Killing vector given by

H =203, + 4ud, + 33, + 3£9; (2.10)
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and there is a singularity for the metric and the neutrino field
alongv =0. .

The solution (2.6), (2.8) was found by Diaz® while
searching for solutions to the Einstein—Weyl equations of the
Kerr—Schild form. The branch with 2 = 1 was obtained by
Kolassis'® who was searching for stationary axially symmet-
ric solutions. In the form given by him, it is not clear how to
make the neutrino field amplitude to vanish.

Due to the symmetry between the two principal null
directions, one can expect to have an analogous solution
with ¥, = 0. Indeed, assuming ¥, = 0, from (2.5) it follows
that

¥, =A(ZZ /h)V?, (2.11)
where A is a complex function such that 4, =4, =0, isa
solution of Weyl’s equation. If we restrict the function 4 to
be a complex constant A, then the only nonvanishing com-
ponents of the energy-momentum tensor are given by Eq.
(2.7) and, therefore, the solution of the gravitational field
equations is that given by (2.8).

B. Einstein~Maxwell equations

The energy-momentum tensor of the electromagnetic
field is given by
ATT o = FooF,* — J F.yF gy, (2.12)

where F,, = — F,, represents the electromagnetic field
which must fulfill the Maxwell equations. In order to satisfy
the gravitational field equations with R, given in (1.8), F,,
and F,, must be the only nonvanishing independent compo-
nents of the Maxwell field. Then, the nonzero components of
T,, are determined by

Ty = — Tsy=(1/87)|F iy + Fauf%, (2.13)
and the solution of Maxwell’s equations is found to be

F12+F34=COZZ, (2.14)
where C, is a complex constant.

Then, from the equation R,, = 87T}, we find that

h=imZ+Z)—}|CZ|?, (2.15)

where m is a real constant. This solution is implicit in the
results obtained by Debney ez al.}

When a <0, the solution (2.15) is identical to (2.8).
Thus, when a <0, the gravitational field represented by
(2.15) can be thought of as produced by a neutrino field [(2.6)
or (2.11)] or by an electromagnetic field [(2.14)].

C. Cosmological constant

A cosmological constant A can also be easily included.
A straightforward integration of R,, = — A yields

h=imZ+Z)+3AZZ(v*/3 + 2a%* —a%). (2.16)
This solution to the Einstein vacuum field equations with
cosmological constant was previously obtained by Kowalc-
zyfiski and Plebanski.!!

D. Einstein-Born~infeld equations

In the Born-Infeld nonlinear electrodynamics the elec-
tromagnetic field is described by two skew-symmetric tensor
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fields F,, and P,, which, in absence of sources, must fulfill
the equations

Fe*, =0, P®, =0, (2.17)

where F? denotes the dual of F,, . We shall use the conven-
tion % = Je,,.,F?, where €,,., is the Levi-Civita symbol
with €,,34 = 1. Then, the dual of a real tensor is pure imagi-
nary. The fields F,, and P,, are related by the “constitutive
equations™

X ay/)v
F,=(Z\p e, 2.18
ab (aP)ab+(3Q ab ( )
where
H =b>—(b*—2b%P+ Q) (2.19)

is the Born-Infeld structural function, b is a positive real
constant, and

P=iP,P® Q=}P,P®, (2.20)

are the invariants of P, ; Pis real and Q is pure imaginary. In
the limit when b— o one recovers the linear theory.

The energy-momentum tensor of the nonlinear electro-
magnetic field is given by

oxX
4nT,, = (a—P)(Pach‘ _ Pey)

a7 > (3K
+(#-(FF)-2(F )k e
Thus, in order to satisfy the gravitational field equations
with the Ricci tensor given by (1.8), P,, and P,, must be the
only nonzero independent components of P,,. Expressing
these components in the form

Py, =ib sm¢’ 3a=b <.:os¢;
cosh ¢ sinh ¢
0<d <2m, 0<¥< o0, (2.22)
from Eq. (2.18) it follows that
. sing cos ¢
F,=ib , =b—"1- 2.23
2= Gany’ 7 coshy 223)

Substituting (2.22) and (2.23) into (2.17) we obtain that ¢
and ¢ are functions of v only which must satisfy the condi-
tions

(ZZ sinh ¢), =0, ¢, =iZ — Z)tanh ¢. (2.24)
Hence,
sinh ¢ = b /p,ZZ, (2.25)

where p, is a real constant and

¢=4¢o+2a fo ' [(%)2 +(s* + a2)2] - ds,  (2.26)

with ¢, = const.
The fields F,, and P,, can be expressed in a simple and
invariant way through the (complex) two-form

©=14(F, — Pl Ne. (2.27)

The real and imaginary parts of @ correspond, respectively,
to F,, and (minus) P,, and Eqgs. (2.17) amount to

do =0. (2.28)

Thus, there exists, locally, a potential one-form a such that
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® = —da. When a0, from (2.24) and (2.25) we find

o= —d((p,e*/2ia)e’) (2.29)
while in the case where a= 0, we get _
o= s ()54
_ f B [(%)2 +s4] s e3]. (2.30)

In the limit when b— o the fields F,, and P,, are equal and
they coincide with the solution to the Maxwell equations
given in (2.14).

Turning now to the integration of the gravitational field
equations we find

Ry =26(1—[1 + (0,ZZ /b 1'%}, (231)
then, by a straightforward computation, we get
h=imZ+Z)

ds/s* 2.32)

— 2 4 ®
po ZZ”L 1+ {1+ [po/b(s* + a)]?}7*

E. Einstein-Yang-Mills equations

A Yang-Mills field can also be considered as a source
for the Ricci tensor (1.8). In fact, taking SU(2) as the gauge
group, assuming that the gauge fields depend on v only and
the 4} (i = 1,2,3) are the only nonvanishing components of
the potential [cf., Eq. (2.29)], we find that the solution to the
Einstein—Yang-Mills equations is found by multiplying the
respective expressions for 4,, F,,, and-F;, found in the Ein-
stein-Maxwell case above by a constant element of the Lie
algebra of the gauge group, while 4 is of the form (2.15). This
solution to the Yang-Mills equations is rather trivial since,
in a sense, the nonabelian features of the gauge field have
been lost.

lil. DISCUSSION

In all cases considered in Sec. II, after each matter field
is suitably restricted so as to satisfy the gravitational field
equations, the equations for the matter field can be integrat-
ed without knowing the explicit form of the function A.
Thus, since the Ricci tensor depends linearly on 4, by adding
the A corresponding to each source one can get solutions to
the Einstein field equations coupled, e.g., to several neutrino
fields of the form (2.6) and/or (2.11), to an electromagnetic
field, linear or nonlinear, to a Yang—Mills field and to a cos-
mological constant. The form of the matter field is unaltered
by this superposition.

Except for the neutrino field (2.11), the solutions to the
matter field equations obtained above do not involve the
function 4; hence, setting # = 0, those expressions are solu-
tions to the corresponding equations in flat space-time,
where an interpretation of the solutions can be more easily
given. For example, making the identification, { = (x + iy)/
V2, u=(z+t)/V2, v={(z—1t)/v2, wherex,y,z, t are Min-
kowskian coordinates, one finds that the neutrino field (2.6)
corresponds to a “wave packet,” whose thickness depends
on a, extending in the x and y directions and which travels
with the speed of light in the z direction. As in the case of a
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soliton, the shape of this wave does not change as it propa-
gates. It may also be noticed that in the limit when a tends to
zero, the second term in (2.8) has a Dirac’s §-behavior.?

In the auxiliary Minkowski metric, the Killing vector
K, givenin (1.11) corresponds to rotations around the z axis.
Hence, if T, and T, are the only nonvanishing independent
components of the energy-momentum tensor, then, assum-
ing & =0, the density of the z component of the angular
momentum of the matter field is given by

V2at€ (Tyy — T,)/(? + a?), which vanishes when @ does. In
the case of the electromagnetic field, linear or nonlinear,
found in Sec. I1, this density has the opposite sign to that of a.
For the Weyl field [(2.6)] this density is always non-negative.

The result obtained in the case of the Weyl field, namely
that the expression (2.6) represents a solution to the Weyl
equation in the metric g and in the auxiliary Minkowski met-
ric, is part of a more general result. For a metric g of the
Kerr-Schild form, given by (1.1), a massless spinor field of
arbitrary spin, ¥ .., whose only nonvanishing component
with respect to the tetrad (1.3)1.4) is ¥,,.., (hence, the field
has only one principal null direction, coincident with d,) is a
solution to the massless spinor field equations if it is a solu-
tion of these equations in the flat metric 7 [obtained by mak-
ing A = 01in (1.1)1.4)}, provided that d, is tangent to a geo-
desic null congruence. The validity of this proposition, and
of the similar facts for other fields found in Sec. II, depends
on the use of appropriately related bases for each metric, in
which the solution has the same form, even though, due to
the difference of the corresponding geometries, the field it-
self may be quite different. It may be noticed, for example,
that the electromagnetic field of the Kerr—-Newman solution
(which is of the Kerr—Schild form) can be expressed in a form
which is also a solution to Maxwell’s equations in flat space-
time [see, e.g., Ref. 1, (7.15}]. It remains as an open question,
in the general case of the Kerr—Schild metrics, which condi-
tions are necessary in order to integrate the matter field
equations without specifying 4 and under which conditions
the energy-momentum tensor does not depend on 4.

The metric (1.1}+1.2) with Y given by (1.5)and h = A (v)
can be written as

< (dv)?

— 2 + adYd¥ — 18

8 =2(v* +a’) h
+2h [dr +ia(YdY — YdY)]?, (3.1)

wherer = — u — Y¥v — fdv/2h. Considering now Yand ¥
as two real (independent) coordinates and replacing 7 by io,
with o real, (3.1) represents another type D metric whose
principal null directions, being geodesic and shear-free, have
vanishing complex expansion. Except for the neutrino fields
(2.6) and (2.11), by performing this complex substitution in
the expression found in Sec. II we obtain real solutions to the
coupled field equations. [Some minor modifications are nec-
essary, e.g., the sign of the last term in Eq. (2.15) must be
changed. For a more detailed discussion on this point as well
as more general solutions to the Einstein equations with non-
linear electromagnetic sources see Ref. 13.]

The complex substitution given above amounts, essen-
tially, to interchange the spinorial indices i and 2, leaving
invariant the undotted ones. In order to obtain another real
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field, after executing this process, the dotted components
must be the complex conjugates of the undotted ones. Since
only one of the components of the neutrino fields (2.6) and
(2.11) does not vanish, this process can not lead to another
real solution.

ACKNOWLEDGMENT

One of the authors (G.F.T.dC.) acknowledges partial
support from the Subsecretaria de Educacion Superior ¢ In-
vestigacion Cientifica de la Secretaria de Educacion Pablica
(México).

!G. C. Debney, R. P. Kerr, and A. Schild, J. Math. Phys. 10, 1842 (1969).
2B. Kuchowicz, Gen. Relativ. Gravit. 5, 201 (1974).

481 J. Math. Phys., Vol. 26, No. 3, March 1985

3S. Alarcon Gutiérrez, A. L. Dudley, and J. F. Plebanski, J. Math. Phys,
22, 2835 (1981).

“R. Penrose, J. Math. Phys. 8, 345 (1967).

5M. Giirses and F. Giirsey, J. Math. Phys. 16, 2385 (1975).

SA fairly complete discussion on Killing-Yano tensors can be found in W,
Dietz and R. Riidiger, Proc. R. Soc. London Ser. A 375, 361 (1981); 381,
315 (1982).

’E. Newman, L. Tamburino, and T. Unti, J. Math. Phys. 4, 915 (1963).

1. Robinson and A. Trautman, Proc. R. Soc. London Ser. A 265, 463
(1962).

%). Diaz Reyes, B. S. thesis (Universidad Auténoma de Puebla, 1983) (un-
published).

10C, A. Kolassis, J. Phys. A: Math. Gen. 16, 749 (1983).

13, K. Kowalczynski and J. F. Plebafiski, Acta Phys. Pol B 8, 169 (1977).

12The authors are grateful to Dr. E. Cantoral for pointing out these facts to
them.

13Y. Salazar I., A. Garcia D., and J. F. Plebasski, “Duality rotations in
Einstein theory and type D solutions,” Ann. Phys. (N.Y.) (in press).

G. F. Torres del Castillo and J. F. Plebariski 481



Gauge theory in relativistic Hamiltonian classical mechanics: Tentative
unification of electromagnetic and gravitational fields

Bruno Boisseau

Département de Physique, Faculté des Sciences, Parc de Grandmont, 37200 Tours, France

{Received 17 August 1984; accepted for publication 28 September 1984)

The infinitesimal canonical transformations are considered as gauge transformations. Using a
method similar to that of Yang and Mills, one deduces, from a general formalism on phase space,
the evolution equations of an infinite sequence of long-range fields sized by order of decreasing
force. Special attention is given to the electromagnetic and gravitational fields which can be
isolated by means of a restricted theory. In this last case, a comparison is done with the usual
equations. An interpretation of the general formalism in terms of a vacuum is suggested in

conclusion.

I. INTRODUCTION

It is well known that gauge theories are extremely pow-
erful tools in quantum field theory. The generality and ele-
gance of the principles used lead to an attempt to expand the
minimal coupling principle to other scopes, especially that of
Hamiltonian mechanics. Sternberg,’ generalizing a result of
Souriau? concerning the electromagnetic field, has intro-
duced in the symplectic form a connection associated to an
arbitrary Lie group, thus defining the motion of a particle in
the gauge field of an internal space.

This paper proceeds in an entirely different manner.
Previous works** have shown the possibility of considering
the infinitesimal canonical transformations as gauge trans-
formations. Even so, these transformations do not form a Lie
group; it is, however, possible to adapt in a natural way the
Yang-Mills® initial manner to the Hamiltonian mechanics
of a particle (in a relativistic form).

The formal invariance of the Hamiltonian, under any
infinitesimal canonical transformation, is obtained by intro-
ducing “phase space gauge potentials” K, (p,x), according to
a process similar to the usual minimal coupling principle.
The variance of these potentials, consequently determined,
is similar to that of Yang and Mills.

Expanding X, (p,x) in powers of p, we define a sequence
of interaction potentials among which the first two are the
potentials of the electromagnetic and gravitational fields.

It is possible to neglect the upper-order potentials, ei-
ther by doing an additional hypothesis of approximation, or
by using a theory restricted to the subgroup of infinitesimal
canonical transformations associated to space-time changes.
In this last case, the equations of motion of a particle are
identical to the usual equations in the presence of electro-
magnetic and gravitational fields.

The results so presented are incomplete, from a gauge
theory point of view, since there are no field equations. In the
present paper, we propose, continuing the analogy with
Yang-Mills theory, to define “phase space gauge fields” and
to give their evolution equations. From these general equa-
tions we deduce the evolution equations of the electromag-
netic and gravitational fields as well as those of the other
hypothetical long-range fields introduced by the theory. We
thus obtain an unification of long-range fields.
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In order to make this paper self-consistent a summary
of the results obtained in Refs. 3 and 4 is given in Sec. I1. This
will allow us, beyond the introduction of notation, to bring
some precision and some small modifications. In Sec. III we
introduce the “phase space gauge fields” and their evolution
equations. We then indicate how to deduce from them the
evolution equations of the long-range fields and give explicit-
ly the electromagnetic and gravitational field equations in
the limit of the theory restricted to the canonical transforma-
tions associated to the space-time change. Incidentally, ap-
plying the approximation hypothesis, we give, to the lowest
order, the equations of the field coming immediately after
the gravitational field. The two next sections are an applica-
tion of the restricted theory. In Sec. IV it is deduced, from
the electromagnetic field equations, that the light rays in the
gravitational field are null geodesics. In Sec. V a static iso-
tropic solution of the gravitational equations is obtained. Its
ability to represent the solar system is examined by compar-
ing it with the Schwarzschild solution. In Sec. VI, at last, we
try to find an interpretation for the “phase space fields” and
for their propagation, by transposing the notion of quantum
vacuum to the Hamiltonian mechanics.

Il. EQUATIONS OF MOTION OF A PARTICLE

A. Gauge transformation in relativistic Hamiltonian
classical mechanics (c = 1)

Let us consider a Minkowski space (x%),7.5
= (1, — 1, — 1, — 1), to which is associated an eight-dimen-
sional phase space (x*p,). We can describe the motion of a

free particle by means of the Hamiltonian® H, = \[p,pz1%
and an evolution parameter 7 independent of the phase
space.

The Hamiltonian H,, is a constant of the motion whose
value m, determined by intitial conditions, is identified with
the mass of the particle. So, each value of H, yields a particle
of mass m whose proper time s is automatically equal to the
evolution parameter. Indeed

dx* _ 3H, =p_a:>dxadx‘9naﬂ=

1. 2.1
dr dp, m dr* 1)
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The independence of 7 in relation to the phase space
enables us to consider the usual theory of canonical transfor-
mations. If we perform any infinitesimal canonical transfor-
mation (this transformation being independent of 7), the Ha-
miltonian behaves like a scalar and is expressed in the new
coordinate system as

T e

(2.2)

where € and G (p,x) are, respectively, the infinitesimal param-
eter and the generating function of the transformation. It is
obvious that the Hamiltonian of a free particle is not form-
invariant.

If we consider this transformation as a gauge transfor-
mation, we are going to replace in the Hamiltonian (2.2} the
derivatives coming from the transformation by functions
K_{p' X'} according to

e"gx%@’rx'}‘—*Kg (pl,xl).

This process is similar to the minimal coupling principle.
Thus we obtain, after dropping the primes, the new Hamil-
tonian

(2.3)

H=[(pa — K,px\ps — Kplpx))]'2 (2.4)
It will be convenient to introduce the quantity

ha =Pa — Ka(p’x); (2'5)
the Hamiltonian {2.4) is then written in the form

H=\[hhyn®®. (2.6)

Now if we perform any infinitesimal canonical transfor-
mations of the generating function G (p,x), this new Hamil-
tonian is transformed like a scalar and, (p’,x') meaning the
new coordinates, the quantities

ho0'x') = h, [pl' x)x(p'x)] (2.7)
can be written in the form
ho=p, — K p'x), (2.8)

provided that

]

K'Qx') = K Qx) + G Ux) — eK {¥(x)G x),
K = K ) + €6 )

K.px)=K,p'x)+ e-i—%(p',x’) + €[K,,G lup>
2.9
where

_JK, 3G IK, 3G

K,.Gluy = 2.10
[ 1 ax* dp,  dp Ox™ (210

is a Poisson bracket. Thus the Hamiltonian (2.4) is form in-
variant on condition that the functions K, should be trans-
formed jointly according to (2.9).

Let us remark that the transformation (2.9) is exactly
similar to those of gauge potentials in the usual Yang-Mills
theory; the Lie bracket is simply replaced by the Poisson
bracket.

Moreover, K, and A, can be considered as the covar-
iant components of two vectors under constant Lorentz
transformations; this is a consequence of the Lorentz invar-

iance of the free Hamiltonian H, = /p,p® with which we
started. The quantities X, will be named “phase space gauge
potentials.”

Let us suppose that we can expand K, {x,p) and G (x,p} in
powers of p:

G = G‘°)(.x) + Gm“(X)Py e _i_G(O#r--m(x)
H

PP .11)
K, =K2) + K(alp, + -+ —K 7(x)
i
XPu, B+ - (2.12)

[G"™* and K ™ "* are symmetrical.] The different quan-
tities K {7(x) will be interpreted as potentials of the long-range
fields, K © for the electromagnetic field, K (" for the gravita-
tional field, etc.

The variance of these potentials is obtained by inserting
expansions (2.11) and (2.12) in the formula of gauge transfor-
mation {2.9) and by identifying the same powers of p’ in each
member:

J— e[Kg)l"(x)G fz#lmlll(x) + C‘]K g)pl”(x)G f;‘-— l)pz...#’(x)

+ C,ZK (‘EV‘JHII(X)G 3"— 2”‘"3"'/“'1(x) Ao Csj-—- g g’l‘n"‘l‘l— ‘“(x)G f:‘)”l(x)

+KEP G 9x)]  [e=9d,]

B. Canonical transformations associated with a change
of space-time coordinates: Electromagnetic and
gravitational interaction

We started this study by performing any infinitesimal
canonical transformation on a coordinate system (x*,p,} of
the phase space in which x” are space-time coordinates. The
physical meaning of such a transformation is not obvious
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(2.13)

r

since it mixes the space-time coordinates and the momentum
coordinates whose physical nature is different. This incites
us, before carrying on the general case, to restrict this study
to the subgroup of canonical transformations associated
with a change of space-time coordinates, according to

X =frx), P = 8.(x"Pa). (2.14)
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Generating functions of such transformations are in the
form

Gpx)=G%) + GM¥(x)p,,. (2.15)
The substitution (2.3) becomes in this case

ejTGa - e";f) )+ e aan‘:ﬂ xp,

—K Q(x) + K ¥x)p, . (2.16)

Hence the “phase space gauge potential” is reduced to

K, =K9%x) + K ¥x)p,. (2.17)
Let us consider

V,c=68 — K& (2.18)
where V%, is the inverse matrix of V%,

ed, =V°,K9 (e=const). (2.19)

The variance of these new quantities is deduced from Egs.
(2.13):

AL =%(Av(x) + (f)ave“”(x», (2.20)

Vi) = 20, ). 221
ax”

Equation (2.20) points out that 4, is transformed, up to a
gradient, as a covariant vector under a general transforma-
tion of space-time, which agrees exactly with the properties
of electromagnetic potentials. Equation (2.21) shows that
V.* constitute four contravariant vector fields, and V*, four
covariant vector fields.

We can construct the symmetrical tensor fields of order

2:
g =V, "V, (2.22)
8 =V°, Vﬂv'qaﬁ, (2.23)
verifying
88, = 8. (2.24)

Then g, can be considered as a pseudo-Riemannian metric
tensor associated with tetrad fields V_#(x).

Let us determine now the motion of a particle. The
quantity 4, is given by

hy =(p, —ed, )V ", (2.25)
hence
H=\(p, —ed,)p, —ed,)g". (2.26)

The Hamiltonian H is a constant of the motion m which is
identified with the mass of the particle. We have

de _ OH _p'—ed  dwdx” _
dr  dp, m arr

The proper time identifies itself with the evolution param-
eter. By eliminating p,, from Hamilton’s equations, we ob-
tain the usual equations of a charged particle in electromag-
netic and gravitational fields:

du/1 A v o
m(g? + [#V]u"u ) = g*%eF,, u°, (2.27)
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where u©* =dx*/dr, F,=d,A,-3dA, [ A } = Chris-
uv

toffel’s symbols, and e is the electric charge.

C. General infinitesimal canonical transformations and

‘approximations

If we consider any infinitesimal canonical transforma-
tion, we must look at the infinite series of potentials
K9 k0. .. K9, .However, by restricting the study to the
transformations associated with a change of space-time co-
ordinates, we have been able to recognize in the first two,
sized by order of decreasing force, the electromagnetic field
and the gravitational field, the only two known long-range
fields.

This suggests that the following fields, not being detect-
ed, must be much weaker. This hypothesis can be fulfilled,
for example, by assuming

|kt 0] <|K9], (2.28)

IK(0|,|KU)|~|K(1‘+J)|_ (2.29)
We will say that we do an approximation of the nth order if
we neglect the potentials K as well as all equivalent pro-
ducts for i > n.

(1) Zeroth-order approximation. The Hamiltonian

H=\/(p, —ed,)ps — eAgin™® (2.30)

yields the usual equations of a charged particle in an electro-
magnetic field:

A

mP n*eF, u°. (2.31)
T

(2) First-order approximation. We find again the results
of Sec. II B in the approximation of weak gravitational
fields. Indeed g“* contains the products K K §"5*# which
are neglected in this approximation.

(3) Second-order approximation. It is interesting to exa-
mine the approximation coming immediately after the

known physics by introducing the potential K 2+,

In order to simplify computations, we exclude the electro-
magnetic fields (we suppose the particle is not charged). The
Hamiltonian

H=g"p,p, —"*p, p.p, )", (2.32)
with

ettt = gtV e K Bhatts 4 permut (1,2,3), {2.33)
yields the equations

du’ + { » ]u"'u"2 + m{ K }u"‘u"*u‘@ =0, (2.34)

dr V1V2 ViVaVs

with

v 1,
= — a
{V1V2V3] 3! L

+ permut (1,2,3) — d,€, ... )- (2.35)

Let us observe that this second-order field has an influence
proportional to the mass of the particle. This leads to a
search for an eventual illustration of this field among the
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celestial objects. In Ref. 4 we considered the Keplerian mo-
tion in the Newtonian approximation.

Finally, let us notice that the proper time cannot be
identified exactly with the evolution parameter anymore:

dx* dx¥

Tg‘w =1- —i" me““"u“uvup. (2.36)
. FIELD EQUATIONS

Problems of interpretation are carried forward in Sec.
VL

A. Phase space gauge fleld

First we must specify what we call covariance under
infinitesimal canonical transformations considered as gauge
transformations. We observed in Sec. II the perfect simili-
tude betwen the variance of phase space gauge potentials
given by oG

Klp'x) = Kolo'x) + € (S0 )o'x) + €[Ko 6 L

(3.1
and that of the usual gauge potentials. However, in the
Yang-Mills theory, the variance of gauge potentials differs
from the covariance by the gradient term. [The gradient
term is here €(dG /dx'*).] This leads us to define the covar-
iance of a quantity 4 (p,x) by

AP x)=A4p'x)+¢€l4,G], . (3.2)
The transformation is the infinitesimal expression of
A l(pl,xl) =A w(pl’xl)’ x(P”x’)). {3'3)

So, the quantity 4 is a scalar.
Now we can introduce, following the analogy with
Yang-Mills theory, the covariant derivative

(24
D.4 = (dx")(p’x) + [Kood sy (3.4)
and the gauge field
K, oK
Res =(ax5)(17rx)'-(ax;)(p,x)+ [KarKp]xp (3.5)

If we remember, according to Eq. (2.7), that A, are scalar
(covariant) quantities and that Poisson brackets are con-
served by canonical transformations, it is easy to verify that
D, A and R 5 are covariant as is immediately proved by the
following identities:

D,4=[4h,],, (3.6)
and

Rop = [hashgls, (=Dgh,). (3.7)
The gauge field verifies the Bianchi identities,

D.Rp, +DgR,, + D, R,5 =0, (3.8)

which are simply the expression of the Jacobi identities

[ [Asshy ) xpsBa )5, + Permut (@,8,7) = 0.

All these analogies are reasons to write the equations of the
free field as

D°R.p =0 (7""[R 5,4, ], =0) (3.9)

Remark: The quantities R4, D, R,z are the compo-
nents of tensors under a constant Lorentz transformation.
By inserting the expansion (2.12) in the first member of
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Eq. (3.9) and by identifying the coefficients of each power of p
with zero (since the second member is null), we obtain an
infinite sequence of second-order partial differential equa-
tions. These are the evolution equations of the long-range
fields among which we find the equations of the electromag-
netic and gravitational fields.

B. Theory restricted to canonical transformations
associated with a change of space-time coordinates

Since the beginning we have implicitly used the indices
a, 3, v, 8, € to mark the Lorentz variablesand y, i, v, p, o to
mark any others. In order not to complicate some formulas,
we have not made it an absolute rule. So, for example, Eq.
(2.5) would be more correctly written A, = 84p, — K, (p.x).
This convention is going to be particularly useful in the se-
quel of this paper.’So, it will systematically be used except
where otherwise stated.

In order to facilitate the subsequent exposition, let us
next consider the tetrad fields

e, =V,"d,. (3.10)
The Lie bracket of e, and e, satisfies

[eases] = Cae, (3.11)
where

C.h=le, V" —egV W7, (3.12)

(e, and e, stand for Pfaff derivatives). The electromagnetic
potentials 4, = V*,K 9/e can be expressed in the base e, :

Ay =Vg4, =K Q/e. (3.13)
In the same way the components of the electromagnetic field
F, =d,4, —d,A, become

Foa =V, 'V'F,, =e,Adg —egd, —A,C,}. (3.14)
With this preliminary out of the way, let us now turn to the
fundamental equations obtained in the preceding section.
This study is restricted to the case considered in Sec. II B,
where only the electromagnetic and gravitational fields are
occurring. Equations (2.17), (2.18), and (3.13) yield immedi-
ately

h,= —ed, +z,, (3.15)
where

z, =V,"p, (3.16)
The Poisson bracket of z, and z; yields

(22285, = T, }2,, (3.17)
where

T,;}=—-C,} (3.18)

will be interpreted as the gravitational field.’
The equations (3.15}-{3.17) allow us to obtain the gauge
field (3.7} in the form

R.p =ele,Ag —egd, )+ T,}z,, (3.19)
or, furthermore, by using Eqgs. (3.14) and (3.18),
Rog=eF,5 —ed, T, 3 +T,}z, {(3.20)

setting off the electromagnetic field F,;, the gravitational
field 7,,}, and a coupling term e4,, T, }; between the two. The
gauge field equations are obtained by inserting Eq. (3.20) into
Eq. (3.9):
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e(naseeFaﬂ + naETaEFye) - eAa(ﬂaEee Tag + ”aeTagT‘yg
+ (1°%e. Top + 1*T, 5T, 225 =0 (3.21)

(e. = V.*d, is a Pfaff derivative). These equations must be
verified for any p or, which is equivalent, for any z. Since
(3.21) is a binomial, we deduce two systems of differential
equations by equating to zero, respectively, the coefficients
of the zeroth and the first powers of z.

Observing in Eq. (3.21) that the coefficient of z; is the
same as the factor of — e 45, we obtain finally the evolution
equations

N e Fop + n*T 3 F, = 0. (3.22)
For the electromagnetic field, and
1% Taf + 1*T 3 T,2 =0. (3.23)

for the gravitational field.

Let us examine quickly these equations by comparing
them with the usual ones. The usual Maxwell’s free equa-
tions in presence of gravitation (expressed in the basis e, for
comparison®)

e F¥ —T,2F% 4T, fF° =0 (3.24)

are different from the just proposed equations (3.22). But if
the gravitational field 7} is null, Eqgs. (3.22) and (3.24) be-
come identical. Then, both of them are reduced to Maxwell’s
equations in Minkowski space,

3,F* =0, (3.25)

Indeed, in this case the Lie brackets [e, ez ] are null, hence
the basis {e, } is a coordinate basis®: e, =d, and V,* are
the components of a Cartesian frame {e,} expressed in a
curvilinear system (x*):V,_* = dx*/dx".

At last let us notice that the principle of equivalence is
applied in the same way to Eq. (3.22) as to Eq. (3.24).

Equations (3.23) are different from Einstein’s equa-
tions. However we can point out that they are nonlinear. We
will solve them in the case of spherical symmetry. We shall
discuss at that time their ability to represent the gravitation.

C. General case

As we pointed out at the end of Sec. IT A, it is possible,
by inserting the expansions (2.12) in the equations (3.9), to
obtain an infinite sequence of second-order partial differen-
tial equations that we can limit by using the postulates of
approximation (2.28) and (2.29). We will not write explicitly
the generic equation, having no use of this in this paper. We
give only the following results.

To the zeroth-order approximation we find only Max-
well’s equations in Minkowski space.

To the first-order approximation we find Eq. (3.22) for
the electromagnetic field and the linearized equation (3.23)

n*e T,5 = (3.26)
for the gravitational field. (In this approximation the gravita-
tional field is weak: we neglect in 7" the products K "-K'V.)

To the approximation of second order, we find more
complicated equations than (3.22) and (3.23) for the electro-
magnetic and gravitational fields (since these can contain,
moreover, the second-order potentials X 2%*). Moreover the
potential K ?#* satisfies the linear equations
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%9, K Prz — go K 2wy = 0, (3.27)
which can be also written
Ok gwi — 97K @k = 0. (3.28)

[In Egs. (3.27) and (3.28) we do not apply the convention of
indices.] These last equations justify a posteriori the use of
the Newtonian potential that we introduced,'® by heuristic
arguments, for the study of the Keplerian motion in the
Newtonian approximation.

We stop here the evocation of the general case and will
come back to it later on.

IV. GEOMETRICAL OPTICS

In the Einstein theory, light rays are null geodesics.
These are naturally the trajectories of photons (massless par-
ticles). But this property is also a consequence of Maxwell’s
equation. Let us summarize the principles of such a deduc-
tion."! In the geometrical optics limit, the wavelength A is
small compared both to the scale L, over which the ampli-
tude of wave changes and to L,, the scale over which the
gravitation changes, i.e.,

e=A/L«<l, L=min(L,L,). (4.1)
The electromagnetic vector potential can be written in terms
of rapidly varying phase and slowly varying amplitude in the
form of the expansion

A, =(a, +€b, +..)°, (4.2)

where 0 is a real phase, g, and b, are complex, and ¢, given
by (4.1), is the expansion parameter. In fact the electromag-
netic vector potential is the real part of (4.2). We define the
wave vector

k, =4d,6. 4.3)
By inserting the potential vector (4.2) into the Lorentz gauge
condition and keeping only the leading term (1/€ order), we
obtain

k*a, =0. (4.4)
Amplitude is perpendicular to wave vector. Next, inserting
the potential vector (4.2) into the Maxwell’s equations in the
Lorentz gauge, retaining only the leading term (1/€* order),
we obtain

k*k, =0. 4.5)
The wave vector is null. Taking the gradient of Eq. (4.5) we
get the geodesic equation

k*V, k" =0. (4.6)
Equations (4.5) and (4.6) are the statement that light rays are
null geodesics.

Let us turn now to the electromagnetic equations ob-

tained in the last section:
n*e.F,5 + 1*T,}F, =0. 4.7)

We are going to show that, in this case also, light rays are null
geodesics in the Riemannian space of metric

8 = VHVE 0. (4.8)

In the basis {e, ] we have the identity
V.F?=¢F?_T,3F% — T, PF=, (4.9)
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where V is the Riemanian connection associated with the
metric (4.8). [The expression (4.9) was already mentioned in

Eq. (3.24).]
By using the identity (4.9), Eq. (4.7) is now written

VF® + T,3F% + {T,2F* + 10T 3F, =0,

(4.10)
where the electromagnetic field can be expressed in the form
V.4 —Vs4,. 4.11)

Because of the gauge transformation (2.20), it is always possi-
ble to choose the Lorentz gauge

V,A%=0. (4.12)

Therefore, the first term in the left member of Eq. (4.10)
becomes

V.F?=V_V4? + R, PA4°, (4.13)

" where R, is the Ricci tensor. Finally, the equation of an
electromagnetic field in the Lorentz gauge can be written

V.V4? + R PA* + T,SF%
+ 4T, 8F 4 pP*y*T,}F, =0. (4.14)

In the conditions where geometric optics is valid we can
use the potential vector (4.2) expressed in the basis {e, },

A, =(a, +eb, +..)e°", (4.15)
where
a, =V,*a,, b,=V,"b,. (4.16)

A covariant derivative of the potential vector (4.15) gives
Ved, = [Vpa, +€Vgb, + (i/€)la, + €b,)eg0 ] &0,

4.17)
Equations (4.17) yield, writing only leading terms,
V. 4% = [(i/e)a®e,0 + ...]€°", (4.18)
F.5 = [(i/€)lage,0 — a,e50) + ...1€°7%, (4.19)
and, performing another derivative,
V. V42 = [(i/ef a°nPTegbe,0 + ...} €7~ (4.20)

We can now obtain the equations of geometrical optics.
From the Lorentz condition (4.12) and Eq. (4.18), setting the
coefficient of each power of € equal to zero, we obtain, for the
leading term (1/¢ order),

a%,0=0 (4.21)

or
a“V,*3,0 = 3,0 = a'k, = 0. (4.22)

Amplitude is perpendicular to wave vector. In the same way,
form the field equations (4.14) combined with Egs. (4.15),
(4.19), and (4.20), for the leading term (1/€ order), we obtain

a°nP’eg0e,0 =0 (4.23)
and consequently
gk, k, =0. (4.24)

The wave vector is null.
Taking the gradient of (4.24) and noticing that
V.k, =V, k, (sincek, = d,0), weget the geodesic equation

k*V, k¥ =0. (4.25)
Thus let us emphasize that, for the electromagnetic equation
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(4.7) in the geometrical optics limit, light rays are null geo-
desics as usual.

V. “STATIC ISOTROPIC” SOLUTION OF
GRAVITATIONAL FIELD EQUATIONS

A static isotropic metric can be reduced to the following
form:

ds* = B(ridt — A ~r)dr* — P d§* — P
Xsin 6 dp>. (5.1)

We propose to determine a static solution of the gravita-
tional field equations obtained in Sec. III,

Si=n"eT.j + 1T }T3. =0, (5.2)
such that the associated metric

8 = VO, VP, 0p (5.3)
is the static isotropic metric

8w =B, —A7r), —F, —Psin’8). (5.4)

That is what we call briefly a static isotropic solution.

The problem is to find the two unknown functions 4 (r)
and B (r). At first we must determine, by means of the symme-
try conditions (5.3) and (5.4), the expression of V,* and V',
in terms of 4 and B. We are going to use, as an intermediate,
the diagonal tetrad k,*, k<, such that

gpv =k alpkﬁlvﬁa’ﬂ' (7,0,¢ )’ (5'5)
where
fwg =1, — 1, — A — Psin? 6) (5.6)

is the Lorentz metric in spherical coordinates. So, the diag-
onal tetrad is

{ka';.;} = [k°0=B(r), kll =4 _l(’)’ k22= 1, k33= 1.
(5.7)
By inserting
. Ox* AF
“ = o 5 1

in Eq. (5.5) and by identifying with Eq. (5.3), we obtain imme-
diately

(5.8)

(5.9)

p (?.x_“ u
i.e., explicitly,
V%=B, V=0, V°%=0, V° =0,
Viy=0, V' =sinfcospd !,
V'y= —rsin@sin g,
V3%=0, V? =sin8singd !,
V2, = rsin 6 cos g,
V3,=0, V3 =cosbd4 "},

V', =rcos6cosg,
V2, =rcos @sin g,

V3,=rsin6, V3 =0.

(5.10)
We deduce the inverse matrix V_*:
V=B~ ¥°=0, V=0, V,°=0,
Vo' =0, V,'=sin6cos A,
Bruno Boisseau 487



V,! =sin @sin @4, V,' = cos 64,

Vo>=0, V.*=cos08coseg/r,

V,? = cos @ sin @/r,

Vii= —sin8/r,

Vo>=0, V;?= —sing/(rsin@),

v, =0. (5.11)

We can now proceed to the resolution of the differential
equations {5.2). For that we have to insert the expressions
(5.10) and (5.11) of ¥*, and V,* in Eq. (5.2). The computa-
tion of

T,

a

V,? = cos @/(rsin 6),

E=(Vg"d, V," =V, "3, V"WV,
gives explicitly

Ta5 =0, Tag = - Tﬁz:

T9, =sin 6O cos pABJ,(B "),

TS, = sin O sin 4B 3,(B "),
TS =cos ABI,.(B 1),
T;=Ty=0 (ij#0),

T, =sin@sin@(l —A4)/r,
T3 =0,T,)=cos@(1 —A4)/r,
T3 = —sinfcosp(l —A)/r,
T,; =0, T,2=cos@(1—A)/r,

(5.12)

T3 =sinfcosp(l —A)/r,
T1§ = 0’

T2 = —sinOsing(l —4)/r. (5.13)
Let us write
K=AB3,BY), (5.14) -
H=(1—-A)r, (5.15)
and
N=A3, H—H/R+H>
The equations of motion (5.2) are then written
SS=+A43.K+2K/r+K*=0, (5.16)
S1=S°=0 (ns£0);
Si=—(sinOcos’p — 1)N+2H /r=0,
S2=—(sin*@sin’ @ — )N +2H /r=0, (5.17)
Si=+sin’ON+2H /r=0;
S§2=81= —sin? §sin ¢ cos pN =0,
S§3=81= — cos 6 sin 8 cos pN = 0, (5.18)

S3=S%= —cos O sin fsin pN =0.

Equations (5.17) and (5.18) are verified only for H = 0, hence
Eq. (5.15) yields
A=1.
Then Eq. (5.16) can be written
aK + 25 +K2=0,
dr r
where

(5.19)
(5.20)

B~ (5.21)

K=B2¢Y 1
dr

Noticing that
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dk _K ( 1 )d (PK)
2 42 (v a)
dr + r ) dr

We obtain immediately the solution of Eq. (5.20):

K=1/rar—1) (5.22)
(a is the constant of integration). Then, the solution of (5.21)
gives

B =br/|ar — 1| (5.23)
(b is the constant of integration). So, the problem is solved
and the static isotropic metric associated with the solution is

ds* =(b%/a*(1 — 1/ar\"% —dr* —r*do* -1~

Xsin®> @dg>. (5.24)

Let us suppose that this gravitational field represents

the solar system. We are proceeding as in general relativity.

At a great distance r from the sun, we must find again, in a
first approximation, the Newtonian theory. So that

Zoo~1+29, (5:25)
where

D= —GM/r. (5.26)
Hence, the constants of integration verify

b*a*=1, a= —1/GM. (5.27)

Then the metric (5.24), expanded as a power series in the
small parameter MG /r, is written

ds* = [1 —2GM /r + 3(GM /r} + dt? — dr—r* d§*
—Psin? 0dp?>. (5.28)

In order to test such a metric and to compare the results with
those of the general relativity, we are going to use the expan-
sion of Eddington and Robertson (see Ref. 12)

ds® = [1 — 2aMG /r + 2B — ay)\MG /r + -]dt>

— [1 4+ 2yMG /r + --1dr* — P d6?* — P sin> 0 dp>.
(5.29)

This one is identical (at this approximation) with (5.28) for
a=1 B=3} y=0, (5.30)

whereas the Schwarzschild solution of Einstein equations
yields

a=f=y=1 (531)
Let us examine the three classical tests. The gravitational red
shift experiment which verifies the principle of equivalence
givesa = 1, the deflection of light by sun tests y~1, whereas
the precession of perihelia verifies that 2y — B~1. So the
test on the red shift is verified but neither the deflection of
light

6=1.75"(1+ )72
nor the precession of perihelia
Ap = (6eMG /L)(2 — B + 2y)/3 rad/revolution

(L is the semimatus rectum of the ellipse) are correctly ob-
tained.

The test of the principle of equivalence is certainly the
most important and its verification gives a certain confi-
dence in the equations of motion. Nevertheless, it is neces-
sary to find an explication at the deficiency of the two other
tests.
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It is evidently possible that the initial equations (3.9) are
not absolutely correct, this deficiency can also proceed from
the omission of the upper-order long-range fields. But, more
simply, we can also suppose that the spherical symmetry
does not represent perfectly the solar system. Indeed we
know that the sidereal period of solar rotation is about twen-
ty-five days. This causes us to search for an axially symmet-
ric solution that represents the field of a rotating spherical
body. We will reserve for later such a study.

VI. DISCUSSION

This work constitutes an attempt at unification of the
long-range fields and, more particularly, of the gravitational
and electromagnetic fields. By transposing the Yang-Mills
method in Hamiltonian mechanics for the group of infinite-
simal canonical transformations we have been able to deduce
these fields from the single quantities K, (p,g).

Behind this formalism is nevertheless set an interpreta-
tion problem that we are going to examine, and to which we
will attempt to give some elements of answer. These will
have to be considered only as suggestions.

The geometrical frame of the theory is the cotangent
bundle 7 *(V,) associated to the space-time manifold V. Let
us consider a system of adapted coordinates, where x* repre-
sents local coordinates of ¥, and p,,, the components of a
covector in the associated natural frame. The motion of a
particle is described by a trajectory of the Hamiltonian flow

generated by H = \/h,h *. In this case x* is the space-time
position of the particle and p, , the conjugated momentum, is
related to the motion and to the energy of the particle.

If we now consider the motion of the free fields, ruled by
the equations D, R “?(p,x) = 0, the physical meaning is not
so evident. The coordinates x* do represent the space-time
position where the field is considered, but we are not able to
give any meaning for p,, . If it is still related to motion and to
energy, which motion and which energy is it?

We are going to attempt to answer this question, inspir-
ing ourselves from the quantum theory in which the notions
of vacuum and vacuum fluctuations have great importance.

We can imagine, in the classical physics frame, that the
vacuum is subject to random-looking fluctuations, whose
motion and energy at a given point x* of the space-time are
associated with a covector p,, called vacuum momentum at
this point.

In this way, the notion of a vacuum can enter in the
same geometrical frame T *(V) as the notion of motion of a
particle. The fiber above x* represents the different possible
momentum of the vacuum at x*. Thus in a part D of the
space-time, a state of vacuum will be a section of the bundle.
But a very “chaotic” section must certainly be imagined at
the microscopic level, so that if a sufficiently large part is
considered, the average (p,, ) is null. Indeed, an energy accu-
mulation cannot be considered on a macroscopic part be-
cause vacuum has no observable effects at the classical level.

But the office of the vacuum momentum is essential
here because it allows us to consider the gauge field R .5 (p,x)
and its propagation in the vacuum. This momentum is acting
as a catalyzer, it is it which allows for example the coupling
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of the gravitational field with itself.

The presence of a particle in the part D is expressed by a
trajectory on the section of the fiber, along which the p,, are
not “chaotic” anymore but correlated by the Hamiltonian
flow.

The physics world described here is that of the ponctual
particles flowing in free fields R ,5(p,x), whose existence and
propagation is realized by means of the vacuum previously
described. Of course, when in x there is a particle of momen-
tum p(part.), the field takes the value R gz (p(part.),x). The
particle is considered as a test particle.

But particles are also sources of fields. The source oc-
curs then as a limit condition. Thus, in Sec. V the spherical
symmetry is assigned in order to represent the sun, which is
considered as the source of the gravitational field.

There are no equations in the matter since it is consid-
ered as a discrete set of points. The field is indeed free almost
everywhere. But from a practical point of view, it is certainly
necessary to replace a discrete set by a continuum and, in this
case, the equations must have sources. We can propose

D.R*(px)=J"(px),
with
DyJ8(p,x) =0. (6.2)

(In the discrete model, the Dirac distributions occur, the
field is then free almost everywhere except on the sources.)

At last, let us mention another problem that the reader
has certainly perceived. The electromagnetic field is intro-
duced in this theory by the term K ¥(x) of the expansion of
K, (p,x). This term is in fact a potential energy rather than a
potential. The charge e of the particle and the potential are
then defined subsequently by K ¥(x) = e4, (x). It is due to
this construction that e cannot be eliminated from the equa-
tions of the fields (3.21). But what does e represent in vacu-
um? We can try to outline an answer similar to the former
one and imagine that e is related to the vacuum polarization.
It would be the vacuum polarization, null only on average,
which would allow K 9(x) to exist.
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Fermi states of Bose systems in three space dimensions

Piotr Garbaczewski®
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Recently an exact spectral solution was constructed by Sudarshan and Tata for the (¥@ ) Fermi
version of the Lee model. We demonstrate that it provides a partial solution for the related pure
Bose spectral problems. Moreover, the (NG ) Bose (Bolsterli-Nelson) version of the Lee model is
shown to possess Fermi partners, both exhibiting the partial solubility interplay: finding solutions
in the Fermi case would presumably be easier than in the original Bose model. Fermi states of the
underlying Bose systems in three space dimensions are explicitly identified.

Let us study a specialized version of the Lee model'™ as
considered by Sudarshan and Tata.® The model consists of
two fermions &, O interacting with a boson ¥. If compared
with the original version of the Lie field theory model, the
momentum dependence of ¥ and N is lost due to their (as-
sumed) infinite mass, then ¥ and N play the role of sources,
while 6 is supposed to be massless. We have

H=mV*V + f d *k-k-a*(k Ja(k )

+ f Kk f )V *Nalk) +a*kN*V] (1)

with the commutation rules of Ref. 5
[NN*], =[VV*]_=1,
lak )a*(p)]. =&k —1),
[NN]1,. =[VV]_=lak)a(p)]., =0, (2)
[Nalk)], = [Na*k)l,.=[NV]_=I[NV*]_
= [alk),V]_=[ak),V*]_=0.

Let us observe that irrespective of whether quantum objects
¥, N, O represent bosons or fermions, and irrespective of
whether they mutually commute or anticommute, the fol-
lowing two operators are the constants of motion:

N, =N, + Ny,

(3)
N2=N9—NN,
where
N,=V*Y, Ny=N?*N, N9=fd3ka*(k)a(k),
(4)

and upon assuming that N,,N,,,Ng commute with any func-
tion of operators belonging to pairs of species
(N,B),(V,0),(V,N), respectively, we arrive at

(NJH]_ = fd%f(k){V*[V,V*]_ Na(k)

+a*kIN*[V*V]I_V
+ V*[N*N]_ Na(k)
+a*k)N*[NN*]_V], (5a)

* Permanent address: Institute of Theoretical Physics, University of Wro-
claw, 50-205 Wroclaw, Poland.
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[NLH]_ = f a% f d3pf(P)V*N [a*(k )a( p)] _alk)
+a*(k)lalk ha*(p)] - N*V )
= fd3kf(k){ V*[N*N]_ Nalk)

+a*kIN*[NN*_V}. (5b)
If now to admit that each of the species obeys some canonical

(commutation or anticommutation) rules, then the conserva-
tion laws

(N,H]_=0=[N,H]_ (6)
immediately follow.
The standard ansatz about the form of eigenfunctions

for H is " that they should be superpositions of the bare
states, i.e., eigenstates of

Hy=mV*V + f dk-ka*k)alk =>H = Hy + H,,, .

Since we wish to solve a common (¥,,N,,H ) eigenvalue prob-
lem, it is natural to look for states |a,b ) obeying

Nyab)=alab), N,ab)=blab),

- 1 3
la.b) —a=§'+n (mintI )12 f 4%, -

b=1I—n

X f d%k, ¢k, )
X P ¥mas(k,) wa*{k N *"(0) , )

which in the Fermi case (1) are restricted to summations over
n = 0,1 while (N, ¥V boson, @ fermion) or (N, ¥,0 bosons) al-
low n=0,1,2,.... In case of © fermionic, the coeflicient
function ¢ (k,,...,k,) is antisymmetric with respect to the mo-
mentum variables, while in case of O bosonic, is symmetric.
We demand |a,b ) to be an eigenfunction of H, to be denoted
|/1 ) = M'aaab )’

HIAY=AIA), A=Ay - (8)

To distinguish between the pure Bose version of (1) and the
(NO )Fermi case of (1) we shall use the notation Hy, |4 ) and
H, |4 ), respectively. In the pure Bose case by applying H 3,
to |4 )y, as given by (7) we arrive at
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Hgg I/lsa,b )B

a=m+n
b=1I—n

[m.—l f d%k, f d%k,_, [ f Ak (k) Tk yyonrky )] m 4 L1 — Loy 1 s

+mn ¥ D0 1) f" % f A%k, fR) S (ke 1 )m — L1+ LKk 1) )

1

|m,nky,.. k) g = T

V*7b*(k,)--b*k,)N%"0) .

In the case of (NO ) fermionic, we must have n = 0,1, which implies that |4,a,b ) is asuperposition of the two types of bare states
only:  m=a—1,n=1Il=5b+1)and |m =a,n =0,/ =b) at a fixed choice of a,b. Consequently,

Hg|Aab) = fd’kf(k)V‘Na(k ) J d3k, - f dky,,, ¢V e ke — LKy, e Ky )

+ f d >k f(k)a*(k N *V f d’k, - f d?ky ¢ 1“0 Ky, ey ) |@,0,kr e Ky )

—(—1PVaB ¥ T) f d%k, - f Aok, [ k)6~ Whkeyonksy)] [0,0K s, k)

+ ( - l)b:t ‘\}a(b + l) stkl b J‘ dskb+ 1 f(kl) ¢ (2.0.6) (k2""!kb+ 1 )la - l,l,kl,...,kb+ 1 ) .

(10)

The particular structure of the interaction term H;,, of H as given by (1) has intriguing consequences in the Bose case. Namely,
|4,a,b ) for all b but with the value of a restricted not to exceed 1: a< 1, can always be composed as a superposition of vectors
taken from pairwise orthogonal Hilbert space sectors, each sector being spanned by vectors of the (shorthand) form

le —kkb+k) |a—k+1Lk—1b+k—1),

k<a<l. (11)

In particular let us consider the following contribution to |4,a,b )g:

l'{ra’b )(1(3»: = J‘ d3k’ - J dsk""’ 1 ¢g— bhb+ l)(kl""’kb-+. 1 )’|a - 19l9kl’---9kb+ 1 )B

+ fdskl A J‘ d3kb ¢ g’o'b)(kl,...,kb)-|a,0,kl,...,kb >B . (12)

The action of H 2, on (12) reads as follows:

H2Wab)9 = a6+ 1) [k~ | d3kb[ [@xsw)- g5+ Wk, - ,k,,)] 1,0,k s

+Vao + 1) f d’k; - f A%y, flk) % (Kgpeusky 1 )}la — 11Ky, nky 1 Vg - (13)

Any domain spanned by vectors of the form (11)is in fact left
invariant by H 2, .

Remark: Let us observe that if to abandon the restric-
tiona< 1, then the action of H B, on |4,4,b )Y would produce
an additional additive term in (13) following from the appli-
cation of (@*N*V) to |a — 1,1,k,,....k, , ) . The resulting
|a — 2,2,k,,....k, . , ) contribution can be eliminated from
further discussion, but the price paid is the modification of
the pure Bose Hamiltonian to the form PHE, P with
P= wexp(— NE Ng): + N3:exp(— N3 Ng):Ng.

It corresponds to the replacement in H B, of the pure
Bose variable Ny by the spin-} Pauli operator variable
0~ =PNg P, (c" = PN} P). Hence, we in fact pass then
from the pure Bose model to the (VO ) Bose, N Fermi version
of the Lee model. It is worth emphasizing that though the
whole subsequent analysis is made for the pure Bose model
with the restriction a<1 on state vectors, all the arguments
apply without any change (up to minor modifications in
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—
H,) to the above-mentioned (¥©) Bose N Fermi system,

where a and b are completely arbitrary. It means that the
spectral solution for the (NG ) Fermi case produces this as
well for the (V) Fermi case. It is also instructive to mention
that the interaction of two static fermions with the scalar
boson was studied in Ref. 4 in the N,=N*N + V*V
=a =1 state (sub) space. The subsequent analysis estab-
lishes the © Fermi partner for this case.

On the basis of Ref. S we know how to establish the
eigenvalues and eigenvectors (i.e., ¢ @~ 110+ 1), g @08)) for
the (NO ) Fermi problem. At this point we are guided by our
earlier studies of the (1 + 1)-dimensional models,® and the
joint Bose-Fermi spectral problems arising there. For the
exactly soluble Fermi model of Ref. 5 we wish to establish its
pure Bose partner, such as the joint spectral problem makes
sense.

Let us make use of Refs. 7-9, where relations between
linear spaces of symmetric and antisymmetric functions
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were investigated. In application to our problem, the formal
realization of the isomorphism, invented in Ref. 7 by means
of the Friedrichs-Klauder antisymmetric symbol, is best
suited. The symbol reads '

ofkyy.ky) = + 1,0 (14)

depending on even ( + ) or odd { — ) permutations of mo-
menta, the value O occurring if any two momenta coincide.
Then

o’=0, ol—0%=0, (15)
and any symmetric functionf, (k,,...,k, ) allows’ for a decom-
position

f;(klﬁ'"’kn) = [0 21.; + {1 - z)f; }(kh"-ykn)

1 2
s=(f + Skpeniky) (16)
with the property that

of,=of = f, (17)

is an antisymmetric function of #7-momentum variables. The
formula (17) establishes an isomorphism between symmetric

1
functions f, (they respect the Pauli exclusion principle since

1
[, vanishes if any two momenta coincide), and their antisym-

metric partners f,.

The above isomorphism has been exploited in Ref. 8 to
construct an embedding of the CAR algebra representation
with  generators  [a(p).a*(g)], =8(p—4q), [alk),
a( p)],. = Oin the representation of the CCR algebra gener-
ated by [b(p)b*g)l_=8%p—a), [b(k)b(p)]_ =0,
provided the representation spaces are constructed about the
same (generating in the GNS construction sense) Hilbert
space vector. We refer to Ref. 8 for the explicit “bosoniza-
tion” formulas valid in the Fock case (see also Ref. 9). For
our purposes the following identity resulting from the CAR-

= CAR{CCR) construction of Ref. 8 is necessary:

K 1peeeskin Yo = (1/4/nl)a*(ky) - a*(k,)|0)
= olkyeess K, J(1/Vn1)b *(ky) - b *(K,)|0)
= ok yyees K} Ky )p - {18)
Since in (16) we deal with an object N *
N*'k],u.,kn >F = ( - 1)”‘ l,kl,..., kII)F
= ((— 1y'/nl)a*(k,) - a*(k, )N *[0)
(19)
an appropriate realization for N* = N ¥ is necessary. We
define
NE=(— Ip I N exp(— N3 Na),  (20)

which has all the necessary properties, i.e., N #? = 0 [notice
that :exp( — N# Ny} :is a projection on the vacuum state for
the boson [Ng,N§]_ =1}, and anticommutes with the
a*(k y'sin (19). Instead of { — 1) ¢°*«*)) one can obviously
use exp i §d *k a*(k Ja(k ).

A nice property of the realization (20) is that a Bose
representation for (19) is immediate:
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(LK Ky Ve = (1/ )oKy, K, ) *(K ) - b *(K,) - N3 |O)
- O‘{kl,...,kn” l,kl, veey k” )B . (21)

The notion of Fermi states of the Bose system acquires thus a
meaning in three space dimensions.

A straightforward application of (18) and (21), if com-
bined with (15)-{17), allows us to rewrite formula (16) as fol-
lows:

Houlbab) =N+ 1) [ @k [ a%,{(-1p
X [ fdskf(k ygple-vIib+hg k. ..., k,,)]
Xa(kyyeen, kb)] |@,0,k,,.... ks )

+alb+1) Jd:’k1 ---fa”k”1

X {(— 1P+ fiky) ¢ “O k..., kyi1)
Xotkyyky 1)} la — Lk, 1 ) - (22)

Since in {13) and (22) we deal with superpositions of the Bose
(bare} basis vectors, the respective expansion coefficients
(with respect to this basis system) can be compared.

The formula (13} implies

B (a,0,ky, -, ks, !Hgn M’a’b )(1(3))
— @B ¥ f Aok fk)SE= 0 Wiy k) (23)

and
sla— L1k, .k, |HE, |Aa,b)Y
=alb + 1)(sym)[ fk,) ¢ §°" kpsnkp 1)) s (24)

where

1
(sym)‘—"Sb+1 =mzpb+l

is a symbol of symmetrization with respect to all momentum
variables, 2, P stands for a sum over all permutations.
Quite analogously, from (22} we arrive at

8$a,0,k,..., ky |Hype |A,a,0 )

= alb + 1){ — l)bfd3kf(k)¢ (a—LLb+1)
KKK 1yeresky JOUK ek ) 25)
and
p{a—LLky...ky ) Hp 4,00 )
=va(b+ 1)(—- 1)**!
X (sym)[ f(ky) ¢ “O*Nkey,...ikp 4 1)
Xa(kl""’kb+ 1 )] . (26)
In addition to (sym), let us introduce the antisymmetrization

operation

(asym) =y, =——— 3 (= 1fPy ., -

b+ 1 ¥
Both S and 4 are examples of the Young’s idempotent
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operators Y, , allowing for a decomposition of any n-point
function with respect to different types of symmetry

= 2 Yn f n -
Y
We shall exploit a property (Ref. 7, Theorem 2.7), which
connects Young’s operators Y, with their duals Y¢:
Y,0,=0,Y%. 27)

In particular S¢=4,, A? =S,, hence S,0, =0, 4,. It
means that (26) acquires the form of

Va(b + )(—— 1P+ latkyye ik 4 1)
ym)[ fky) ¢ Nka...rkey 4 1)]}
= Ja‘(ﬁl‘)( — 1P+ 102k )
X {(sym)[ f(key) ¢ O Nheys..oikp 1)11 5 (28)
where

¢ 00k Ky +1)=0lkyesky 1) ¢ @OBN Ky nenrks +1}-

(29)
Let us now make an identification,
¢ Nk 1yenk) = 0K yyeniky) @ (K 0ky) (30)

relating the pure Bose and the {NG } Fermi expansion coeffi-
cients in the above. By virute of (18) and (21) it implies that
the Bose vectors {12) upon (30) satisfy

[4,a,6)9 = [A,a — 1,1,b+ 1)y + |4,8,0,b )

=Aa—1LLb+1) +|4,a0b)=|4ab),
(31)

i.e., coincide with the respective Fermi vectors in the Fock
space. Furthermore, the pure Bose expression (23) reads

valb + 1) f dkflk)p8 "t Nkk,,. k,)

=MJdakf(k)¢(““ LLb+1)
X (kK yyeoisky ) all, K 50k
=W+_l}fd3kf(k)¢<a— Lb+1)

X yyenrky) O gyennsky) 5

which by a factor ( — 1)° differs from the corresponding (NG )
Fermi expression { — 1)°(23) = (25).

As a result of (30) and (28) the following formula holds
true for the (VO ) Fermi model expression (26):

(= 1" Yab + D)(sym)[ f(k,)
X (Kgpeerskiy 4 1)K ppevnsk 4 1)]

(32)

¢ (@,0,6)

=vyalb + 1){ — 1)°*'0%ky,.ky 1)
X {(sym)[ £(Ky) ¢ 5Nk ep 1)) (33)
which upon dropping out a factor { — 1)°*+! is exactly the
o*F contribution to the decomposition formula

[0*F+ (1 — 0*F] valid for the pure Bose expression
{25) = F. By virtue of (15) the decomposition is orthogonal.
Since, because of (31) we have

Hgl&“ﬁ) = Hd/l,ﬂ,b) 5 (34)
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the relevant information about the relationships between the
Bose and Fermi spectral problems comes from the interac-
tion terms.

By virtue of (31) we arrive at
HE |4,ab)Q
=HE |A,ab)

—(= 1)bfd3kf(k)V*Na(k)|A,a —1,1,6+1)

+(— 1)”+‘fd-‘*kf(k Ja*(kc)

XN*V|4,a0b)+(—1°+'|R), (35)
where
R) = [@%, - [a%,., VaB+T]

X [1 = P{kyyenky 4 1)]

X {(sym) [ £(Ky) $ £ ks, )]}

X |4,8,0,k,,....kp 1 Vg - {(36)

Let us however, recall that because of (30), ¢y = 0 ¢ and
that

1
) =—27% P R
(sym) (b-«}-l)!; b41
so that in (36) we encounter products of the form
[1—Plkyyks ()] 01k, 5 iks) (37)

with k,’s taken from the set (k,,...,k, . ,). But (37) either iden-
tically vanishes, or gives a nonzero contribution to {36) on
the set of measure zero only. Hence, [R )} = 0.

If we introduce the notation

HY = [k fR)V N (k) + 2RIV ],
38)
HE =fdﬂkf(k)[V*Na(k)+a*(k)N*V] ,

then (35) appears as an example of a few more relations
between Bose and Fermi Hamiltonians

H® |Aab)=(—1"HE |Aab),
(39)
H® |Aab)=(—1YHF |lab), a<l.
After accounting for the contribution of Hy, the complete
Hamiltonians of the form H, 4+ H,, become related as fol-
lows: N <1, N, = b,
b even,

(HS+H® )Aab)=Hi+H )Adab),

(40)
(H® + H® )|A,ab) =(HE +HF ) 4ab),
b odd,
(H3 +H® )\Aab)=H;FH" )iab),

(41)

(HE + H® )|A,ab)=(HEFHE )|Aab).
In this number the pure Bose problem Hj of Refs. 3 and 4 is
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identified with H3 + H® and the (N®) Fermi problem of
Ref. Swith Hf + HY, .

Relations (40) and (41) prove that for the family of four
(VO ) Fermi models, there is a corresponding family of pure
Bose models, with the property that in the state space of the
Bose system there exists a projection /7 such that the eigen-
value problem for 4, can be solved in the range of /7, and

[hgdT]_ =0, hp=IThy 11,

hy =1IThg IT + (1 —H)hg(1 —1IT). 42)
Here Ay stands for the Bose, while &, stands for the respec-
tive Fermi Hamiltonian. Complementary studies of (1 + 1)-
dimensional field theory models sharing the property (42)
can be found in Refs. 10, 11, and 6.

The results (40) and (41) mean in particular that the pure
Bose model

hy = mV*V + fdﬂk kb *(k )b (k)

+fd’kf(k)[V‘Nb(k)—b*(k)N*V] (43)

has eigenvectors and eigenvalues common with the (V@)
Fermi model solved by Sudarshan and Tata®: all b even ei-
genvectors of A of (1) are exact eigenvectors with the same
eigenvalues for the pure Bose Hamiltonian (43). The odd
eigenvectors of A are shared with

By =mg V*V + fd3kk-b*(k)b(k)

- fd’kf(k)[V*Nb(k)—-b*(k)N‘V] . (44)

One should also notice that upon solving the eigenvalue
problem for the Fermi Hamiltonians (H § + HF ) we would
have received a partial spectral solution for the pure Bose
model of the Bolsterli-Lee type.!™ Unfortunately the Bose
Hamiltonian (H Z + H® )is related to the Fermi Hamilton-
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ian (H5 F HY ) and likewise (H§ + H® )is related to (H §
F HF, ). Thus, the spectral solutions of Sudarshan and Tata
cannot be used to obtain the solution of the spectrum of the
Bolsterli-Lee model: This entails the solution of the problem
for (Hf + HF ). For this form of the fermion Hamiltonian,
however, the simple form of Eq. (3.2b) in Ref. 5 does not arise
since the right-hand side now entails the operator V*V
— N *N instead of the eigenoperator V*V + N*N = N,.
(It was the eigenoperator structure that led to the simple
solution in Ref. 5.) This is exactly the structure for the corre-
sponding equation that would occur if one were directly
dealing with the Hamiltonian for the Bolsterli-Lee model.

One more problem arises in connection with the (for-
mal) non-self-adjointness of operators H ®F. However, since
we relate them to self-adjoint operators via (42) it appears
that projections /7 identify the appropriate (Hermicity) do-
mains.
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Semiclassical statistical mechanics of two-dimensional fluid

mixture of hard disks
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High-temperature expansions for the density-independent part of the radial distribution function
and the first-order density correction to it are obtained for a two-dimensional binary mixture of
hard disks. The “excess” quantum corrections to the second and third virial coefficients and

excess free energy are also discussed. It is found that the “excess” quantum effect depends on the

concentration and the diameter ratio.

I. INTRODUCTION

Two-dimensional quantum fluids have been a subject of
considerable interest in recent years.'~> Ideally a two-dimen-
sional system cannot be achieved. However, a strictly two-
dimensional picture has been used in predicting the proper-
ties of the adsorbed film.%” Another reason for this interest is
to study the effects of reduced dimensionality on the nature
of the phase transition.®® Most of the fluids found in the
literature have been treated classically, because the quantum
effects for them are so small as to be negligible. There are
some fluids for which deviations from classical behavior are
observed at low temperatures. There are two types of quan-
tum effects: (i) diffraction effects, which are linked to the
wave nature of the particles in the fluid, and (ii) exchange
effects due to the statistics (Bose—Einstein or Fermi-Dirac)
obeyed by the particles. The exchange or symmetry effects
are very small for all fluids, except for liquid helium below
5 °K (Ref. 10). The diffraction effects, on the other hand, are
appreciable even at high temperatures.

At high temperatures, where quantum effects are small
and can be treated as a correction to the classical system, the
fluid is treated semiclassically. The usual way of studying the
properties of the semiclassical system is to expand them in
powers of Planck’s constant #i (see Refs. 11 and 12). The first
term of the series is the classical value and other terms arise
due to the quantum effects. We use the Wigner-Kirkwood
(WK) expansion method'! for an analytic potential and the
Hemmer-Jancovici (HJ) method'? for a hard-sphere (or
hard-disk) potential. This approach has been extensively
used for two-dimensional one-component fluids.*> However
a two-dimensional quantum fluid mixture has not yet been
investigated systematically.

The classical hard-disk mixture has been studied over a
wide range of densities.'>'* No work is available for the
hard-disk mixture in the semiclassical limit. Recently Singh
and Sinha'>'® have used their method to calculate the equi-
librium properties of the three-dimensional fluid mixture of
hard spheres.

In the present paper we study the equilibrium proper-
ties of the hard-disk mixture in the semiclassical limit.

In Sec. I1, we describe a basic theory for calculating the
equilibrium properties of a two-dimensional binary mixture,

*'Permanent address: Department of Physics, C.M. (Science) College,
Darbhanga, India.
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the constituent particles of which interact via a hard-core
potential. The explicit expressions for the free energy and the
radial distribution function (RDF) are reported there. Using
this expression for the RDF, we calculate the density-inde-
pendent RDF and first-order density correction to it for the
hard-disk mixture in Sec. II1. Section IV is devoted to calcu-
late the second and third virial coefficients for the hard-disk
mixture. In Sec. V, we develop another method to calculate
the thermodynamic properties of a dense fluid mixture of
hard disks.

The exchange effects that arise due to statistics are ig-
nored here.

1l. BASIC THEORY

We consider a two-dimensional fluid mixture of N,
hard-disk molecules of species 1 and N, hard-disk molecules
of species 2, such that the total number of molecules is
N = N, + N,. We assume that the constituent molecules of
both species differ in size. In addition, the interaction
between unlike molecules is also assumed to be hard-disk
interaction. The Hamiltonian of the system is

>
N|§g

(2.1)

Here, u,4(i,k ) is the pair potential between particle i of spe-
cies a and particle k of species S.

For the grand canonical ensemble, the density operator
p for a fluid mixture is defined as

p=exp| -5 (Bu— 3 u)] =, 2.2
j— 1
where B = (kT)~}, 7z a.ndN, are, respectively, the chemical

potential and number operator of species j, and = is the
normalization factor, known as the quantum mechanical
grand canonical partition function

£ = tr[exp[ —B(f]N — ;,u,&)” .

Let {1, } be a complete set of (properly symmetrized)
orthogonal wave functions of the system, then

(2.3)
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=3 Ex:fu://:ﬁ,,...,'i,v)
el o3 305

Xt FosFn) [

i=1

2.4)

It can be rewritten in the form

2 AV N
= H —_ ff Wy(1,2,....N) H ar, ,
NI V=1 Nj! i

(2.5)
where
z =AM, (2.6a)
Ay =(2m# B/m)'"?, (2.6b)
2
Wy(1,2,..N)= [[ NAY S 92 F 0P
i=1 x
X exp( — BHy W, Py )
2
= [ M4;%0,2,...N ]
i=1
X exp( — BHy)[1,2,..N ) , (2.7)

Here z; and A; are, respectively, the fugacity and thermal
wavelength of species j, and Wy, defined by Eq. (2.7), is the
Slater sum for a two-dimensional fluid mixture.

The quantum mechanical pair correlation function for
a binary mixture in the grand canonical ensemble is

Pa Ps 8ap(1:2)

iy |7 7
—FT2 LIJ. (N, — 6, —6@-)!]
N
xf f Wy(1,2,..,N) ] @F, .

i=3

In the semiclassical limit (i.e., at high temperature),

when the deviation from the classical behavior is small, the

Slater sum can be written as'?
WN = W;‘V Wx s

(2.8)

(2.9)
]

where

We(1,2,.. ,N)—exp[ > Zu,,,(i,k)] (2.10)

a y =1ick

Thus, is the Boltzmann factor and W7 is a function which
measures the deviation from the classical behavior. We can
express W73 in terms of the “modified” Ursell function
Uzsy..5(1,2,...,]). Thus,

Wila)=UZ(1)=1, (2.11a)
Wil,2apB)=1+4+ Ug(l,2),
Wi1,2,3;a8,y) =1+ U(1,2)+ U, (1,3)
+ Uﬁy(2!3) + Uaﬁy(l’2’3) ’

(2.11b)

(2.11¢)
W (1,2, Nict, Byves)

2

> 2 Ussli)
a,B=1i<j
2

YD

a,By=1i<j<k

22: > UZliUskl)

a,Brb=1i< jfk<l

+

U:z"By(irj’k )

+

+

(2.11d)

The above equations can be solved successively for Uz,
ur,, ...
apy,

Um(1,2) = Wrl,zeB8)— 1, (2.12a)
aﬂy(l 2 3) W?(192’3;a’ B:?’) - W?(lﬁz:asﬂ)

By solving the quantum mechanical /-body problem, one can
obtain, in principle, the /-body “modified” Ursell function
U z5y..5(1,2,...,1 ). Unfortunately actual evaluation is too in-
volved to be feasible. For the hard-disk mixture, U J5(r) is
evaluated in the next section.

From Eqgs. (2.9) and (2.11d) we can obtain the expression for W, This is used in Eq. (2.5) to obtain an expression for the

free energy. The result is

BA__BAC_L 2
NN 2l

1

Ll 3

8 a,Br.6=1

2

+ = p K- z xaxﬁx
a, By

+ 0 (/1 )
where

et (2)
p \dP/p

2

X, fgf,ﬂ(l QU ™(1,2)dF, — —p z x,,xyfggﬂ,(l,z,nvgﬂ,(l,z,z) dr, d7,
y=

XoXgX, X5 f [&6r5(1:2,3:4) — £55(1,20855(3,4)] U T5(1,2)U 75(3,4) dF, dF, dF,

UU"' (12)—~ [ng‘aﬂ(lz)]d;] ”U (34)_[}02%7(34)] d_4]

(2.13)

(2.14)

is the isothermal compressibility of the classical fluid mixture and is given by the relation'’

£=1+pzxaxﬁf [8aplr) — 1] dF.
B aB
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Here 4 ° and g55. 5(1,2,....] ) are, respectively, the free energy and /-particle distribution function of the classical two-dimen-
sional fluid mixture, p is the number density, and x,, is the concentration of the species a which is defined as the ratio of the
number of particles of species a and the total number of particles in the system, i.e.,

x,=N,/N=p,/p.

From Eq. (2.8), we find the following expression for the radial distribution function:

8.5(1,2) =855(1,2) [1 + UZs(1,2)] +pz

-plu+v@mmp

___p+u@um[——u&aunw

f Ug, (3, 4) [ngfg,,(3 4)] a']])] +0A2%).

8ap(1,2,3) [UZ5,(1,2,3) + UZ(1,3) + U, (2,3)] d7,

K% f [82615(1,2,3,4) — 855(1,2) £55(3,4)] U75(3,4) dF, 7,y

[ J Un 3, 4) [p’gf,,(3 4)] dr,

(2.16)

Equations (2.13) and (2.16) are s1m11ar in their functional forms to those obtained for a three-dimensional fluid mixture.'3

Iil. RADIAL DISTRIBUTION FUNCTION OF A DILUTE
HARD-DISK MIXTURE

This section is concerned with the evaluation of the ra-
dial distribution function of a binary mixture of hard disks.
For such a system the pair interaction is given by

{oo y r<d.g,

uaﬁ (r) - 0 ’ r> daﬂ ’
whered 4 is the diameter between the hard disks of species a
and B. For, unlike interaction, d,, is given by’

di=4d,+dy)1 +4), (3.2)
where 4 =0 for an additive hard-disk mixture, whereas
|4 | > 0 for a nonadditive hard-disk mixture.

(3.1)

A. Density-independent radial distribution function

The density-independent radial distribution function
(RDF) for a two-dimensional mixture is given by

8aslr) —BH)P, (3.3)
where H,, is the relative Hamiltonian of two particles of
species a and S,

Hy = — (18/meg) V2 + ugslr) (3.4a)
and A4 is the thermal wavelength associated with the parti-
cles of species a and . Thus

Ao = R0HB /my,)', (3.4b)

A= [(’1%1 +'1§2)/2]”2- (3.4¢)
In Eq. (3.3) statistics are not taken into account. In the classi-
cal limit, Eq. (3.3) reduces to g5 (7), given by

ga8(r) = exp[ — Bugg(r)] - (3-5)

At high temperature, the density-independent RDF
can be written as

g8 =[1+UZN], (3.6)
where U 75(r) is the two-body “modifiea” Ursell function,
which is given by*

U =€ 46 +Eo + )
forr>d,z,

=24 25 (Flexp(

(3.7)
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—
with
o= —exp[ —Q%], (3.8a)
£y =(1/2VIAp/d,5)Q 2%, erfc(Q.,) , (3.8b)
£op = (1/87)Aup/dop’ Qs [ Q25 exp( — Q)
where
Qus = [(2m)"*/(Rap/dog) R — 1), R=r/d,g.

B. First-order density correction to the radial
distribution function

The [-particle distribution function for a fiuid mixture
can be expanded in powers of density p as'*!®

8.5(1,2,...,1)

2

a,f=1i<j

= exp[

X[ip" 22: X, Xg5a 5(1,2,.. ,)]

n=0 76,... =1

(3.9)

where the coefficient a'?) 4(1,2,...,/) is the cluster integral in-
volving n field points and l base points. Equation (3.9} is valid
for both classical and quantum fluid mixtures. Substituting
Eqgs. (2.9) and (3.9) in Eq. (2.11), we get the following expan-
sion coefficients for g,,5(1,2):

a(1,2) = [14 UT(1,2)] a%p(1,2),
as(1,2)
= a5 (1,2) [1 4 UZs(1,2)]
— [1+ UZ(1.2)] [ (expl ~ By (1.3)]
X UD,(1,3) + exp[ — Bug,(2,3)] UZ,(2,3)] dF,
+ fexp[ — B [Ua,(1,3) + u5,(2,3)]} [UZ5(1,2,3)

+ UZ,(1,3)+ Ug,(2,3)] dr;,
and so on. Here

(3.10)

(3.11)
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ap(1,2) =1, (3.12a)
a:p(l,Z) = J-f;,,(l,3)fpy(2,3) dry, (3.12b)
where
Jeglin )= €xp [ —Buggli /)] = 1. (3.13)
We write the RDF in the form
8a5(1,2) = 805(1,2) + pgs(1,2) + O(p ?), (3.14)

where g24(1,2) is the density-independent part of the RDF
and g!4(1,2) is the first-order density correction to it.

For a hard-disk mixture, the first-order density correc-
tion to the RDF is given by

2
gf,p(l,Z) = z x,,ag;ﬂ(l,Z) .
y=1
For such a system, a{})5(1,2) is obtained from Eq. (3.11) as

als(1,2) = a%ys(1,2) [1 4+ UTs(1,2)] 4 4,,4(1,2),
(3.16a)

(3.15)

where
A,,,,,(l,Z):f[U w(1,2,3) — Up(1,2)U 7, (1,3)

— Uas(1,2)UE,(2,3)] dF;s . (3.16b)

For a hard-disk mixture, Eq. (3. 12b) is evaluated as
@p(1,2) = [(7/2) (2, +d2,) -
+ 4 sin(26,)} —d 3, {sm"(cos 65)

2, {sinT'(cos 6,)

+1sin(26,)} ], for dg<r;<d,, +dg,,
=0, for ry,>d,, +ds,, 3.17)
where
6, =cos~' (R, +d2, —d3,)/2r,d,,),  (3.18)
Op =cos~ (3, +d}, —d i)/ 2rdg,). (3.18b)

For a one-component fluid, where d,,, = dg,=d, Eq. (3.17)
reduces to'®

a"(1,2)

' )]
2 p_ —1(l2 ) _ T2 {4 (12
e (32) - (e - ()]

for d<ry,<2d,
0, for r,>2d.
{3.19)

In order to evaluate 4,,,4(1,2), we split the range of r,,
into a number of intervals and consider 4,,4(1,2) in each
interval.

() At r; =d_5: UZp(1,2,3) can be written as*

Uzp(1,2,3) = WT(1,2,3;a, B,y) — 1 — Ugs(l,2)
—Un(1,3) = UL(23).
Atr,=d,g, UT(1,2)= — 1and W7 =0. Thus
Um,(1,2,3)= — Un(1,3) — US(2.3).
Substituting this in Eq. (3.16b), we get
A g(12)=0

(3.20)

.
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and
alls(1,2) = (3.21)

(i5) Ford g <ry; <d,z + A ,4: In this configuration, the
first-order contribution of U 75, (1,2,3) comes only from that
region in which either r\3>d,, +4,, or r;>ds, +4,,.
Using the superposition approximation*2°

Um,(1,2,3)
= UTs(1,2)U7,(1,3) + Us(1,2) UL (2,3)
+ U (13)U,2.3) + UL(1L2U L (13U 2,3),

(3.22)
Eq. (3.16b) can be written as
A,p(12) = [14 UT(1,2)]
f Un(1,3)Uz,(2,3) d;. (3.23)
Forr;>d,g + A5, Ui, /)~0 and we get
A,5(1,2)=0
and
We(1,2) = [1+ Um(1,2)] a5p(1,2). (3.24)

(m') For ry,>d,; +A,g: For this configuration,
U 75(1,2)~0 and Eq. (3.16b) reduces to

A,p(1,2) = IU ve(1,2,3)drs .

Thus the leading contribution in the A,;-expansion of
A,,5(1,2) comes from the region for which 7,5 <d,, + 4.,
and r,; <dg, + Ag,. Consequently, the contribution of Eq.
(3.25) is of the order of 4,,, A4,. Thus

(3.25)

Aarﬁ(l’z) =0 (Aaa 'i'ﬂy)
and
al}s(1,2) = a5s(1,2) . (3.26)

Thus the first-order density correction to the RDF, correct
to the first-order quantum correction, is

gle(1,2) = [1+4 Ums(1,2)] z x, abp(l,2),  (3.27)
which leads to
eh)= [1+ U5 X, a% [r— 251 (52
2dll
(- G))]
2'dll dll
+X,d?, 1r—2sin_‘(2;u)
2\ 172
- (-1 e28
2d12 d12
£h2)= [1+ UB (] {Xd2, [n—zsin-‘( -
2d22
(s~ ()]
2d22 d22
+ Xd3, ﬂ'—2sin‘l(2drn)
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r r 2\ 172
- _(— , 3.29
(-G 329)
ghi = [1+U50] {X [ L@ +d%)
— d?,(sin—"(cos 0) + -;— sin(26,)
— d2,(sin—(cos 8,) + —;- sin(202))]
+X, [% d?, +d%)—d% (sin“(cos 6')
+ % sin(20 ')) —dz, (sin"(cos 0"
+Laingo )]}, (3.30)
where
('+d“ ”d“) (3.31a)
2rd,,
('2+d" _d") (3.31b)
2rd,,
and
(’2 +di ) (3.31¢)
2rd,,
6" =cos™! (fzf—d-’ﬂl) . (3.31d)
2rdy,

We may evaluate the RDF of a binary mixture of hard
disks using Eqgs. (3.28)3.30).

IV. EQUATION OF STATE OF A DILUTE HARD-DISK
MIXTURE

Substituting Egs. (2.13) and (3.9) in the relation'®

“%(ap)

we obtain an expression for the equation of state in the virial
form

BP=p + i B, p",
n=2

where B, is the nth virial coefficient for the fluid mixture in
the semiclassical limit. The first few virial coefficients, which
are required to give the equation of state of a dilute gas mix-
ture, can be written as

2

B,= Bc-% s xax,,fexp[_ﬁu,,,,u,z)]

(4.1)

apB=1
UZs(1,2) d7,, 4.2)
2
B,=B§ — XoX,Xg fexp[ — Bu4(1,2)]
a,py=1

X a5s(1,2)U T(1,2) dF,

2
+ XoXgX, fexp [ =B {u.,(1,3) + u,(2,3)} ]

a, p.y

XU (1,3)U3,(2,3) dF, dF,
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F o s [ |
- — X, Xgx, | exp| —8 Ui,

3 mﬁ;ﬂ 8%, | €xp nga aslisJ)
XU_gs(1,2,3) dF, dF,, 4.3)

where BS and B are, respectively, the second and third
virial coefficients for a two-dimensional binary mixture of
classical fluid. They are given by’

1 2
7. ; lx,,x,9 J.f,,,(l,Z) dr,,

(4.4)
1 2
Bi=— ry a,;y- 1 XoXgX, ffﬁ(l,Z)Lr(l,3)
X f3,(2,3) dF, dF; . (4.5)

Substituting Eq. (3.7) in Eq. (4.3), we obtain the follow-
ing expression for the second virial coefficient for a hard-
disk mixture in the semiclassical limit:

Bz-——l—ﬂ' ; X%z d2 [1+L(ji)
aff

(@) wa i)+
“"31r(ar(,,g T nvir dg M
(4.6)

where the first term on the right-hand side is the classical
value.
For the hard-disk mixture, Eq. (4.3) reduces to

2
B,=B% + ﬁz lxaxﬁxy [Bilagy + OAus Aay)»
a, p,y =

(4.7)
where
[B:)us = — —f [as(120U75(1,2)
S (L2U T (1,2)
+ a5, (1,2)U5,(1,2)] @7, . (4.8)

In order to calculate the classical third virial coefficient
B, we rewrite Eq. (4.5) in the form??

T 2

Bs="
3 . ,r=1xaxpx,,
fe(l2) o
”rz oo )°“(12)dr,2
ar,
. (1,2) .
+ [ 2= g 0y,
ory,
e (1,2) o
fﬂ Wfor| “’(12):13] 4.9)
For hard disks, where
df.s(1,2)
%ﬂ=5(’12—d¢),
Eq. (4.9) can be evaluated as
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B; = % xaxﬁxr [d aﬂaa,,ﬁ(daﬂ) + dayaaﬁy(day)
o1
+d ﬁraﬁar(dﬁr)] : (4.10)

With the help of Eq. (3.17), Eq. (4.10) can be expressed as

2
B§=-Zr— x 2« XgX, [d

{0° - —sm(26°)]
3 o 2

+d2d} {0%-—%sin(202)}

+d2,d}3, [0° - —sm(26 )” (4.11)
where
00 =cos™'(dip+di —dj,)/2d,4d,,), (4.12a)
0 =cos™ ' (dig+dp, —d2,)/2d edg,), (4.12b)
09 =cos™'(d2, +d}, —di)/2d,ds). (4.120)
For a one-component fluid, whered,; = d,, = dg,=d, Eq.
(4.11) reduces to*?
B =17%d*(§—V3/m). (4.13)

We now evaluate the leading quantum correction of the
order of (1,5/d,g) to the third virial coefficient. Equation
(4 8) can be evaluated substituting the values of U ;5(1,2) and

arﬁ(l 2) from Eqs. (3.7) and (3.17). Thus the final results for
the third virial coefficient for the hard-disk mixture, correct
to the first-order quantum correction, is

e, T 1 A
B=Bity g e (‘E {(—di)
x[d:,,, dz, (93 - %sin(Z og))

+d2,d3, (eg _ —;—sm(20 ))]

A 7)[
a dz
+(d,,, =
1 .
+d2, d3, (og — —sial2 og))]

+(2ﬂ) [d2 dz, (00 - 7sm(20 ))

Br

dz, (og - %sin{Z eg))

+d2, d, (02 _ -%—sin(Z e‘;))]}
2
+0 (('1“" ) )) . (4.14)
dop
For a one-component fluid, Eq. (4.14) reduces to*
B,=B5 [1+V2A/d)+O(A/d)], (4.15)

where B is given by Eq. (4.13).

We are interested in estimating the excess properties of
the hard-disk mixture (relative to the pure components). The
“excess” second and third virial coefficients of a hard-disk
mixture in the semiclassical limit may be obtained from Eqgs.
(4.6) and (4.14), respectively. Thus,
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d,,\? E (A

d
(&) mam (@) ]
= (&) + =——(&) + ~| w16
+ Iz \d + 32vir \d + (4.16)
and
AB,=ABS + AB LA /d)+ O (A /dP), (4.17)
where
4
AB; =i172d4 [.xlx2 [(ﬂ) (2 _ ie)
4 d T
2
+(ﬁ) (4—8—“-2b) —lc],
d T T
(4.18)
4 2
AB "=V2rd*x, x, [(&) E(1 - e)+(ﬁ)
d 2 d
T 1 1
X|——A+—E(r—2a—-0> )———D],
(2 R E )
(4.19)
where
d*=x,d}, +x,d}, (4.20a)
. d . d
ad®>=x,d? sm"(—i) + x,d? sm—l(_&),
1811 2., 262 2.,
(4.200)
bd*>=xd, \J4dd}, —d}, + x,dp\4d}, —d3,;
(4.20c)
cd*=x,d3} \4d3, —di, + x,d3, \/Mfz —-d%,
(4.20d)
d? 2
e=x1sin"(l - U ) + xzsin‘l(l _ 9= ),
2%, 2d3,
(4.20¢)
and
Ad=x,Ay,dy, +x,4d, {(4.21a)
.1 dy
Md =x1 A’lldll sin (———')
12
+ x5 Ay, dyysin”! (—d22 ) , (4.21b)
2d12
DAd® = x, Ay, d%, 4T, —dF,
+ XA d% 4, —di; {4.21¢c)
E(#/d)=(A/dy). (4.21d)

In Eq. (4.16), the first term is the classical value. From Eqgs.
{4.20a) and (4.21a), we have

A_ ['xl +x2R(/122//1“)] ( )
d x, +x,R? d,

- [xl +X2R(m11/m22)l/2] (ﬂ) , (4.22)
x,+x,R? d,
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where R = d,,/d,,. For additive hard disks, E is given by
(14 my/my)'"? (x, +x, R?)

(L4 R) (e, +x, R (myy/myy)')
The equation for E is invariant to a labeling of species 1 and
2. For a given mixture, the excess quantum correction can be
calculated in term of (A, /d,,,) of one of the species. How-
ever, in the case of a hard-disk system, we may consider the
atomic mass as some function of the diameter of hard disks.
If we assume for simplicity that the atomic mass m,,, is pro-
portional to d 2, Eq. (4.23) reduces to

E=V2

(4.23)

E=VI[(1+R"Yx, +x, RY)/(1 +R)]. (424

Equations (4.16) and (4.17) are valid for both additive and
nonadditive hard-disk mixtures. From these expressions, it
is obvious that the excess virial coefficients depend on x, and
R.

V. THERMODYNAMIC PROPERTIES OF A DENSE
HARD-DISK MIXTURE

The free energy of a binary mixture of hard disks, cor-
rect to the first-order quantum correction, is obtained from

Eq. (2.13):

pa _pac _ 1 3
No N 2P 25N

Li=1

IU rir gndr+ 07). (5.1)
Using Eq. {3.7), it can be evaluated as
A A €
%:B__{.ﬁp;jxixjgfj(dij)dq A . (52)

This expression is valid for both additive and nonadditive
hard-disk mixtures.

The van der Waals one (vdW 1) fluid theory of mixture,
originally developed for the hard-sphere system,** has been
extended in the case of the classical hard-disk mixture.'> We
adopt this theory to calculate the properties of the classical
system. This theory approximates the properties of a mix-
ture by those of a fictitious pure hard-disk fluid with the
diameter™*

2 2
do=Yxxdj.
oy

In the vdW1 theory of mixture, the free energy and pressure
of the classical mixture are written as

(5.3)

A°=A5+ NkT Y x; Inx, + second order term,

(5.4)
(5.5)

where A § and P are, respectively, the free energy and pres-
sure for pure classical fluid containing N (= N, + N,) mole-
cules in volume ¥ at temperature 7. For a hard-disk model
having diameter d,; given by Eq. (2.6), 4§ and P are given
by25

P¢=Pg + second order term,

BAG/N =3 [5o/(1 — 1)l —FIn(1 — 7o) (5.6)
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and

BP§/p = (1+0.125 R2)/(1 — ), (5.7)
where

No=47pd; . (5.8)
In the vdW1 theory, it is assumed that

&dy) = gdo) - (5.9)

Further, we assume

dAo= Y x,x; A, dy, (5.10)

iJ

for all i and j. Then Eq. (5.2) is written as

pA  pA° T 2 (,10)

—=— 4 ——(pd do) {=2]) . 5.11

NN +2v2(p o) &°do) 4 (5.11)

Other thermodynamic properties can be derived from Egq.
(5.11). Thus the equation of state of the hard-disk mixture in
the semiclassical limit is given by

BBy Tpad)

P
x| gty +5 a%’"’] (;1—) -

Thus the quantum corrections to the thermodynamic prop-
erties are expressed in terms of the classical RDF at the con-
tact g%(d,), which can be obtained from the relation'*

P* 1
ﬂp =1+77rpz.xixjd5g:;(dij)
ij

(5.12)

=1+270gdo)- (5.13)

With the help of Egs. (5.7) and (5.13), g“(d,) is given by
&(do) = (1 — & 7o)/(1 — 1) - (5.14)
Using Eqgs. (5.6)-5.9) and (5.14), we obtain the follow-

ing expressions for the free energy and pressure correct to
the first order in 4,

BA_[,, 1 B4
N 1+2V22x" "ad (N) 313
gP

BP" ) . (5.16)

P [1+ vizx % Ay ad (
Thus the first-order quantum correction to the thermody-
namic properties of the hard-disk mixture can be found by
replacing the actual diameter d; by an effective diameter
(dy + 27/ 4;). Thus the effective diameter method works
for the fluid mixture in the vdW1 theory, where gj(d;)
= gdy).

We use this theory to calculate the thermodynamic
properties for both additive and nonadditive hard-disk mix-
tures.

A. Binary mixture of additive hard disks

We derive expressions for the thermodynamic proper-
ties of the binary mixture of additive hard disks.

Using Eqs. (4.20a) and (4.21a) we get the following rela-
tions for the binary mixture of additive hard disks:

To=7[1-3xx(1-R?¥/(x,+x,R?], (5.17)
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where

7= (w/4) pd* = (w/4) plx,d?, + x4 %) (5.18)
and

Audo=FAd, (5.19)
where
F=14xx,

x[2"”2(1 + R)1+45/4,)'2 = (1 +Rizz//1u)] .

(xy +x2 R A5/A4)
(5.20)

Using Eq. (5.14) in Eq. {5.2), we obtain expressions for the
free energy and pressure for the additive hard-disk mixture:

y v R () DR
where

At =V2Fy [(1—Fnl/(1 —no)’] (5.22)
and

oo @) o)) e
where

P =V2Fy[(1+§n0)/(1—m0)]. (5.24)

In a theory of mixture the excess properties of the sys-
tem are of interest. From Eq. (5.2}, the excess free energy for
the hard-disk mixture is given by

BAdg PAE 7

N_ N v

xx; (pd %2)8‘12 (@12) (%ll) .
12
(5.25)

With the help of Eqgs. (5.7) and (5.13), g5, (d,,) for the addi-
tive hard-disk mixture can be given by

g5:(d)
) 1+ 47)
- (1+01,25371) _ s 275:7 ,u]+0(x1x2),
(1—mn) 8 (1—mn)
(5.26)
o= x,d% +x,d3,
(x1d} + x,d 3, )dy + do)
—_ u+xnRT (5.27)
(*1+x, R*)(1+RY
Thus the “excess” free energy is given by
BAE BACE 10()&)
= A=), 5.28
N 0 +A4Eg d ( )
where
1+
AL =2V, [1+o.12§17 25 z‘s:})
(1—m) 8 (I—m)
(5.29)
with
1 14+ Ry
e =—pd} =7n—(——i’——)— (5.30)

4 (X, +x,R? .
From Eq. (5.29), we find that the value of 4 ;" depends on the
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concentration x, and diameter ratio R.

B. Binary mixture of nonadditive hard disks

This section is concerned with the evaluation of the ex-
cess properties of the binary mixture of nonadditive hard
disks, for which Eq. (3.2) can be written as

d12=d72(1 +A)»
where
di, =(dy+d)/2

is the effective diameter for additive hard disks. Equation
(5.2) can be rewritten in the form

—A, A°—A¢
B(AN ) _ Bl - ) +_V1%.xlx2p [d,, 85 (d)o)
—d%, g‘lzz(du)] Aizs (531,

where the subscript “a” refers to the properties of the addi-
tive hard-disk mixture. Other thermodynamic properties
can be obtained from Eq. (5.31). Thus the equation of state
for a binary mixture of nonadditive hard disks in the semi-
classical limit is given by

ﬁ(P—Pa)zﬁ(P“—PZ)+Lxx
P 0 V3 ke

XP{ [di285:(dn) —dS; g5.d$,)]

ad
+p 3{; [di285:(d1n) —d S, 12(d12)]] A,

(5.32)

For a classical binary mixture of nonadditive hard
disks, the free energy and equation of state are given by'*

B(A°—A2)_4xx [1—1%17]
— N a 2Ma —(1_77)3
XAQ2+4)+0(x% x3), (5.33)
B(P°—P7) 14+0.1257
p _4x1x277a[ (1_17)3 ]
X424+ 4)+0(x} x3). (5.34)

The quantum correction terms of Eqgs. (5.31) and (5.32)
are expressed in terms of g5, (d,,) and g%, (d §, ). For additive
hard-disk mixture, g{,(d {,) is given by Eq. (3.2), g1, (d,,) is
evaluated using Eq. (5.13), and

B(P°—P;)

P =X X P [diz giz(dlz)—d‘fzz 12(d72)] .

(5.35)

Expanding the right-hand side of Eq. (5.35) in the power of
A4, we find
B(P°—P;) .
_—P_ =4x,x, 1, [£120d12) —85.(dT;)
+24¢5,d5,)+0(4%)]. (5.36)
Comparing Eq. (5.34) and Eq. (5.36) and using Eq. (3.2), we
get
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FIG. 1. The excess free energy per particle £f; of a binary mixture of hard
disks as a function R for p* =0.5, x, =x, =0.5,and 4 = 0.0.

1

ghld) — ghold ) = 2 2L E BT
4 (1-19)

Substituting Eq. (5.36) in Egs. (5.31) and (5.32) we can

obtain the final results for the free energy and equation of
state, correct to the first-order quantum correction. Thus,

BU—4,) BU -4 +a3(2)
and ’

N N
B(P—P,) =B(P‘—P§)+Pé (i)
P P

pd +0(4?. (537

(5.38)

(5.39)

d
Here the quantum coefficients 4 % and P% are given by

1+40.125
A} =2VIxx,Ey, [ﬁ

25 71+ A7)

5.40
8 (1—q) >4

,u}4+0(42)
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FIG. 2. The excess free energy per particle Bf; of a binary mixture of hard
disks as a function of x, for p* =0.4,R =1.1,and 4 = 0.0.
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FIG. 3. The excess free energy per particle 8f; of a binary mixture of hard
disks as a function of p* forR =1.1,4 =0.0, +0.1, and x, = x, = 0.5.

and
_ _ 2
P'}z=2‘/2"1x2E77a[(1i4g—”')'
(1—m7)
25 1—%&#—:’;7)2]] ,
+_4_,,[ G P PR

(5.41)

C. Results and Discussion

We have used Eq. (5.28) to calculate the excess free en-
ergy per particle Bfz(=BAz/N) of the additive hard-disk
mixture correct to the first order of quantum correction.
Values of £fy at p* = 0.5 forx, = x, = 0.5 are plotted as a
function of diameter ratio R in Fig. 1 for A /d = 0.0,0.1, and
0.2. The quantity p* =p(x,d}, + x,d%,). The excess free
energy, both in classical and semiclassical limits, is maxi-
mum at R = 1.0 and decreases steadily as R moves away
from 1.0. The value of 4 £, which is governed by E and u, is
maximum at R = 1.0and becomes — « atR = 0and «. So
the quantum value of Bf; decreases faster and becomes neg-
ative when R is far away from 1.0.

Figure 2 demonstrate the variation of Bf of the addi-
tive hard-disk mixture for p* = 0.4 with the concentration
x, for A /d = 0.0, 0.1, and 0.2. It is found that the (excess)
quantum effect is zero at x, = O and x, = 1.0 and finite in the
intermediate range of x,.

In Fig. 3, the values of Sf for a binary hard-disk mix-
ture with R = 1.0 and x, = x, = 0.5 are reported as a func-
tion of p*for4 =0.0,and 4+ 0.1atA/d =0.0and 0.2. Itis
found that the quantum effect increases with the increase of
p* and decrease of 4, the nonadditive parameter.

Thus we come to the conclusion that the (excess) quan-
tum effect to the thermodynamic properties of the hard-disk
mixture, which depends on the concentration x, and the di-
ameter ratio R, increases with p* and 4.

B. M. Mishra and S. K. Sinha 503



!J. G. Dash and M. Schick, in The Physics of Liquid and Solid Helium,
edited by K. H. Bennemann and J. B. Ketterson (Wiley, New York, 1978),
Part 2.

?R. L. Siddon and M. Schick, Phys. Rev. A 9, 907 (1974).

*W. G. Gibson, preprint, 1983.

“S. K. Sinha and Y. Singh, Mol. Phys. 44, 877 (1981); S. K. Sinha, Y. S.
Sainger, and Y. Singh, J. Math. Phys. 23, 2569 (1982).

3). Ram, Y. S. Sainger, and Y. Singh, Mol. Phys. 45, 1141 (1982); Y. S.
Sainger, S. K. Sinha, and Y. Singh, J. Chem. Phys. 79, 5088 (1983).

). G. Dash, Film on Solid Surfaces (Academic, New York, 1975).

TW. A. Steele, Surf. Sci. 39, 105 (1973); F. Lado, J. Chem. Phys. 49, 3092
(1968); D. Henderson, Mol. Phys. 34, 301 (1977).

8S. Toxvaerd, Phys. Rev. Lett. 44, 1002 (1980); F. F. Abraham, Phys. Rev.
Lett. 44, 483 (1980); J. A. Barker, D. Henderson, and F. F. Abraham,
Physica A 106, 226 (1981).
°J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973); V. L. Bere-
zinakii, Sov. Phys. JETP 34, 610 (1972).

1°M. E. Boyd, S. Y. Larsen, and J. E. Kilpatrick, J. Chem. Phys. 50, 4034

(1969).
''E. Wigner, Phys. Rev. 40, 749 (1932); J. G. Kirkwood, Phys. Rev. 44, 31

504 J. Math. Phys., Vol. 26, No. 3, March 1985

(1933).

12p, C. Hemmer, Phys. Lett. A 27, 377 (1968); B. Jancovici, Phys. Rev. 178,
295 (1969).

B3E. Dichinson, Mol. Phys. 33, 1463 (1977).

144, N. Singh and S. K. Sinha, Pramana 20, 327 (1983).

15U. N. Singh and S. K. Sinha, J. Chem. Phys. 77, 5784 (1982).

'6U. N. Singh and S. K. Sinha, J. Chem. Phys. 78, 3191 (1983).

D. J. Adam and I. R. McDonald, J. Chem. Phys. 63, 1900 (1975).

18S. A. Rice and P. Gray, The Statistical Mechanics of Simple Liquids (Inter-
science, New York, 1965).

SW. A. Steele, The Interscience Interaction of Gases with Solid Surfaces
(Pergamon, New York, 1974), Chap. 4.

20W. G. Gibson, Mol. Phys. 30, 1, 13 (1975).

213, O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of
Gases and Liquids (Wiley, New York, 1954), Chap. 8.

ZE. D. Glandt, J. Chem. Phys. 68, 2952 (1978).

2F, H. Ree and W. G. Hoover, J. Chem. Phys. 40, 939 (1964).

#T.W. Leland, J. S. Rowlinson, and G. A. Sather, Trans. Faraday Soc. 64,
1447 (1968).

25D. Henderson, Mol. Phys. 30, 971 (1975).

B. M. Mishra and S. K. Sinha 504



Nonequilibrium statistical thermodynamics of second-order stochastic

processes in the limit of large resistance

B. H. Lavenda
Dipartimento di Scienze Chimiche, Universita’di Camerino, via Sant'Agostino, 1, Camerino 62032 (MC) Italy

and TEMA S.p.A., viale Aldo Moro, 38, Bologna 40127, Italy

R. Serra
TEMA S.p.A., viale Aldo Moro, 38, Bologna 40127, Italy

(Received 8 February 1983; accepted for publication 17 August 1984)

The phase-space generalization of the kinetic analog of Boltzmann’s principle is derived. A
kinetic criterion for the contraction of a second-order (Ornstein—Uhlenbeck) to a first-order
(Einstein—-Smoluchowski) stochastic process is advanced on the basis of an asymptotic expansion
of the joint entropy in the limit of large resistance. The kinetic criterion is shown to be the
stationary solution to the first velocity moment of the phase-space Fokker-Planck equation. The
Stratonovich criterion for the validity of the Einstein—Smoluchowski description is corroborated
from the asymptotic expansion of the joint entropy. Second-order Gaussian processes are used for
illustration where it is shown that (i) the principles of least dissipation of energy and maximum
joint entropy are equivalent, and (ii) the observed, local velocity arises from an exact balance
between rates of growth and decay of velocity fluctuations.

1. INTRODUCTION

The analysis of dynamical systems is often simplified
when their components, say X (¢) and Y (¢), evolve over two
nonoverlapping time scales. Suppose that X (¢} is the rapid
process and Y (¢) is the slow one. The reduction principle’
states essentially that the Y (¢ ) process can be studied alone by
substituting X (# ) = O into the equation of motion for Y(¢).

An analogous phenomenon often occurs for Brownian
motion where the inertia and external noise evolve over a
time scale much shorter than the variation in the external
force. A typical case is that of the Ornstein—~Uhlenbeck (OU)
process’:

dY(t)=U(t)de, (1.1)

dU(t)= — [RU(t)—F([Y(t)]} dt +2kR dW (1),

where Y (¢ ) and U (¢ ) are the displacement and velocity of the
Brownian particle, respectively. Here, F denotes the external
force and W (¢) is a standard Brownian motion. The time
scale is set by the magnitude of the resistance parameter R.
The two well-known limiting cases are small and large resis-
tance.’ The thermodynamically interesting case is the latter
where for a constant force, the system will tend to a limiting
velocity, (1/R )F over a time scale greater than the relaxation
time (1/R ).* In this case, over times greater than (1/R ), the
second-order process (1.1) reduces effectively to the first-or-
der process

dY(t)=(1/R)F[Y(¢)] dt + 2k /R dW(t). (1.2)
Even when the force is a slowly varying function of the dis-
placement, Eq. (1.2) is assumed to be a valid approximation

to (1.1) for times #»(1/R ) and it is commonly referred to as
the Einstein-Smoluchowski (ES) approximation.’

There is a long history to the phase-space description of ‘

Brownian motion and its subsequent reduction to a configu-
ration space description. Klein® generalized the configura-
tion space Fokker-Planck (FP) equation, which we shall re-
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fer to as the Smoluchowski (S) equation, to the phase-space
Fokker-Planck equation. He even gave an approximate re-
duction of the FP equation to the S equation which provided
the stimulus for Kramers™ study. Kramers offered a crite-
rion for the contraction which was later modified by Straton-
ovich.” Other asymptotic expansions have been proposed by
Brinkman® which was later rediscovered by Landauer and
Swanson.’ Brinkman used a moment generating method
which had the defect of choosing the initial velocity distribu-
tion as the Maxwell-Boltzmann (MB) distribution. To low-
est order, he obtained the Laplace transform of the telegraph
equation which would correspond to Eq. {3.28) below, if the
second moment were to be replaced by its asymptotic, equi-
librium value. However, it is known that the second mo-
ment, which is the kinetic contribution to momentum trans-
port, relaxes only slightly faster than the current, or first
moment.'® Chapman-Enskog procedures have also been de-
rived in which the entire time dependence resides in the con-
figuration space transition density.'! Moreover, the Chap-
man-Enskog procedure has also been used to obtain a
perturbation series for the diffusion operator on the S equa-
tion.'? All these methods come under the heading of “adia-
batic elimination procedures” which are reviewed in Ref. 13.
The validity of these methods has been questioned in Ref. 14
and it is the purpose of the present paper to offer a thermody-
namic criterion for the contraction of a second-order sto-
chastic process to a first-order one, based on a generalization
of the configuration space kinetic analog to Boltzmann’s
principle.'®

The evolution toward equilibrium of nonequilibrium
statistical thermodynamic processes is governed by the
wearing off of the statistical correlations between nonequi-
librium states for increasing times.'® In the phase-space de-
scription, our aim is to obtain a criterion for the statistical
independence of velocity and displacement fluctuations in
the large resistance limit for times greater than the relaxa-
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tion time (1/R ). We shall assume that the fast or “driving”
process is ergodic and that there is a unique invariant prob-
ability distribution p_ which is determined in terms of the
entropy S ( y,u) according to Boltzmann’s principle

klnp,(yu)=S(yu)—S(0), (1.3)

where k is Boltzmann’s constant and S (0} is the equilibrium
value of the entropy. Over long time intervals (i.e., assuming
that the process is homogeneous), the driving process U (¢)
will have had ample time to decouple itself from the slow or
“driven” process Y (¢) so that the latter becomes a Markov
process by itself. At this stage, a MB-distribution will have
been established at every point in configuration space, im-
plying that the entropy has the form

'y

S(y,u)=S(0)—5u2+f Fx)dx. (1.4)

0
On account of the fact that the entropy is invariant under
time reversal, no cross term can appear in (1.4). The force F
in Eq. (1.2) is thus identified as the space derivative of the
entropy and tends to restore the system to thermodynamic
equilibrium. In regard to Eq. (1.1), it behaves more like an
“external” force: in an isolated system, F would vanish leav-
ing a pure diffusion process in velocity space, which is de-
scribed by the diffusion operator

®:= —Ru (%) +D* (%) (isolated process),

(1.5)

where D * is the velocity space diffusion coefficient which is
given by the Einstein formula D * = kR. However, if the sys-
tem is open thermodynamically in the sense that mechanical
work can be done on it (even though it is still thermally iso-
lated), there is a nonvanishing external force F which acts on
the particle at each position y. Moreover, it induces a drift in
velocity space and the diffusion operator now has the form

&:=u (%) +b (7;2—‘—) +D* (%) (open process),
(1.6)
where b is the drift, viz.,
b(yu):=F(y)—Ru. (1.7)

Hence, for second-order processes, F acts more like an exter-
nal force rather than an internal force as for first-order sto-
chastic processes (1.2). From (1.6) and (1.7) it is clear that Fis
responsible for the coupling of the driving process to the
driven process. Since the phase-space process is Markov, the
statistics are determined completely by the transition den-
sity and the invariant distribution (1.3). We shall now turn to
the derivation of the former.

Il. PHASE-SPACE KINETIC ANALOG OF BOLTZMANN'S
PRINCIPLE

The mathematical technique which we use to generalize
our configuration space, kinetic analog of Boltzmann’s prin-
ciple to phase space is again based upon Girsanov’s
theorem,” relating the absolutely continuous substitution of
different probability measures on the same probability space
for diffusion processes with the same variance but with dif-
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ferent drifts. The only difference is that we will now be con-
sidering the transformation of the velocity space Wiener
measure into a new measure for our nonequilibrium statisti-
cal thermodynamic process. Its configuration space analog
has been used by Ezawa et al.'® to study the transformation
properties of the Wiener measure for quantum mechanical
processes. The original idea of transforming the configura-
tion space Wiener measure into a new measure, in which the
Onsager-Machlup (OM) potential appeared, is due to Fal-
koff'® and has been recently rediscovered in Ref. 20.

The derivation of the transition density will occur in
two stages. The first stage consists of the transformation of

the isolated process
dU(t)= —RU(t)dt+V2D*dW (), U(0)=u°
(2.1)

with
Y(T)—y°=fTU(t)dt

into the open thermodynamic process (1.1) which is caused
by the application of the external field F on the system. The
probability measure density for the transformation is given
by the Girsanov formula

P U)X ()]

—exp [ [ L w1 (=) ]}
(2.2)

where the subscript “o” stands for open. Eliminating the
Wiener process with the aid of (2.1) and noting that

fTF(x)u dt = fyF(x) dx =AS*(y)

is the change in the configurational entropy S * over the in-
terval [0,7°], the measure density (2.2) can be written as

pLU(),Y(t)] = exp {(sz) [S*[Y ()] — $*(°)]

1
ID*

T
+ f [FLY(t)] dU()

_1 F2[Y d
(2.3)

The conditional average of this expression over all paths in
velocity space, with respect to the OU probability density,
which begin at 4° and terminate at u is

Polus »,T % 3°) = E, { p, U)LY ()] UT) =u},
(2.4)
where Ut ) is the solution to (2.1) and the conditional aver-
age is performed with respect to the OU or isolated “7 den-
sity
p;(u,T |u° = {27k (1 — exp[ —2RT']} /2
xexp { —(1/2k){u —u°
X exp[ — RT])*/(1 —exp[ — 2RT])} .
(2.5)
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The relation between the isolated and open transition den-
sity is given by
P, 3T |u’, %) =p,(u, p, T |u°, y°) p,{u, T |u°),  (2.6)

which on account of (2.3) can be written in the more instruc-
tive form

Polu, y,T |4, y°)

= exp {(1/2k)[S*(y) — S*(°)} Ki(u, »,T [u°,)°),
(2.7)
where the kernel X is

Ki(u’y’TIuO’ 0)

—Ei [exp [(ZDI *) J;T(F[Y(t)] du()

- %F’ (Y ()] dt)] ’ UoT)= u}p,-(u.Tlu°) :

(2.8)

The second stage of the derivation utilizes the fact that
expectation values with respect to the velocity space OU, or
isolated, process can be converted into expectation values
with respect to the velocity space Wiener process whose den-
sity is

Pwlu,T |u°) = (1//4wD *)-exp{ — (u

The probability measure density which relates the two is
p:[U()]
= exp [ —LJT [U)] dU(t) + (5) U2(t)dt} .
2k Jo 2
(2.10)

The conditional expectation of this measure density relates
the transition density of the Wiener process {2.9) to the tran-
sition density of the isolated process, viz.,

—u%/4D*T} . (2.9)

piu, T |[u°) = p;(u, T |u®) py (u, T |4°), (2.11)
where
piu,T|u)
=E:"[exp[ — (i) LT(U(t U (t)
+ (%) Uz(t)dt)” UYT) = u] . (2.12)

The averaging in (2.12) is performed with respect to the ve-
locity space Wiener measure whose density is (2.9).

Expression (2.12) is in a somewhat inconvenient form
due to the presence of the It6 stochastic integral. It can be
replaced by the Fisk—Stratonovich integral, which enjoys all
the properties of an ordinary integral, by introducing the
symmetric ‘“0” product

Ult)edU(t)=U(t)dU(t)+ D*dr
into expression (2.12). We then obtain
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Pi(“’T|uo)
= exp{ — (1/4k)[u* + u*?]}

XE,ﬂ"[exp[ - (L)JTV[U(t)] dt” U%t) =u] s
2k/ Jo
(2.13)
where
V(u):=(R/2)u*—D*
is the velocity space OM-potential. Introducing (2.13) into

{2.11) and the latter into (2.6), we come out with the final

expression
Polu, y,T |u°, ¥°)
=po(u, YKwlu, ,T 4% y°) p . (0, y°) (2.14)

for the transition density of the open thermodynamic pro-
cess. The new kernel is the conditional Wiener average

Ky (u, y,T |u°, y°)
=EY [exp[

_ %Fz (Y ()] dt)]

1
2D*

fo (FLY (1)l dU(t)

X exp [ ——}ELTV[U(t)] dt” U°(T)=u}

Xpw (T |u°). (2.15)

The kernel (2.15) contains information regarding the
nature of the statistical correlations between the states
(4°, »°) and (u, y) provided the time interval T is not very
large. In the limit as 7— oo, these states will become statisti-
cally independent: a long lapse in time ensures that the pro-
cess has had ample time to “forget” its past. Provided the
invariant probability distribution exists, this means that

;ifn Pou, T W% )% =p_ (u,y)=p. W) p.(y), (2.16)

independently of the initial conditions. The second equality
is due to the time invariancy of the entropy {1.4), since the
entropy determines the invariant probability distribution ac-
cording to (1.3). Taking the asymptotic time limit in (2.14)
and using the asymptotic result (2.16), we find that

lim 2k In Ky, (0, p,T |4° 3°) = S (u, y) + S (u°, °) — 25 (0),

Tteo

(2.17)

where the constant has been chosen so as to satisfy Boltz-
mann’s principle (1.3) in the asymptotic time limit. The
limiting relation (2.17) may be taken as a definition of statis-
tical independence. However, if the time lapse is not long, we
can expect that the nonequilibrium states will be correlated
statistically. As a phase-space generalization of the configu-
ration space joint entropy,'® we have

o,(u, p,T |t y°): =2k In Kpp(u, y,T | 3°) .  (2.18)

Asymptotic independence (2.17) implies that the joint en-
tropy must reduce the sum of the entropy differences

lim o,(u, y,T |u° %) = AS (u, y) + AS (1°)°), (2.19)
Tt
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where 4S5 (4, y) is the entropy decrease S (¥, y) — S (0).

To prove (2.19), we use the fact tht the transition density
of the open process satisfies the pair of Kolmogorov equa-
tions

o)
Do @°

as - D,

(2.20)

and

dp
(] — @0.', A
at P
where @™ is the formal adjoint of the diffusion operator (1.6)
and we have replaced the time interval 7 by [s,] to distin-
guish between initial and final data. The backward equation
(2.20) is to be solved subject to the end condition

, (2.21)

limpo(u, »t |u0v yo’s) = 6(“ - uo)a(y —’yo)
ste

while the forward or FP equation (2.21) is to be solved with
the initial condition

lim po(u, y,t |4, ¥°,s5) = 8(u — u®)8(y — )°) .
s

Fortunately enough, we will only need the stationary solu-
tion to the Kolmogorov equations (2.20) and (2.21) that
arises in the asymptotic time limit.

To facilitate matters, we use the representation (2.14) to
convert the FP equation into the self-adjoint diffusion equa-

tion
DK, &#K,, 1
o=+ (52) = (5) vk

where D /Dt stands for the Stokes operator

(2.22)

The definition of the joint entropy (2.18) affectuates a loga-
rithmic transformation on the diffusion equation (2.22) giv-
ing rise to the nonlinear, generalized Hamilton-Jacobi (HJ)
equation

do, R) (30, )2 (8201)
— — D* =V,
a ( 2) o) TP \Ga) =V
(2.23)
where the total time derivative d /dt = 3/Jt + {S,e} and

o0-(2)(2)-(3)(2)

are the Poisson brackets. For nonequilibrium statistical
thermodynamic processes, the entropy behaves like a classi-
cal mechanical Hamiltonian as a generator of the motion. In
an analogous way, we obtain

do, R (60, )2 (6‘201) o
kel I (el D* = 2.24
ds + ( 2 ) u° + u? V) (224)

by applying the transformations (2.14) and (2.18) to the back-
ward Kolmogorov equation (2.20). We now want to deter-
mine the common stationary solution to Egs. (2.23) and
(2.24).

The stationary solution is dictated by the form of the
velocity OM potential ¥ (u). Setting the time deterivative
equal to zero in Eq. (2.23), we find
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(i) o,;u, p,T= °°|uo’ o)= —u,
du

provided the Poisson brackets vanish. A similar result is ob-
tained for the backward HJ equation (2.24). Integrating, we
obtain

o,(u,p,T= wluo’yo) = - (i) [uz + u02] + C(y’yo) ’

where the integration constant can depend on the coordi-
nates. If the Poisson brackets are to vanish, it must be a
function of the configurational entropy. The simplest choice
is

C(y)=S*»)+5*)").

This establishes the asymptotic time limit (2.19). We may
thus consider
2k Inp,(uy,T|u° y°)

=S (wy) — S )°) + o(u, 3, T |, y°) (2.25)
as the phase-space kinetic analog to Boltzmann’s principle.
The transition density (2.25) together with Boltzmann’s
principle (1.3) for the invariant distribution determine com-
pletely the statistics of the open, second-order thermody-
namic process (1.1). Contained in joint entropy is informa-
tion regarding the velocity and configuration space
statistical correlations which we shall investigate in the large
resistance limit.

Iil. THE ASYMPTOTIC LIMIT OF LARGE RESISTANCE

To introduce the fact that there is a time scale separa-
tion between driving and driven processes, we apply the
stretching transformation ¢ * = €7, where € = (1/R) to the
phase-space HJ equations (2.23) and (2.24). We then obtain

e (@) v r( D))o (1))

Fo,
+k (
ou?

= V(u) (3.1)

and

do 3 3 1\ (9o, Y
—e el (ze) +r Rl + (3)(
ar* N° au°ll 7 2/ \au°
&Fo, o

+k (_aum) =V(u’).
We are going to search for an approximate, time-dependent
solution to these equations in the form of an asymptotic ex-
pansion in the small relaxation parameter ¢, viz.,

(3.2)

o,y *|u0 %) = Y €oPu, pr *[u’,5°).
n=0

Substituting this asymptotic expansion into the pair of
phase-space HJ equations (3.1) and (3.2) and equating to zero
terms in the same power of the relaxation time, we get an
infinite set of coupled, nonlinear partial differential equa-
tions which are to be solved one after the other beginning
with the first. The first three pairs in the infinite hierarchy
are

N (P
i( ’) +k( ’)=-1—u2—k,
2\ du u? 2
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3 (G +e(G) -3
- (@) + ("Zf’)(";’f’)

(%)=,
() +# ()l + (5) (5o)

Fol)
+k ( ) 0,

H

2 @)D (D
AT ()
|
S (e(2)er(2) 9+ (D)D)
2

AT (D)o

The solution to the first set of equations is easily seen to
be

ou, p,t *|u®, 3°) = — 4 [u® + u®] + o¥(y,t*])°),

(3.3)

where o¥ is an (as yet) undetermined integration constant. If
we break off the expansion at this order and substitute (3.3)
into the phase-space analog of Boltzmann’s principle (2.25)
we find that the equilibrium MB distribution has been estab-
lished at every point in configuration space. The higher-or-
der terms in the asymptotic expansion of the joint entropy
provide the correction terms.
At next order we find

M)
(5]

which involves the spatial derivatives of the unknown inte-
gration constant in (3.3). The constant of integration can be
determined by substituting in

0{,”(1{, Pt tluo’ yO) =

(3.4)

3203‘) dF
oy

d})(u,y,tﬂ“o, 0) = ";— [ll2 [( ayz

< |GR) - G e

into the third set of equations. Our proposed solution will
satisfy these equations provided o satisfies the following
pair of configuration space HJ equations:
1
(5) v
€

) (-
(3.6)

ot* dy '
and
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1)
S
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(3.7)
where ¥ ( p) is the configuration space OM potential'>°

el s(Z)]

By introducing the transformation
oyt *| ) =2k Inp*(y,t*|)°) —

T ot

S*y) +S*()°)
(3.8)

into the forward HJ equation (3.6) we come out precisely
with the configuration space FP or S equation

o w ()

at* dy ?
where D is the diffusion coefficient in configuration space
which is given by the Einstein formula ek. Obviously, the
transformation (3.8) converts Eq. (3.7) into the backward,
configuration space Kolmogorov equation.

We can now see a pattern being formed in the successive
approximations to the joint entropy. At next order, we are
led to try

o= -(5) [ |(57) - (G
|G -Gl

(3.10)

This is, however, only approximately valid provided the con-
dition

(3.9)

‘ . <1 (3.11)

is satlsﬁed. A variance of this criterion has been proposed by
Kramers more than forty years ago.> Kramers rewrote the
phase-space FP equation {2.21) in the divergent form

()] ()
(e

a F Iy
_ 9 4p,) te k( po)_
dy y?
For time ¢ > €, the displacement and velocity of the Brow-

nian particle will be related by the approximate integral
curve

(3.12)

Y + €u=y* =const . (3.13)

Integrating Eq. (3.12) over lines of constant y*, from

= — o0 t0 ¥y = o0, theterm in the curly brackets vanishes
and what remains is an equation similar to the S equation
(3.9).

Kramers argued that the S approximation should be
valid in the limit of large resistance since a MB distribution
in velocity space will be established very soon at every point
in configuration space. This implies that the transition den-
sity should approximately factor into
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Polu, pit |4, y°)
=p(yt]y) (—;—> exp [ - (L) [? + u"]] ,

27k )” 2 2k
(3.14)
where
By t]y)= f Polu, y,t |u® y°) du . (3.15)
Y+ €u=y*

It is evident that p( y,t | y°) will only approach the true con-
figuration space transition density
Pl = putuyt |57 du .16
in the limit as €10. Whereas, (3.16) has a clear physical mean-
ing for all values of ¢, (3.15) is only valid in the limit of large
resistance. As we have mentioned in Sec. I, if the external
force is relatively constant over distances in which the dis-
placement of the Brownian particle is appreciable, the parti-
cle should tend to a limiting velocity €F. The approximate
phase-space transition density (3.14) will then be significant-
ly different from zero only in the region where |u|< k.
Moreover, the variations in displacement and velocity are
related by the approximate integral curve (3.13) so that the
variation in the displacement of the Brownian particle is of

Ok € for constant y*. Kramers thus concluded that the
ES approximation will be valid so long as the inequality

ek ‘éﬁl <1
dy

is satisfied.

Conditions (3.11) and (3.17) differ merely by constant
factors so, at first sight, it would not seem crucial to distin-
guish between the two. Yet, Boltzmann’s constant, relative
to the magnitude of the other physical parameters, is a mea-
sure of the intensity of random thermal fluctuations?®' so that
merely by decreasing k, condition (3.17) could always be ful-
filled. In fact, condition (3.11) can be justified in the follow-
ing way.?? By a change of variables we have

Jo LGl

[ @[+

X polu, y* — eunt |u°y°) du .

(3.17)

Developing F and p in a Taylor series about y* and using
the approximate expression (3.14) for the latter, we get

2 () ror-s-e( )] 2o

Upon comparison with the S equation (3.9), we conclude that
(3.11), and not (3.17), is the valid criterion for the validity of
the ES approximation.

Kramers’ equation (3.12) can be written in the form

7D - Glva]-(5)

(3.18)

by defining the transition current densities
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3p0) 1 [ c?a,}

Jo:i= — k = - — =

Vv (“Po + au 2 u + au po vao
(3.19)

and

3170) 1 [ 3011

Joi= (F,,—k =—¢€| F— o = W Do -

c:=€\ Ip 3y 2 EY D Vc P
(3.20)

On the strength of our asymptotic expansion of the joint
entropy, we find that the rate balance condition

Jy +Jc=0 (3.21)
is satisfied to all orders in the relaxation time € provided
inequality (3.11) is fulfilled. It is precisely this condition
which establishes a steady state between the transition cur-
rent densities in velocity and configuration spaces.

This interpretation can be justified directly from the
phase-space FP equation (2.21), which we write in the form

p, a) (a)] (1)8Jc
= Ju(Z)+F(-Z =
ot [u (ay + ou )i P + €/ du

- @)

_aly 4l
&y W
Integration over the velocity gives precisely the S equation

(3.9).

The kinetic criterion (3.21) for the validity of the ES
description, can further be substantiated from an analysis of
the velocity moment equations, which are derived from the
FP equation (2.21). Integrating it over the velocity variable »
gives rise to the continuity equation

gt _ 9t
ot dy

where the configuration space current density J * is obtained
by integrating the phase-space transition current density
(3.19) over the velocity, viz.,

Tt = — f Ty (s 3t |4%, 5°) du

, (3.22)

= f up,(u, y,t |u°, y°) du .

The equation of motion for the first moment of the velocity
J ¥ is obtained by multiplying the FP equation by # and
integrating. We then obtain

*
aJ _ (L)J“ +Fp* _a_ju_,
ot € dy
where M is the second velocity moment or the kinetic energy
contribution to the momentum current density, i.e.,

(3.23)

M(yzt]|y%): =f u?p,(u, y,t |u° y°) du .

Proceeding further, we find
M 90 _ ppe_ (l) (M—kp*]  (3.24)
at dy €

as the equation of motion for the second moment where Q is
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the third velocity moment of the kinetic energy current den-
sity, i.e.,

0yt 5% = f w3p, it 4% 1°) du

Asymptotically, the second moment will tend to kp* in
time so that to leading order in the relaxation time, we have

1\ 80 k\oJ%
smipr + 1z — (1) 4 (£) 23] 505
P+ s 2) 2) ( )
where J ¥ is the S current density

*
J§=6[Fp*—k—ap
dy

=f J.(u, y,t |t° %) du .

Differentiating (3.25) with respect to y and using the conti-
nuity equation (3.22) we obtain
M _, 9 9%
"~ at
AYE dF
+(%) (_) W — Q) +est oL
YAEY { 0} 25
Using this expression to evaluate the last term in Eq. (3.23)
we get

(3.26)

J*:e[Fp*_k—ap*] Y i
Iy

d
-rtfi-o(%)

where we used the fact that the leading contribution to Q is
3kJ* since (u®) = 3(u*)(u) + higher-order terms in e.
Expression (3.27) agrees with our previous finding: The S
equation (3.9) will be a good approximation to the phase-
space FP equation (2.21) when condition (3.11}—and not
(3.17)—is satisfied.

Finally, eliminating J* between the continuity equa-
tion (3.22) and the equation of motion of the first moment
(3.23) results in

Pl A Al e(i) [9-1‘1 - Fp*] —~0. (3.28)
ar? ot ay/ Ly

Replacing M by its asymptotic form kp*, Eq. (3.28) becomes
the telegraph equation which gives the exact result for the
average square of a free Brownian particle’s displacement
with an initial MB distribution. But as Wilemski'® has point-
ed out, the second moment M relaxes only slightly faster
than the first moment J* so that this can only be valid for
long times where the inertial time has certainly had ample
time to die out. Moreover, the rate balance condition (3.21) is
simply the stationary solution to the equation of motion of
the first moment (3.23) which should be valid for long times
provided (3.11) holds.

(3.27)

IV. THE ONSAGER-MACHLUP PRINCIPLE FOR
SECOND-ORDER GAUSSIAN PROCESSES

As an illustration of our kinetic criterion of the ES ap-
proximation and the asymptotic expansion of the joint en-
tropy, we treat the special case of Gaussian processes where

511 J. Math. Phys., Vol. 26, No. 3, March 1985

explicit calculations can be made. For Gaussian processes
with inertial effects, the Taylor series expansion of the en-
tropy about the equilibrium state is

Sw,y)=S0)—4u*—1kQ '), (4.1)
where Q_ is the equilibrium second moment in configura-
tion space.

By virtue of the equivalence of means and modes of a
Gaussian process, the exact conditional Wiener average for
the phase-space transition density (2.14) is equivalent to

Polu, it |4 y°) = max .

Machlup and Onsager? interpreted this maximum likeli-
hood for a transition in terms of the principle of least dissipa-
tion of energy. In terms of the phase-space kinetic analog to
Boltzmann’s principle (2.25), the principle of least dissipa-
tion of energy implies that

1

o, (u, it |6 y°) < — L {@(u) + ¥(y,4)} ds = max,
(4.2)

where & (1) = (}) Ru? is the Rayleigh-Onsager dissipation
function and ¥(yu)=(1/2R)F**(yu)=(1/2R)[4
+ kQ ' y]? is the generating function.”* The reason why
the joint entropy is only proportional to the negative of the
time integral of dissipation functions is due to the fact that
we have neglected terms which are proportional to time.
These terms arise from the stochastic correction terms to the
entropy and joint entropy when they are considered as func-
tionals of the diffusion process and together these terms pro-
vide the correct normalization for the transition density.?
Denote by £2 the thermodynamic Lagrangian which is
the integrand of (4.2). The condition for an extremum of the
joint entropy is

(£)(2)o-(2)(2)n 2o

which is explicitly given by the Euler-Lagrange equation
d’y ) 2 ( d’y ) 2
—{R*— =0,
( dt* { %) dt? T8y
where 8=k /Q . Machlup and Onsager?? observed that
Eq. (4.3) can be factored into

[2(2) 0+ (2] [(5)-0-(E)po

which they attributed to a “‘symmetry in past and future” for
the growth and decay of nonequilibrium fluctuations. The
average, or most probable, paths for growth and decay are
mirror images in time of one another.

After performing several integrations by parts, the joint
entropy (4.2) can be written as

(4.3)

o;(u, y.t |1 y°)
L [i-0(22) - (£2) o
o+ (B (A(52)

On account of the Euler-Lagrange equation (4.3), the inte-

'

(4.4)

[]
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grand vanishes. With the aid of the general solution to the
Euler-Lagrange equation, in the over-damped case say, the
joint entropy can be expressed as

a](u’ .VJ luO’ 0)

o« — (1/4){(B /4] y* + y**][sinh Rt + (R /p)sinh pt ]

+ 3[4* + u®] [sinh Rt — (R /p)sinh pt |

— uu®[sinh( Rt /2)cosh (ut /2)

— (R /u)cosh( Rt /2)sinh( ut /2)]

— Byy®[sinh( Rt /2)sinh( ut /2)

+ (R /u)cosh{ Rt /2)sinh( ut /2)]

+ 2[uy® — u®%]( B /u)sinh( Rt /2)sinh( ut /2)

— 2[uy — u%°1( RB /u®)sinh*( ut /2)} , (4.5)
where A4 =sinh*(Rt/2) — (R /u)? sinh?(ut /2)  and
1 =(R?— 48)"/2 Expression (4.5) can be arrived at by oth-
er methods; for example by the method of characteristic
functions. Then retracing our steps, we obtain the principle
of least dissipation of energy (4.2) for the phase-space transi-
tion density and, apart from a normalization constant, it is
exact. This constitutes an explicit proof of the OM principle
(4.2) for Gaussian fluctuations.

The symmetry in past and future, which is discernible
in the Euler-Lagrange equation (4.3), is a manifestation of
the exact balance between the rates of growth and decay of

Gaussian fluctuations. A measure of the strength of the sta-
tistical correlations in velocity space will be given by

7= (@) b (3)

X [u cosh (%) — u° cosh (’%t)]
=)o (5) [+ o (5)
N NENC

[ (5] - (2 (4] o

In the long time limit, where the velocity correlations have
worn off, (4.6) reduces to

lim (i) oy [yt |u%y%) = —u,
du

ttoo
independently of the initial conditions. It is precisely this
behavior which we predicted in Sec. II [cf.,, discussion fol-
lowing Eq. (2.24)].
The transition velocity (3.19) is explicitly given by
vV(u: y’t |u0’ 0)
= (1/24 }{[u exp{ — Rt /2)
— u® cosh( ut /2)] sinh ( Rt /2)
— (R /u)[ufcosh( ut /2) — (R /u) sinh( ut /2)}
— u® cosh( Rt /2)] sinh( ut /2)
+ (28 /u)[ y° sinh(Rt? /2)

— (R /p) y sinh(ut /2)] sinh( pt /2)} . (4.7)
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This transition velocity measures the rate at which fluctu-
ations grow from the most probable path of their growth

Jlt) =»° exp( Rt /2){cosh{ ut /2) — ( R /u) sinh( ut /2))

— (2/p)u® exp( RT /2) sinh( ut /2) . (4.8)
Along (4.8), the transition velocity (4.7) vanishes. The mirror
image in time of (4.7) is
vl (u, pt [u°, y°)

= (1/24){ [u exp( Rt /2) — u° cosh( ut /2)] sinh( Rt /2)

— (R /u}[ufcosh(put /2) + (R /p) sinh( ut /2)}

— u° cosh ( Rt /2)] sinh( ut /2)

+ (28 /p) sinh( ut /2)[ y° sinh( Rt /2)

— (R /u)y sinh( ut /2)]} .

(4.9)

This transition velocity measures the rate of decay of the
fluctuations relative to the most probable path of their decay

JH(t) =3° exp( — Rt /2)[cosh( ut /2) + ( R /u)sinh( ut /2)]
+ (2/u)u® exp( — Rt /2) sinh( ut /2) (4.10)
and along '(¢ ), v},(¢) vanishes. The fact that the difference in
the nonlocal transition velocities (4.9) and (4.7) reduces to the
observed local velocity of the Brownian particle, i.e.,

UI’(u’ it |“o’ yo) — Vylu, y,t |u0’ O) =u
is a consequence of the exact balance between the rates of
growth and decay of velocity fluctuations. This embodies the
principle of symmetry in past and future for second-order
Gaussian processes.

In addition, Gaussian processes allow for an explicit
verification of the asymptotic expansion of the joint entropy
that was made in Sec. III. In the limit of large resistance,
H#=~R — 2(B/R)and in this limit the joint entropy reduces
to
0'_,(“, y,t |u01 0)

« — 4 [u” +u] + ¥yt y°)

— [ B/R sinh( Bt /R )] {(y°u — yu®)
— (uy —u"y°)exp(— Bt /R )},
4.11)
where o% is the configurational joint entropy'’
o¥(pt| Y%« — [ B/2sinh(Bt/R)]

X {(¥* +y*) cosh(Bt /R ) — 23»°} .

It will now be appreciated that the first two terms in
{4.11) comprise the zero-order term (3.3) in the asymptotic
expansion of the joint entropy. We calculate the first-order
term (3.4) as

o (u, y.t |u°, y°)
= —2k{Q ! (—t)[y—y’exp(Bt/R)] u
— Q7 '(t)ly —y° exp( — Bt /R )1u exp( — Bt /R )},
(4.12)

where Q (¢) is the second moment of the distribution, viz.,
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Q(t)=0,[1—exp(—2Bt/R)]
and Q ( — ¢)is its mirror image in time. A simple rearrange-
ment of (4.12) shows it to be the remaining term in joint
entropy expression (4.11). Were we to carry out the asympto-
tic expansion to second-order, we would find

0P, yt |6, %) = — k(u® +u)Q ~'(¢t) exp( — 28t /R)

- (geminge

*
— —R{@’+u% (aL) , (4.13)
Iy
where ¥ * is the configurational transition velocity'®

1\(|as* da¥
V*(y,tlyo]:=(—2—E)[ay - ay]

= — [RQ(—1t)/k]™!

X{y—yexp(Bt/R)} .

Expressions (4.13) relate the rate at which the distribution
spreads out to the “compressibility” of the fluid motion."
Nevertheless, in the limit of large resistance, this will go un-
observed since upon multiplying (4.13) by (1/R ) (to form the
second-order term in the asymptotic expansion of the joint
entropy), the coefficients combine to give

(1/R)B<1

on the strength of criterion (3.11) for the validity of the ES
approximation.
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A multitype random sequential process
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A random sequential process (RSP) can be formulated in two different ways: (I) A linear array of n
identical compartments is ceaselessly bombarded by particles which occupy B ( 5>2) contiguous
lattice sites. These so-called B-bell particles are assumed to make contact in a spatially random
manner and to stick only if striking 8 (adjacent) vacant compartments. (II) A linear array of n
identical compartments is sequentially filled by S3-bell particles, the occupation process being
“selective,” i.e., always being directed to vacant sequences of compartments of lengths at least 5.
Dynamics of RSP’s has always been formulated in either way and in the case of lattice spaces all
the efforts have been addressed so far to allow in the space filling process just one kind of particle.
The aim of this paper is to remove that restriction and to consider a lattice space filling problem
with various kinds of particles involved. The situations of the two above-described models,
making no difference in the one-type case, become distinct in the multitype case. In this paper we

will be concerned with the generalization of model II.

I. INTRODUCTION

The solution of problems concerned with the random
filling of space with sets of geometrical objects is of consider-
able interest.! However, the exact solution of such problems
in more than one dimension presents serious difficulties'™
and most of the exact results available are for one-dimen-
sional problems.>>~°

Two related types of problems can be distinguished. In
the first, which arises in evaluating partition functions, all
possible nonoverlapping configurations of the geometrical
objects are assumed to be equally likely,'®'? while, in the
second, the space is filled sequentially and the configurations
are not all equally likely (see Fig. 1). The present paper is
concerned with a problem of the latter type in one dimen-
sion. Some of the above-mentioned problems are as follows.

(i) Adsorption of molecules on a crystal surface®'? is a
good example of a random sequential process if the tempera-
ture is so low that a molecule once adsorbed cannot migrate
over the surface. The restriction to one dimension is justified
if one is concerned with the adsorption of linear molecules
into parallel troughs such as occur on a (110) surface of a
face-centered cubic crystal or on a (112) surface of a body-
centered cubic crystal.®

(ii) Cascade processes'*!* form another example. At the
start of the process there is a particle of specified energy,
which is subject to collision and subdivision into particles of
smaller energy. This cascade is characterized by the fact that
particles below a certain energy level cannot further subdi-
vide.

(iii) There are chemical reactions confined to groups
occupying adjacent sites.'® An example of such a system is
the addition of zinc to a solution of polyvinyl chloride,'” the
zinc extracting chlorines in a pairwise manner.

{iv) According to the model proposed by Gornick and
Jackson'® the crystallization of linear polymer chains can be
considered as a process involving a random selection of crys-
tallizable sequences from the melt. If, owing to the require-

* To whom the correspondence related to this article should be sent.
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ments of thermodynamic stability, such sequences must ex-
ceed in length some critical value less than the chain length,
then the melt will be increasingly subdivided into uncrystal-
lized sequences of varying length. Some of these may be ex-
pected to be less than the critical length, so that the segments
comprising them are wasted insofar as participation in
further crystallization is concerned.

(v) The kinetics of a reaction in a polymer system where
each reacted unit protects its o nearest neighbors completely
against reaction.'® The oxidation of polysaccharides by per-
iodate ions is a good example.

Clearly, in the five above-mentioned examples, after a
period of time a saturation situation arises in which the fol-
lowing occur.

(i) The adsorption process stops even though the degree
of coverage of the surface is less than 1.

(ii) The cascade reaches a stable terminal state consist-
ing of a finite number of particles.

(iii) The addition of zinc ceases and one wishes to pre-
dict the chlorine concentration left in the polymer.

5/30@ 6/30
s/30[efe] oo Js/30
5/30[ [efe] [efe]s/30
s/30[ | Jefe] =] 5790

FIG. 1. The total number of configurations of two dimers on a linear array
composed of six compartments. Left; probabilities of each configuration in
a nonsequential process. Right; probabilities of each configuration in a ran-
dom sequential process.
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(iv) Further crystallization cannot occur because the
length of all created amorphous sequences left is less than the
critical value.

(v) Chemical reaction terminates leaving some fraction
of unreacted units.

The sequential saturation of a one-dimensional lattice
space by identical particles occupying 8 contiguous lattice
sites has been extensively studied.>®2%?! The relationship
between the sequential filling of a discrete and a continuous
one-dimensional space has also been shown.®!%?2 A random
sequential process (RSP) can be formulated in two different
ways.

(I) A linear array of n identical compartments is cease-
lessly bombarded by particles which occupy 8 (8>2) conti-
guous lattice sites. These so called 5-bell particles (dumbbells
or dimers in the case 8 = 2, trimers when 8 = 3) are assumed
to contact in a spatially random manner and to stick only if
striking 8 (adjacent) vacant compartments. After some peri-
od of time, a saturation situation arises in wich the probabil-
ity of placing an additional particle on such an array be-
comes zero since all available space left cannot
‘accommodate further particles.

(IT) A linear array of n identical compartments is se-
quentially filled by S-bell particles, the occupation process
being “selective,” i.e., always being directed to vacant se-
quences of compartments of lengths at least 5. (See Sec. 11
below.)

Thus while in model I filling is effected by “trial and
error” and many trials will not lead to fixation of a particle,
in model II all trials are successful.

Dynamics of RSP’s has always been formulated in ei-
ther way and in the case of lattice spaces all the efforts have
been addressed so far to allow in the space filling process just
one kind of particle. The aim of this paper is to remove that
restriction and to consider a lattice space filling problem
with various kinds of particles involved. The situations of the
two above-described models, making no difference in the
one-type case, become distinct in the multitype case. (See
Fig. 2.) This is due to the fact that the “trial and error”
occupation procedure of model I will favor, as the lattice
space approaches the jammed state, more and more the
shorter particles, while the assumptions of model II are such
that the likelihood of a given type of particle to get stuck,
remains unaltered (as long as such a particle can be accom-

FIG. 2. The six possible ways of saturating a five-sites lattice space with
dimers and trimers.
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modated) during the entire filling process. In this paper we
will be concerned with the generalization of model I1, results
on a multitype version of model I will be published else-
where. In Table I are given the probabilities of observing
each configuration of Fig. 2 in either model. Observe that the
value of the average number of unoccupied sites is smaller in
model II than in model 1. This is due to the fact that the
conditional probability of placing a trimer, given that a
dimer has landed on sites 1 and 2 or sites 4 and 5, is smaller in
model I than in model I, thus configurations 5 and 6 being
less probable in model I than in model II. Notice also that
configuration 4 is equally likely in either model.

The need of considering the multitype version emerges
if one is interested in knowing what would happen when the
following occurs.

{i) Linear molecues of different lengths are simulta-
neously adsorbed on a crystal surface.

(ii) In a cascade process in every collision the amount of
kinetic energy lost is not a constant.

(iii) We consider several chemical reactions each of
them confined to groups occupying a not necessarily constant
number of adjacent sites.

(iv) In a crystallization process the crystallizable se-
quence is a random variable with a given discrete distribu-
tion around a given mean value.

(v) Every unit can suffer more than one chemical reac-
tion, each of them protecting different numbers of nearest
neighbors.

In the five above-mentioned examples of random se-
quential processes we can distinguish two groups, even in the
one-type particle version. One group is formed by examples
(i}-(iv); example (v) belongs to a kind of RSP where a partial
overlapping between particles'® is allowed. Models I and II
are concerned with the first group of examples. Work on the
multitype version of RSP with partial overlapping has also
started at La Plata.

Il. THE MODEL

We consider the following sequential process in which
particles of varying integral lengths are randomly placed,
one by one, onto a one-dimensional lattice space {see Fig. 2)
of n equivalent compartments: From a mixture of 5-bell par-
ticles, whose concentrations pg, 2<g<B<r<n, are supposed
to remain constant throughout the subsequently described

TABLE 1. Probabilities of observing the configurations of Fig. 2 in random
sequential processes due to models I and II, and three selected sets of rela-
tive frequency ( p,, p;) with p, + p, = 1. The symbol /7 denotes the average
number of unoccupied sites.

Configuration p,=0.1 p,=05 p,=09

I II I 11 1 II

0.0268
0.0036
0.0268
0.3000
0.3214
0.3214

0.6572

0.0262
0.0025
0.0262
0.3000
0.3225
0.3225

0.6549

0.1625
0.0750
0.1625
0.1666
0.2167 0.2292
0.2167 0.2292

0.7332  0.7081

0.1562
0.0625
0.1562
0.1666

0.3297
0.2095
0.3297
0.0333
0.0489
0.0489

0.9355

0.3263
0.2025
0.3263
0.0333
0.0558
0.0558

0.9217
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selection and occupation process, a first particle is chosen
randomly and placed on the 1 X  array at random, i.e., being
the particle’s length 3, say, its left-hand endpoint has equal
probabilities 1/(n — B+ 1) of ocupying any of the sites
1,2,...n — B + 1.

In this way arise two random subarrays, a left-hand
array consisting of n, compartments and a right-hand array
made up of n, sites (n, + n, + 8 = n), whose further occupa-
tions will be done independently, in the following manner: If
n, < g, the left-hand array will be unoccupied. Otherwise we
sample from the mixture until getting (we assume p, to be
positive) a first particle whose length does not exceed n, and
put it randomly onto the left-hand array. We then turn to a
first further occupation of the right-hand array which is ef-
fected in a similar way at random and independently.

In this manner we continue filling the originating ran-
dom subarrays until no further particle fits. In the final state,
known as the “jamming limit,” all unoccupied sequences
(gaps) between two contiguous particles will be composed of
less than ¢ sites.

The total number of unoccupied compartments in the
terminal state 4, is a random variable of considerable inter-
est. The study of the asymptotic behavior of its mean and
variance, denoted by a, and o7, respectively, is the subject of
this paper.

As mentioned in the Introduction, this model consti-
tutes a possible generalization of previously formulated dis-
crete one-dimensional sequential random filling problems>*®
and consequently provides results which were formerly ob-
tained as special cases.

lil. THE RESULTS

Let 2<g<r be integer numbers  and
{pgrPgy 15D, _1:0,} be a probability distribution on
{¢,9 + 1,..,r — 1,r}. Suppose that p, >0 and let a,,, as intro-
duced in Sec. II, denote the average number of unoccupied
sites of a 1 X n array in the jamming limit. Put

=0 v,= > a, n=12., (1)
k=1
g() g—1 sk r—1 1 X r (2)
) = — 4 —s .
kzl k kgq k j=kz+lpl

(here and in the sequel an empty sum is given the value zero!),

kk_2 Uj P —j (3)

r—1 r—1

Iis= 3 a,s"—2

n=1 L A i+
and
L(S)=2e—25“’f(l—t)H(t)ezf“’dt. ' 4)
(1}
We shall show in Sec. V that
lima,/n = L(1). (5)

Effectively, we will derive a more precise result on the
asymptotic behavior of a,,: As n tends to infinity

a,=(n+M)L(1)+on*), foranyk=0,1,., (6)

where
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M, =3 kp (7)
k=g

is the average size of the 3-bell particles taking part in the
occupation process.

A similar result is deduced for the variance o2 of the
random variable 4,,: As n tends to infinity

0% =(n+M)[L*1)+ K(1)]
+ (M3 — My)L 1) + o{n—F), (8)
for any k = 0,1,...,

where
M, = z k’py (9)
k=gq

is the second moment of the particle size distribution and X
the function as given in (36). Observe that the second additive
term on the right of (8) vanishes in the case of just one kind of
particle, i.e., p, = 1, since then M} = ¢* = M,.

An immediate consequence of (8) and Chebyshev’s ine-
quality?? is the stochastic convergence of 4,,/n to L (1), i.e.,
for any € > 0, the probability that 4, /n differs from L (1) (or
equally well from a, /n) by more than ¢, tends to zero as n
tends to infinity. Symbolically,

lim P(|4,/n —a,/n|>€)=0= lim P(|4,/n — L(1)| >¢).

H—>co

The proofs of the results (5), (6), and {8) and some alter-
native representations of the limit in (5) will be given in Sec.
V. In the subsequent section we present briefly some special
cases which might be of interest or at least illuminating.

IV. SPECIAL CASES
A. The most simple three-type model

Let us suppose that the mixture of S-bell particles con-
tains three types of particles, of lengths 2, 3, and 4, with
relative frequencies p, >0, p;, and p,, respectively. Recall-
ing the definitions of the quantities introduced in the forego-
ing section and noticing that here ¢ = 2 and r = 4, we find
from (4) and (5) that

1(P2?3’P4)Enlim a,/n=2exp{ —2—p;—3Pp.}

Xl rermdd)

Xexp {2t +t%(ps+py) +3pi>}dr. (10)

(i) The case p;=p,=0. We see that (10} reduces to

1
1(1,0,0) = 2e—2f (1 — )t ¥ dt = e~ 2~0.135,
0
(11)
the well-known result first established by Page’ and redisco-
vered several times.%?*
(ii) The case p,=0. Equation (10) reduces to
1
HpapsO)=2exp ( —2—ps} [ (1—2k

Xexp {2t + pst?} dt. (12)
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FIG. 3. The average uncovered fraction L (1) in the jamming limit of an
infinite lattice space filled sequentially and randomly (due to model IT) with
dimers and trimers whose respective relative frequencies are p, and p; X
average unsaturated coverage in absence of dimers, i.e., p, =0.

from which it is seen that (d/dps)l(p,, p3,0)<0 and
(@%/3p3)l ( P2, P3,0) > 0. Hence I ( p,, p3,0) decreases with in-
creasing p; and as a function of p, is convex (see Fig. 3). A
numerical evaluation of the integral in (12) shows that to four
decimal places

tim /( py, p3,0)~0.0767.
Pl

Thus, compared with the case p, = 1 (dimers only), the aver-
age uncovered portion of an infinite array in the jamming
limit diminishes by more than 43%. The corresponding val-
ue with relation to the case of trimers is 56%.

(iii) The general case. Intuitively, the average saturation
coverage in the jamming limit should take on its maximum
value when, first, a high percentage of four-bell particles
leads to an initial filling of the lattice space almost exclusive-
ly by particles of this type, when, second, due to a significant
rareness of dumbbells, almost exclusively the three-bell par-
ticles take care of the occupation of the segments of exactly
three adjacent lattice sites, and when, third, the pure pres-
ence of dumbbells provides for a final filling of the gaps con-
sisting of two compartments. Indeed, the function / of (10)
takes on its minimum when O~p,<€p;~0 and p,~1 (see
also Fig. 4). More precisely,

lim (hm 1( P2 P3P4)

P30 pyl
=2e—“/3f t(1—1)exp [2t+t2+%t3l dt
0
~0.0505.

FIG. 4. The average uncovered
fraction L (1)in the jamming limit
L of an infinite lattice space filled
sequentially and randomly (due

0.071- to model II) with particles of
lengths 2, 3, and 4 and relative
frequencies p, =0.05, p,, and
D, Tespectively.

1 ]
0'M'O 0.50 0.98
Py —
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(iv) For p, > 0 fixed. It is interesting to determine the
trimer concentration for which the average saturation cover-
age in the terminal state attains its maximum. As an example
we took p, = 0.05 and found that this maximum value [the
minimum of /(0.05, p;, p,}] is attained when (see Fig. 4)
p3=0.2 (and hence p,~0.75; observe that, roughly,
p3=4p,and p,=4p,).

B. Rare dimers in a two-type model

We imagine the mixture of 8-bell particles consisting of
just two kinds of particles, dumbbells and k-bell particles,
k>3, the dumbbells being rare, i.e., p,~0. Then interested
in the average fraction of vacant sites in the jammed state, we
must determine

I(k )=lim (lim a, /n). (13)

Pl n—oo

It follows from (2){4) that
-1 1 k—1 R
I(k)—2exp[—2 Z ]f(l——t) 21 a;t’
X exp [2 il J]

=1 ]
Some values of / (k ) are given in Table II. Utilizing the fact
[see Page® or observe (6) and (10)] that a, ~e 21 as n— oo,
and well-known results?® on the asymptotic behavior of the
average saturation coverage when the particle size becomes
large, it is not difficult to show that

lim 1(k) = %1 — L *)=0.033,

where

o t —
L"‘=J exp[—Z 1—e
0 0 z

the expression gotten by Rényi’ for the average fraction of
occupied space (in the terminal state) of a large one-dimen-
sional parking lot gradually filled at random with cars of unit
length.

’ dz]dtz0.748, (14)

V. PROOFS
A. Mean convergence

Define a pair of random variables ( £,7) as follows. Let
B denote the length of the first particle to be placed on the
given 1 X n array and let ¥ indicate its left-hand position on

TABLE II. The function / (k) introduced in (13).

k 1(k)

0.077
0.076
0.066
0.062
0.058
0.051
0.045

O NN AW

— s

o 0.033
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the lattice space. It then follows from our model assumptions
that,foralln=r,r + 1,..,,

a, = (An>

=3 34, B=ky=p)P(B=ky=))

k=gj=1
r n—k+1

=2 2

k=g j=1

XP(B=k)

A4,|B=ky=)Py=jlB=k)

a P n—k
=k n-i:-;-l {20”“*'*_.22 (aj-l+an—k—j+1)}
~, ~

v 2 n—k
-3 P S q
k,,,n—k+l i=1
or, using (1},

=3 2, _,

K=q B — k+1
The initial conditions to be imposed in (15) are

n=rr+1,... (15)

a, = 1, a,= :Z,...,(Zq___1 =q— 1,

a, = 0, Qg1 =Pq/(pq +pq+ 1 )’
and the additional values @, ,,...,¢, _, must be calculated
successively from (15), redefining 7 and p,,...,p, in every step
appropriately.

Before illustrating this procedure let us determineq, , ,
without making (direct} wuse of (15): Let
P=pP,+P,s1 +P,., and g=2. Since a trimer leaves
necessarily one site of a 1X4 array unoccupied and since
exactly one {of three possible and equally likely) placement(s)
of a first dimer results in two subarrays of length 1 each
{which will remain vacant), we see that

A2 =Py 1/P+3p,/p, ifg=2.
If >3, g-bell particles leave two sites (contiguous or not) and
{g + 1)-bell particles leave one site of a 1 X( ¢ + 2) array un-
occupied; thus

842 =2p,/P+Pg.1/ps ifg>3.

Now suppose that a,,...,a, . ,_,q + t <7, are known.
Set p=p, +  + p, .. and observe that in the occupation
process of a 1 X (g + t) array intervene g-,..., (¢ + ¢ )-bell par-
ticles  with  relative  frequencies  p; =p,/p,...,
P+t =Pq+./P> tespectively. Since this situation is gov-
emned by (15} with n=r=g¢g-+t and p,=p;,
k =gq,..q +1, a, ., may be determined by means of (15),
modified as indicated.

From now on we will assume that a, , ;,...,,_; have
been determined when dealing with the recursion relation
(15).

The next step in evaluating the asymptotic behavior of
a, is to derive a differential equation satisfied by

=3 o (16)

n=1
the generating function of the a,, n = 1,2,... . Due to the
nature of our problem, |a,, | is bounded by #; the power series
in (16 is therefore uniformly (and absolutely) convergent on
compact subsets of the open unit disk. This observation justi-
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fies the subsequent interchange of summation and integra-
tion and the rearrangement of the series. We proceed from
(15). Multiplying both sides of (15) by s”, 0<s < 1, and sum-
ming from r to o we get

S=3 st S
Za 2 P g,n-—k+l
—.:kz 2, 571 Ev,,__kj;t""‘dt
—ZZpkf“J Z v, t"dt.

O n=r-k

s k+1
n—k

Now, putting

go)=3 pes 1, (17)

k=g
and making use of (3) and the fact that

Z v, t"
l_‘t) n=1
we find that

O<t< 19

A{s):Zg(s}f—‘fn(_t—)tdt+H(s}
or

Ab)Amgg e a()m. (18)

When solving (18) with the initial condition 4 (0) = 0 one
uses the easily checked relation [for the definition of £ see Eq.
21

J'_g(f)_ds—_- — log(1 —5) — £ (s)
l1—s

after performing an integration by parts, the fact that

lif? [4 (x) — I (x)]/gix) =
to obtain
— 2g(s) —28(s) ”( ) _
Als) H(s}—i——-——-—-(l_s)ze b i) {1—1¢)
X[1—(1—-2)&'e ]e’f“’dr
or, on observing (4) and
1—(1—1)£"(r)=glt), (19)
A (s) = IT(s) + gls)L {s)/(1 — s)>. {20)

Since g(1) = 1 and lim,,, L (s)exists, it follows from the Tau-
berian theorem for power series,?® applied to 4 in the form
(20), that

v,y ~n*L(1)/2, asn—c. (21)

On noticing once more that 0<a, <n, {21) together with
(1) and (15), yields the desired result (5}.

B. The asymptotic form of the mean
Recall (7) and put
=3 [a. -+ M)L(

n=1

To prove (6) is then equivalent to showing that C and all its

15" O<s<1l
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derivatives C'*) or order k, k = 1,2,..., converge in 1. It is
easily seen that C may be put in the form
C(s)= (1 —s)~*[&s)L (s) + T (s)(1 — s)?
+L(1) (M2 — (M, + 1)s}], (22)
which suggests to expand f(s)==g{s)L (s) into a Taylor series
around 1. To this end observe that

gl)=1, gl)=M,—1=£"1), (23)
and
CL'(1)= —2L(1E"(1),
which provides
f=L(1)+L (D1 —M)is —1)
+ ki FE1s — 1) /k! (24)

Hence, on substituting for g{s)L (s) from (24}, we find that (22)
takes the form
(5 — 12
cO=ML+ 5 LR,
=2 :

proving (6) in the case k = 0. Now noticing that derivatives
of L (and hence of f) of all orders in 1 do in fact exist, (6)
follows from (25) by successive derivation of C.

(25)

C. The asymptotic form of the variance
First let us introduce some more notations. We set
b, =(42%), n=1.2,.. (26)

w=0, w,=Y b, n=12,.
k=1

n—1

G=0=0, ¢,= Y aa,_,, n=23,..,
k=1

Bi)=3 b, 27)

n=1
and
r—1 r—1 k—2 . .
=S b2y sy Pelatw)
¥ k=g+1 j=1 j+1
Starting out from the quickly verified recurrence relation

O

d 2p;
b, = —— ey tw, )y n=rr+1,.,
kzqn—k-{-l( k n—k) +
and on observing that
A%t)= ¥ ¢, t" and Be) Zwt"
n=1 n=1

we find, following the line of reasoning indicated in Sec. V A,
that B satisfies the first-order linear differential equation

BYs)—Bs) [ gl 20
1 -5
= g(s)[24 2(S) + (@ /g)'(s)] (28)
subject to the initial condition B (0) = 0. Rather than solving
(28) we introduce
B(s) =2g(s)T (s)/(1 —s)> + Os) (29)
in (28) to get
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T'(s) ~ [2/(1 — s)]lgls) — 11T'(s)
=@ (s)N1 —s5) + 4 %s)(1 — )% (30)
The analytic form of the solution

T‘(s)—._-~e—2§(.\')J"Y [@(t)(l—t)-l—Az(t)(l—t)z]ezg(')dt

(31)

of (30) with initial condition T (0) = O turns out to be much
more convenient for our purposes than that of solution B of

(28). It is obvious from (20) that the integral in (31) will di-

verge in s = 1, and our main task will therefore be to split it
up into a convergent and a divergent part: Substituting for

A *(¢) from (20) we see that (31) may be rewritten in the form

T'(s) = I){s) + Lyfsle —*",

where we put
16) =29 [ [O(e)1 — 1) + )1 — 2
0

+ 2g(t )T ()L (¢)] e dt
and

I(S) f gz(t)L (t) 2§(t)dt (32)

To get rid of the (m s= 1) divergent integral on the right of
(32), we deduce from (18) and (20) that

L'(s) — [2/(1 — s)llgls) — 1)L (s) = 2MT (s{1 — ), (33)

and on carrying out an integration by parts in (32) and using
(19) and (33) we get

Ly(s) = Ly(s)e* " — L{s),
with
Ly(s) = g*(s\L *(s)/(1 — 3)

and

Lis)=2 f s (- (g —sterg e gte1z %)

+28%(¢)L ()T () ] %) gy, (34)

Due to (23), the integral in (34) converges in s = 1, and we
arrived at the desired decomposition of the right-hand term
in (31),

T(s)=1ILs) + 1 K(s), (35)
where we set
K (s) = 2[1\(s) — L{s)e ~*#¥] . (36)

To proceed further in the analysis of the asymptotic
behavior of o> we recall (7) and (9) and establish that

2"(1)=g"(1)=M,—3M, +2
and

Lim [g¢) —g(e)s"(£)1/(1 —¢) =M1 — (M, + M)/2.

From this, (4), (26), (27), and (34), on introducing (35} in (29)
and applying the same method as adopted in Sec. V B, it
follows after somewhat lengthy calculations, that, as » tends
to infinity
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b, = L*(n* + [L(1)(1 + 2M,) + K (1)]n

+LH1)[2M} + M, — M,] + K ()M, +o(n~ "),
k=0,1,...

This, in combination with (6), proves that o2 = b, — a2 be-
haves as stated in (8).

In the case ¢ = 7 = 2 (dimers only), the function K de-
fined in (36) may be determined explicitly. Particularly, we
find that X (1) = 3e~*. Since L (1) = e¢™*, (8) yields the well-
known result*>®

02 ~de *n+2) asn—w.

In all other cases X (1) must be evaluated numerically. Since
the function L given in (4) requires a numerical integration,
the calculation of the integral appearing in (34) and hence the
determination of K (1) becomes rather tedious. Mackenzie®
gives some values of K (1) in the one-type case.

D. Other representations of the limiting average
saturation coverage

It has been noticed”® in the one-type case ¢ = r that a
simple modification of the generating function of the
a,,n= 1 2 . [e.g., replacing A as given in (16) by
Als)= ¢ @»8" 7], may lead to a significant alteration of
the (mtegral) representation (4) of the limit in (5). A similar
phenomenon appears when one treats the average saturation
coverage (as, e.g., Mackenzie® does in the one-type case) in-
stead of dealing with the uncovered fraction in the jamming
limit: In the present multitype case, introducing
a, =n — a,, the average number of occupied sites of a 1 X n
lattice space in the terminal state, into (15) leads to [M, is
defined in (7)]

a—M+Z k+12a

k=q N — ji=1
n=rr+1,.., (37)

the most simple initial values being a, =
a, = q. Then setting

i n—q+1
a,,s‘

n=gq

=, =0’

A*s) =

and proceeding from (37) just as in Sec. V A yields

S * ,
A%(3) =——(1g*‘s’)z e=0 [ eyt — epesvoan
(38)
where £ is as defined in (2),
gHs)=s"""gls)= 3 P57 (39)
k=g¢
r—1
m*s)= Y a,s"~9t!
n=g
= & pq+](a + +ak j—l)
k=§q:+l Z k—j
and

h(s)=Mys~9+"/(1 —5s).

Now, in the one-type case ¢ = r, g*(s)=1, I *(s)=0, M, = q,
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h'(s) = q/(1 — s)*, and (38) reduces to
Axg) =2 = e*tdr.
(1—s5PFJD

Hence, on applying the Tauberian theorem for power se-
I‘iCS,23

. a,
lim —=1

n—wo N

1
_qe_zgu)J‘ eX¥dr=L(1), (40)
0

the expression stated by Mackenzie.®

In the multitype case it seems to be more advantageous
to perform an integration by parts in (38). Then, using (39)
and once more (19) and the Tauberian theorem for power
series, we get

lim a,/n=1—2¢~ %W

B—>oco

Xfl 91— )[IT*e) + h(t)] 9 dy,
0
(41)

which constitutes, in the case g = 7, a third representation of
lim,_,  a,/n, different from those established in (5) and (40).
At least in the one-type case, (41) is easier to handle than (5).
Concerning the integral representations involved in the
asymptotic form of the variance, similar modifications may
be gotten. However, the main difficulty in computing X (1),
described at the end of Sec. V C, cannot be removed.

Vi. FINAL OBSERVATIONS

The exact solution of model II developed in previous
sections will enable us to attack problems like those men-
tined in the Introduction. The present model is particularly
well-adapted for being applied to problems like the model for
polymer crystallization, (iv), presented but unsolved by Gor-
nick and Jackson. Even more, the analysis presented in this
paper allows the solution of that model without any kind of
restriction on the crystallizable length which now may be a
random variable with any discrete distribution around a giv-
en mean value. From the comparison of theoretical results
obtained by assuming different types of crystallizable length
distributions against experimental results, it will now be pos-
sible to find the distribution of crystallizable lengths that
thermodynamic stability requires.

From Figs. 3 and 4 we learn that there can be a great
difference in the average vacant fraction in the jammed state
of a lattice space when (sequentially and randomly) filled by
different kinds of particles rather than by just one type of
particle, but such that the size of the latter one is equal to the
average value of the size distribution of the former ones. As
an example, let us consider the size distribution p, = 0.05,
p;=0.90, p, =0.05 whose average value equals 3. Then
(see Fig. 4) the average vacant fraction is less than 8% while
(see Fig. 3) the corresponding value in the (one-type) case of a
trimer is greater than 17%.

In a more general sense we are in a position to affirm
that model II is able to deal particularly well with “space
filling” problems mainly determined by ‘“‘internal” restric-
tions like examples (ii) and (iv). When the space filling prob-
lem is controlled by “external” conditions like in examples (i)
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and (iii) we should direct our attention towards model I.

Mackenzie® (see also Maltz and Mola??) succeeded in
obtaining asymptotic expansions of the one-type constants
L (1)and KX (1) when the particle size grows to infinity, on this
occasion establishing a connection with Rényi’s continuous
model.? The complex integral representations of these con-
stants in the present multitype model demand a similar treat-
ment. Interesting relations with work done by Ney® can be
expected.
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Exact temporal evolution for some nonlinear diffusion processes
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Exact solutions to Fokker-Planck equations with nonlinear drift are considered. Applications of
these exact solutions for concrete models are studied. We arrive at the conclusion that for certain
drifts we obtain divergent moments (and infinite relaxation time) if the diffusion process can be
extended without any obstacle to the whole space. But if we introduce a potential barrier that
limits the diffusion process, moments converge with a finite relaxation time.

I. INTRODUCTION

A time-dependent Fokker-Planck equation (FPE) de-
scribes the dynamical evolution of the diffusion processes.
Nevertheless, when the dynamics of the process is nonlinear
it is very difficult to obtain exact or even approximate solu-
tions of such FPE’s. Since at the present time nonlinear pro-
cesses are of highest interest (instabilities, phase transitions,
etc.)' many people have tried to find exactly soluble nonlin-
ear models.>”’

The most common technique used to solve exactly a
FPE consists in separating the temporal from the spatial
dependence; this latter one is solved by means of an eigen-
function expansion in the same way as occurs with the
Schrédinger equation.?™

Another more direct although more skillful technique
is initiated in Ref. 6 and continued in Ref. 8. It consists in
separating the part which is most related to the potential of
the process (which causes the nonlinearity) from the prob-
ability density P (g,?); then, by means of convenient assump-
tions, the remaining part of P (g,¢ ) is solved separately assum-
ing that it is Gaussian. Concretely in Ref. 8 we have found
that the N-dimensional FPE

Plgt)= —3,[a) Plgt)] +19, 3*P(gt), (1.1)

when d,=d/dg* (sum over repeated Greek indices is as-
sumed) has an exact solution, with the usual initial condition

P(g,0) = 8"g — go) (1.2)
if the drift £ #(q) = f * (91:925---,gx) has the form
fHq)= —aq* +3, 6(q)/¢q), (1.3)
where
Ll 1
$a)= 1T [ F (1] |oct)

+B.aF (1 + 5| 2act])|. (14)

the a; and B, being arbitrary constants and the /, arbitrary
parameters. The function F (I, |1|ag}) is the hypergeometric
confluent function. In this case the exact solution to the FPE
(1.1)is
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Plg.t/q) = (i)”” dla)

2/ (g0
% exp{ — (b/2)t —a Z_, (g, — Bi(t))*/nit)}
(sinh at V2 ’
(1.5)
with

b=[4(k§1 Ik) —N]a, (1.6)
Bilt )=gore ~, (1.7)
7it)=1—e" (1.8)

In Ref. 8 we have also found solutions of Egs. (1.1) for a drift
with spherical symmetry of the form

f(r)=[_ar+M].£ (1.9)
¢in 1r
with

é (r) = |aF (I |N /2|ar)| (1.10)
for whatever value of the dimension N of the phase space,
and

$(r) = laF(l’%.arz)+ gV

N 2 - N arz) '

2 2

if N'is odd. In these cases the normalized solution of the FPE

is given by (1.5) with ¢ (g) given by (1.10) or (1.11) and
b=@4l—N)a. (1.12)

In this article we intend to study some of the applications of

these solutions for concrete models.

xp(1+ 1— (1.11)

Il. A FIRST MODEL OF NONLINEAR DIFFUSION

By means of an adequate selection of the constants a;
and B, that appear in (1.4) we can write

N

dl@)=| I[ (€“**D_,,W2aq.)} ], 2.1)
k=1
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where D _ (v2aq,) is the parabolic cylindric function de-
fined by®

D,fg) =% {r({; (1/3))/2) F( _2V %‘9
5 Ho 132

For />0 the functions D _, (v2ag,) do not have real
zeros and instead of (2.1) we can write

$a= 11 (D ., 2ag.).

The characteristic function & (,,..., ¢ y) associated toa
density of probability P(g,t) is given by’

O(py5s )= f dq, - dqy

Xexp{i{u1q; +

(2.3)

+ ungn)iPlgt).
(2.4)

Substituting in (2.4) the probability density given by Eq. {1.5)
with ¢ (g) given by (2.3) we have

O(pyyes i)
a \¥”2 g~ b/
- (E) ¢ (¢o)(sinh az }¥ 2
1
X H koD_zlk(\/_Qk)eXP{’ﬂqu +— 5 —aq;
_ 2
_ a(qk Bk(t )) ]’ (2.5)
7(t)
since’
D—2Ik(\/—2zqk)
e—(l/z)a'ﬁ‘ ‘/—— o 2 —1
= exp( —v2aq,s — s ' ds
r@l) Jo A %3
(1 >0). (2.6)

Substituting (2.6) in (2.5) we finally arrive at

Ol thoestn) = 5 - T [enpfie £ute) =i
X e~ ¢hp _ | pk)], 2.7)
where
pr=2aqq; + i(z/\2a)(sinh at ) .. (2.8)

Once we have evaluated the characteristic function,
moments follow easily:

1 30(p, ~p,
Gty =L LU ) 29)
i Oy Oy = = =0
In our case
4] D .. .\2a
(4(t)) = goxe™* — —= (sinh ar) Dz, 11V2a9)
V2a D—Zlk(\/ﬁ%)
(I, >0) (2.10)

and
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—2ar 11— — 2at
([9x(2)]%) = gde ™ +#
_ 81, go.¢ —“(sinh at) D—Zlk—l(‘/z_aqu)
V2a ) D_zlk(\/z_a%k)

D_,,_ 2(\/2_aqk)
D—zl,‘(\/z%k)
(2.11)

47 (1 1
+—"("+ )(sinhzat)
a

(1 >0).
In this model the drift may be written in the form

fHg)= —ag* —2L,\a[D_,, _,(V2aq)/D _, (V2aq)].
(2.12)
The first moment (2.10) as a function of the drift is
(9ct)) = goue™* + (sinh ar)[qor + filgol/a].  (2.13)

This first moment presents a “boomerang” effect since the
average velocity

d {q,(t)) _
dt

)

(2.14)

becomes equal to zero and changes the sign if 0 </, <} and
— @ik < Gox <91 ( £ ¢y are the positions of the maxima of
the potential of the drift) for a time ¢, (see Ref. 6):

—a {que‘°' — (cosh at )[q0 +

9o, — Jido)
ol = — : 2.15
(ol [a%k + ﬂc(qo) ( )
We easily observe that Egs. (2.10) and (2.11) give
:l-lfg KCAN =x1_l.12 {gxlt))| = w, (2.16)

except for /, = 0 that corresponds to the case of linear drift
[see Eq. (2.12)].

We can also consider the model with spherical symme-
try such that, when ¢, = 0, the probability density (1.5) can
be written as

N2 @ (r) exp{ —
Prt10)= (217) 4(0)

(b /2)t — ar*/q(t )}
(sinh at V2

(2.17)

wherer=(2¥_, ¢%)"/?>and ¢ (r)is given by (1.10). For />0the
function F (1| N /2|ar?) has no zeros and since F (a|c|0) = 1,
we have

é(r)/ ¢(0)=F(|N/2jar?) (150
For this model the potential ¥ (7} of the drift (1.3) is
V(in=1ar* —InF(I|N/2|ar*) (I50).

In Fig. 1 we represent this potential when N=1anda = 1,
for the cases (a) /=0, (b) /=0.1, and (c) / =0.5. The mo-
ments ([r{z)]™) are given by

(2.18)

my _ (2m"72 +m—1
([A2)] )_F(N/z) A rv P(r,t |O)dr
m=1.2,..). (2.19)

Substituting in (2.19) the probability density given by (2.17)
and since®
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v(r) A
(a)

—
—
\ r

(b)

(c)

FIG. 1. Representation of the potential ¥ (r) when N = 1 and a = 1 for the
cases (a) /=0, (b)/=0.1, and (c) / =0.5.

f e~ *zV~'F(a|c|z)dz
0

—a- VI"(V)LF(a,V|c| i),
a
for Rea >0, Rea> Re k, Re V> 0, we arrive easily at

m_ T(m+N)2)
([re)1™ = 21 - N72gm2 (N /2)

<5 3] )

In this case the velocity of the moments is given by

d{[r)1™) _ 2P ((m +r)/2)
dt a2~ (N |2)

x{[ 21— e + e

<r(n 2553 o)

(2.20)

e 2lat [ﬂ(t )]m/z

(2.21)

e—2lat[17(t)]m/2—l

{(N+m)
+—N——n(t)(1—n(t»F(1+l,1
m+N N

T 1+?77(t))}- 2.22)

Now we investigate the behavior of the moments ([~{r)]™)
for large times (r» 1/2a). In this case

7(t)y>1 (t>1/2a) (2.23)
and since®
F(ayb |CIZ) = F(C)F(C —a — b)

lc—b)(c—a)
XFlabla+b—c+1/1—2)
_z](—a—-b)r(a)r(a"'b“c)
(@I (b)
XFlc—ac—blc—a—b+1|1—2) (2.24)
and F(a,b c|1 — n)~1 (t»1/2a), we arrive at

m ri+ms2) o 1 .
([re)] )_2‘—N/2a""21‘(1) e (t> 2 and l;éO)
(2.25)

+(1

This expression diverges when #—co.
The case / = 0 corresponds to linear drift and, there-
fore, presents no difficulty.
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We come to the conclusion that both models presented
in this section could not be valid for the study of the temporal
evolution of physical systems towards equilibrium. In the
following section we find a mechanism that yields exactly
soluble models that relax towards equilibrium with a finite
relaxation time.

Ill. ONE-DIMENSIONAL MODEL WITH POTENTIAL
BARRIER

For a one-dimensional system the potential ¥ (x) of the
drift (1.3) is

Vi(x) = lax* — In ¢ (x), (3.1)
where ¢ (x) is given by Eq. (1.4). By means of an adequate
choice of the constants a, and ,, we can write

¢ (x) = U(l|}|ax?), (3.2)

where U/ |}|ax?) is a function of Kummer.® Let us suppose
now, that, for a certain value of x, < x,, there exists a poten-
tial barrier, that is,

Vix) = [gax2 —Ind(x), x>x,
0, X <Xy,
which is equivalent to the following expression for ¢ (x)

b0x) = [U(l [{lax?), x>x,,

0, X <Xy
This is possible since ¢ (x) = 0 is also a solution of the differ-
ential equation that satisfies the function (3.2) (see Ref. 8).
In this case, and supposing that x, = 0, the probability
density is

(3.3)

(3.4)

P(x,t|0)= (%)

V2 ¢ (x) expl — (b/2)t — ax’/nie)}

4(0) (sinh at )72
(3.5)

In this model the moments are evaluated by

(e = [

Xy

o

x"P(x,t|0}dx (m=12,..), (3.6)

following the procedure described in the Appendix. Express-
ion (3.6) becomes

(1™ = ZEED ey

27Tam/2
Xexp[ — 2lar + axi/q(t)]
X S hexn(t), (3.7)
where
Ol + 1), 1\
1) . _— -
WLl ) = =2 t nm)
1| axi
XU(1+n - 1;(:))’ (3.8a)
YA, xy5m(2))
0+ (1 [ax? 1|1] exi
= Al (1 n(t)) () U(l+"+ 2{2 1](1‘))
1 1] ax}
+U(l+n+7‘——2— W))]. (3.8)
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When t<1/2a, then 7(t )==2at<1 and the main term of Eq.
(3.7) is exp( — ax2 /7(t)). Therefore,
([x(£)]™) ~e > (t<1/2a). (3.9)

When > 1/2a, then 7(t )=~1 and the main term of Eq. (3.7) is
exp( — 2lat), i.e.,

([x(£)]1™) ~e= 2 (t>1/2a), (3.10)
that yields a relaxation time
Trenx = 1/21a. (3.11)

The moments, for small times, are growing functions of
time; however, for large times, they are decreasing functions
of time. Therefore, in the cases in which (3.7) are continuous
functions of time, the moments pass through a maximum for
t~1/2a and we again have the “boomerang” effect.

We will finish this section studying the case when the
potential barrier is very far away from the origin (that is, our
initial state), i.e., when

axi»l. (3.12)
In such a case, as in Ref. 10,
Ula|clz)~2z~° for z—« (Rea>0) (3.13)

the functions ¥'™(/,x,;7(t)), defined by (3.8), may be written

oo 2

1

X
n! ax?
(m=1,).
Taking into consideration®

Foab= 3 @he), 2,

Folabz™") =2*Ulala — b + 1|z2),

we arrive at
8 U(I I%( 1 jx;(t)) (axi>1), (3.14)

for m = 1,2. Substituting (3.14) into Eq. (3.7) we finally get
Ll +§) =m0

([X(t)]m)’; 20"'/217' (ax%)l —m/Zc_“a'
2
XU(I 'ﬂ :':‘t‘)) (@3> 1), (3.15)
form = 1,2.

When 1> 1/2a, we have 7(t )=~1. With the approxima-
tion (3.13) we have

e

%)l —m/2

— 2lat

([x())")=

2ma™? (ax
(ax3>1 and ©>1/2a).
When 7¢1/2a we can approximate
n(t)~2at<1, e~ *ai]

(3.16)

1 — n(t)~1,
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(for I moderate).
Remembering (3.13), Eq. (3.15) becomes
F(l+i) e-x%/zt
2mra™’? (axf)“’“ —m)2
(ax?»1 and t<1/2a). (3.17)

Therefore, even when the potential barrier is very far away
from the initial state, the evolution of the system depends on
the position x, of the barrier.

If we compare Eq. (3.16) with Eq. (3.10), and Eq. (3.17)
with Eq. (3.9), we observe that the asymptotic temporal evo-
lution of the model is similar to the evolution of the general
case.

For x < x, the potential (3.3) is a hard-core potential.
This implies that the barrier is a reflecting barrier. Thus, the
probability current J (x,? ) must be zero for x<x,. In our case
J(x,t) is given by

([x(e)]™) =

Jix,t) =K (x,t)[a(l/9(t) — 1)x¢ (x) + 1 '(x)], (3.18)
where
_{_a \"* exp{ — (b/2)t —ax’/q(t)}
K et )_( 217) (sinh a7 )72
and’®
$'0x) = { =2 XU((I)+ 1{3|ax?), :2’:» (3.19)

Thus J (x,2 ) will be zero at the barrier if ¢ '(x) is a continuous
function at x = x,. This implies that the potential barrier
must be located at the zeroes of the Kummer function.

If, instead of (3.4), we write

[U(l 3lax?), x>x,,
a,

b x) = gy
where a <1 (our potential is not completely hard core), we
have

P(x,t /0)=0 for x<x, (3.20)

[see Eq. (3.5)] and the barrier may be located anywhere.
In Fig. 2 we have a representation of the potential (3.3)
in the case where / = — 0.5.

IV. STATIONARY DISTRIBUTIONS

As is well known a one-dimensional FPE

Plxt) = = P )] +%‘92—’;J‘§f—’ (4.1)

V(x)

-
rd

X

FIG. 2. Representation of the potential (3.3) in the case / = — 0.5. The po-
tential barrier is located at x, = 0.25 '/2, and the minimum at x, = a~ /2,
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has a stationary distribution of the form

Py (x)= Nexp[2 f f(x')dx’], (4.2)
when the probability current
Tint) = fipins) - o LL 4.3)
29
satisfies the boundary condltlon10
im J{x)=0. (4.4)

X— + oo

Both our general model represented by Eq. (1.4) as well
as the models represented by Egs. (2.1) and (3.2} satisfy these
boundary conditions. Their stationary solution is

P,(x)=N{[ ¢,x)]% =, (4.5)
where
$1(x) = aF (I |}]ax?) + BxF (I + }|3|ax?), (4.6a)
$aix) = P D _,,(\2ax), (4.6b)
$3(x) = Ul |}]ax?), (4.6¢)
and
a2 [azll"(—l) /92(l+i)1"(—1—5)]‘l
7 Lrg-n 4al(1—1)
(4.7)

[provided that the proper choice of the constants @ and S
extends this normalization to the models (4.6b) and (4.6c)].

Let us study the stability of these stationary distribu-
tions. Following the criterion given in Ref. 4 we can affirm
that the stochastic process represented by Eq. (4.1) has a
stable stationary solution, and all moments (x™) up to the
mth order exist if the following inequality is satisfied:

L=lim =25/, (4.8)
=0 (m+1)nx

In our case we have [see Eq. {1.3) and Ref. 9]
L2 =L3 = + 0, (4.9)

whatever the values of m and /. We see therefore that the
general model is completely unstable (let us remember that
in this model, when 8 = 0, the model presented in Ref. 6 is
included). As a matter of fact, both the general model (4.6a)
as well as the model of Ref. 6 do not behave correctly at
infinity since P, (x}>c when x— + oo.

Thus, we can affirm that the models presented in Secs.
II and III are stable for any value of the parameter /.

L= — o,

V. CONCLUSIONS

Relating the results of Sec. II with those of Sec. III, we
observe that the nonlinear diffusion process, represented in
general form by the drift (1.3), yields divergent momenta
(and infinite relaxation times) if the diffusion process can be
extended to the whole physical space. Nevertheless when,
due to the introduction of a potential barrier, the diffusion
process takes place in a limited part of space, the moments
converge with finite relaxation time given by

Thonlinear — 1/ 21(1.

Comparing this relaxation time with the one that corre-
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sponds to a linear drift, f #(g) = ag*, that is,

Tlinear = l/ a,
we observe that this process of nonlinear diffusion relaxes
quicker than the linear diffusion if

I>1.

Let us remark also that the nondivergent model studied
in this paper can reach large parts of space since the asymp-
totic evolution of the process is the same no matter how far
away the potential barrier is from the initial state.

The general model represented by Eq. (1.4} is unstable

since its stationary distribution P, (x) diverges. The models
studied in Secs. II and III are stable.

APPENDIX: EVALUATION OF INTEGRALS
We have to evaluate the integral

I =f x™P (x%)dx (m=12,.). (A1)
By means of the change of variables z = ax?, we get
I™=K@)[I+15], (A2)
with
i+
K(t)=———e" % (nt) 2 A3
()= e (e (A3)
IM= Jo 2= W2 =20y (] |§|2)dz, (A4)
1= f 2= W2g =My (1 |§|2)dz. (AS)
0

The evaluation of I { is immediate taking into account
that®

o0
J e~ %zF
0

_Teiri+b-9 ,
Fl+a+b—c

~U(alc|z)dz

xF(a,b|1+a+b-c|1—i),
s

where Re s> 1/2 and F(a,b [c|2) is the hypergeometric func-
tion.

The final result is
I = IT'((14+m/2)/2) (1 +m/2) (m(e ) +m)2
rl14+14+m/2)

XF(L{1+m)/2|1 + 1+ m/2|1 —(t)),

valid for m = 1,2,3,... .
To evaluate Y™ we perform the change of variable

(A6)

y = z/7(t). Using the multiplication theorem®

Ula|c|zz') = (z)~° 2 M

X(l - i,) Ula + njc|z),
z
we have
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(1),.(1+£),.( Ly

I =)+ 2 " )

xJoy""“‘Vze"U(I+ n|3| y)dy.
8 4}

(A7)
For m = 1, and recalling that’
J.e"U(a|c|z)dz = —e *Ulalc —1l2) + C,
(A8)
the expression (A7) becomes

I = (nle ) —" [e“"‘%/"("[ D

N (1LY

n!

=0 ()
1| axi
XU(1+" —7‘ (t))]
rg 1
_r(1+g)F(1’1+7|1+ ‘ n(t))} 9
since
reg
A L ST
Fl+n+3)=r+3W+ 3.
(@),b), 2z

F(ab|c|z)= i

n=0 (C ),, n! ’
For m = 2, integrating by parts and taking into account
(A8), Eq. (A7) becomes

I(lz’=(‘)7(t))(3/2)—l[e—axf/n(t)[2 (1)..(1+£)n( 1 )"]

7(t)
2
2 o] )
7(t) 2121 nlt)
527 J. Math. Phys., Vol. 26, No. 3, March 1985

1 ax} ]
+U(1+"+7‘__ 17(:))
re 1 ]
_ ! L
ES) Fil+3)1+21 ]
(A10)
In general,
Im =(1;(t))“+'"’/2"[ e—ax?/n(t)
& Ire)
my] . _
x[ngo'ﬂ" (bx ""(t”] T(1+1+m/2)
1 1
><F(1,1+7|1+1+2 1—(—)) (Al1)

with ¢™ (I,x,;7(¢)) given by (3.8). Expression (A11) is only
valid for m = 1,2.

Substituting (A11), (A6), and (A3)in Eq. (A1) and with
the help of Ref. 9,

Fla,b|c|z)=(1 —z)~“Fla,c — b|c|z/(z — 1)};
in this way we obtain Eq. (3.7).
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Chiral fermions in non-Riemannian Kaluza-Kliein theory
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The problem of obtaining left-right asymmetry of fermion quantum numbers in Kaluza-Klein
theories is studied. A non-Riemannian Kaluza—Klein geometry, based on a nonsymmetric
fundamental tensor g5, , is shown to lead to zero modes of the Dirac operator and can possess a
nonvanishing chirality index that permits a realistic description of fermions. Some specific models
of unification and their group structures are considered.

I. INTRODUCTION

A higher-dimensional gravity theory can give a unified
description of four-dimensional gravity and gauge interac-
tions, if all spacelike dimensions except three are compacti-
fied into an internal space with a very small characteristic
length of the order of the Planck length. By integrating the
action over the internal space the isometries of the compact
internal space reduce to gauge symmetries. It is assumed
that the ground state has the form M * X G, where M * is the
four-dimensional Minkowski space and G is a compact
space. The continuous symmetries of G will be the ob-
served gauge symmetries in the four-dimensional world,
which should minimally contain the symmetries of
SU(3) X SU(2)XU(1). This program has been pursued by
many authors.'~> However, a major difficulty in construct-
ing a realistic model has been pointed out by Witten.* By
starting with a Riemannian geometry in 4 + n dimensions
that is coupled to spinors and assuming that the internal
space is compact, one always ends up in the four-dimension-
al theory with fermions that belong to vectorlike representa-
tions of the gauge group, i.e., such theories do not have the
left-right fermion asymmetry observed in nature.

Another problem is that by beginning with a purely
Riemannian structure, the Dirac equation cannot have zero
mass modes for compact internal spaces. It has been suggest-
ed that by including torsion in the space, the problem of not
having zero mass solutions to the Dirac equation can be cir-
cumvented.’ However, this does not resolve the problem of
left-right fermion asymmetry.

One way out of the problem of obtaining light fermions
in realistic chiral representations of a low-energy gauge
group is to add extra gauge fields.*® However, it is necessary
then to postulate the existence of topologically nontrivial
vacuum configurations. If such a program is pursued, then
the idea of deriving a unified theory from higher-dimension-
al gravity is lost, together with much of the appealing simpli-
city and unity of the theory.

If we retain general coordinate invariance in 4 + n di-
mensions as the only local symmetry of the theory, we must
either give up the compact nature of the internal space or
abandon the notion of purely Riemannian geometry. Giving
up the compactness of the internal space complicates consid-
erably the structure of the theory. In the following we shall
consider a non-Riemannian extension of Kaluza—Klein the-
ory suggested some time ago,”® based on a nonsymmetric
field structure.’®!! A theory of gravitation in four-dimen-
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sional space-time formulated in terms of a nonsymmetricg,,,
has been extensively investigated.!2~!7 This theory is consis-
tent with all experimental relativity tests in the solar system.
Recent new observational results for the eclipsing binary
system DI Herculis'® may in fact provide confirmation of
the nonsymmetric gravitational theory (NGT).!°

Il. GEOMETRICAL STRUCTURE OF THE GENERALIZED
THEORY

We adopt the notation that in a 4 4 n dimensional
space, capital Greek letters (2,4,7],...) denote the base mani-
fold (curved) indices and capital Latin letters (4,B,C,...) de-
note the flat (tangent space) indices. For a four-dimensional
space-time lowercase late Greek letters (1,v,4,...) will be used
for curved space indices, while the late Latin letters
(m,n,p,...) denote flat indices. For internal indices taking n
values, early lowercase Greek letters are used in the curved
case (@,B,7,...) and early lowercase Latin letters in the flat
case (a,b,c...). The general coordinates x* thus consist of
space-time coordinates x* and the internal coordinates y©.
The internal dimensions are all spacelike.

The four-dimensional form of NGT follows from an
algebraic reduction of an eight-dimensional real tangent
space to a hypercomplex structure generated by a complex
operator J withJ 2 = 1 (see Refs. 16 and 17). By imposing the
hypercomplex structure J on R® and demanding that
VJ/=0, the group GL(8,R) is reduced to GL(4,R)
X GL(4,R ), which in turn is reduced to GL(4,R ) in four-
dimensional space-time upon introducing a metrically com-
patible connection in the space. From this follows that in
four-dimensional space-time, the fundamental tensor g,,,
has the sesquilinear form

8uv = 8w T €8uvy (1)
where g,,, denotes the symmetric part and g, , the skew-
symmetric part of g, . Moreover, g, is (hypercomplex) Her-
mitian g,, = g,,, and € = 1. In terms of hypercomplex viel-
beins e;; = er, + €€y, we have

8uv = e M mn- . 2)
For this version of NGT, it has been proved that the physical
sector of the theory does not possess any ghost poles.?®

We can generalize the method of algebraic reduction to
2(4 + n)-dimensional space. Let us begin with a real
2(4 + n)-dimensional tangent space with the group GL(p,R ),
where p = 2(4 + n). The (hyper) complex structure J with
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J2 = 1is imposed on this space and we require that VJ =0,
with the consequence that GL{p,R ) is reduced to the semi-
simple product GL(V,R)XGL(¥,R) with N=4+ n. We
then demand that the connection on the p-dimensional
space be metrically compatible, which reduces
GL(N.R )X GL(N,R ) to GL(N,R ). The symmetric metric of
the initial (real) p-dimensional space is reduced to a nonsym-
metric metric in N-dimensional space

8xa =8iz4) + €824 1 (3)
where asbefore € = — eand € = 1. In4 + ndimensions the
fundamental tensor g, has the form

8x4 = €3E4 4 (4)
where the (hyper) complex vielbeins 5 obey

eces =82, esef =03 (5)
and they satisfy the equation (¢4 5 = dse})

efx,z + ((‘)z)éeg — W3ael =0. (6)

The w and W are the spin and the generalized Lorentz con-
nections, respectively. In NGT'*'? and Kaluza—Klein NGT
the torsion is determined by the metric compatibility equa-
tion up to an auxiliary vector field. We can solve for ¥ in
terms of e and w:
Wira=W3,8na = Nus (Dzefi Yeas (7)
where Dy is the covariant derivative operator, defined by
Dsej =€) s + (05)eq. (8)
A group of isometries is defined by the transformation
et =e3(U)3, 9
where Uis an element of GL(V,R ) that leaves the fundamen-

tal form (3) invariant. Moreover, W will remain invariant
under the transformation (9) provided that

(Wz)fs‘“’[UWzU—l_(azU)U—l]g- (10)
A curvative tensor can be defined by
([Ps:Ds1)5 = (Rsa )3 (11)
where
Rz, )fs = (@, );,}: — (ox )JAé,A + ([‘Uz’wA ] )‘1‘9 (12)

This equation is invariant under the transformation (9).
The scalar curvature in 4 4+ n dimensions is

R=1"%4e5 (Rs4)2- (13)

The action of the theory is

S= — _..1_ d 4x _t.i_y

4 Vi(n)

where e = det{e3) and */47 = G is the Newtonian constant
in four dimensions, whereby the invariant volume V' (n) of the
internal space has dimensions (length)".

eR, (14)

In. HIGHER-DIMENSIONAL SPINORS AND THE
CHIRALITY INDEX FOR FERMIONS

A spinor transforms according to the law

Yoy + 8¢, S.9= —£% Iz, (15)
where £ % (x) is defined by the infinitesimal transformations
xZox® + £3(x). (16)
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The 3 belongs to a fundamental spinor representation of the
universal covering group spin(N — 1,1) of the Lorentz
group. Under infinitesimal Lorentz transformations with
the coefficients a5(x) = — ap,(x), a Dirac spinor is a 2V/?
component representation that transforms under infinitesi-
mal Lorentz transformations according to

S.¥= —la, TNy, (17)

where the N (N — 1)/2 generators 3 “?] can be constructed
from the N = 4 + n Dirac matrices I"“. These matrices obey
the usual rules

{r4r*} =2, 4= _1[r4r*. (18

In general, we have for a scalar quantity ¢

D;¢ = [az —(os )ABZAB ]¢’ (19)
where  (ws)4p = (®s)up)+ (®5)up; and 42

=3 “B) 4 34B] The 3 “®) are N (N + 1)/2 noncompact
generators of GL(N,R ). The Dirac covariant derivative that
transforms as a (finite component) spinor under Lorentz
transformation is

D= [az —3(®5)1un 12[AB]]¢- (20)
We can now construct a scalar Dirac operator

DYy=I*D s =g*"E,,T "D 59, (21)
where the vielbeins E % are defined by the metric tensor

=" = ESEfm™. 22)

The physical mass spectrum of our theory is determined by
the Dirac operator & =I'19 ,.

Witten has discussed the index of chirality for fermions
in the context of dimensional reduction.* An analysis of the
problem for the case of non-Riemannian geometry has been
given by Wetterich.”' Let us assume that

[F,,.Z2]=0, {L9}=0, (23)

where F denotes the gauge transformation and I" the Dirac
matrices. The index number is defined by*

Ne(@D)=n} —n —ni" +n7, (24)

where n;t is the number of zero modes of & in the Weyl
spinor ¥* associated with a complex representation of the
spinor, while n~ and n;" denote the corresponding values
for ¥~ and for the complex conjugate representation. Thus
N, is the number of four-dimensional left-handed fermion
generations, up to a numerical factor.

In the case that the vielbein ¢f has an inverse every-
where, the operator & is an elliptic operator, which for com-
pact spaces has the property that N,(Z) remains invariant
under continuous changes of the metric. In compact spaces
we have for elliptic operators &

N.(Z)=N.(Z +sB), (25)
for some arbitrary parameter s, provided that the nonderiva-
tive operator B obeys

[F.,B]=0, {IB}=0. (26)
For Riemannian geometry, the chirality index vanishes for
the Dirac operator for arbitrary compact spaces. For theor-

ies with torsion W{\;, 50 the Dirac operator also has zero
index because of Eq. {25). This follows because B is a nonder-
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ivative operator in the Dirac operator I"“D, + B that cor-
responds to nonvanishing torsion. Thus, although we could
have zero modes in the presence of torsion, the chirality in-
dex vanishes and we cannot have left- and right-handed
chiral asymmetry. Only in the case that g*4/ or, equivalent-
ly, the vielbein E % fail to have inverses everywhere is it possi-
ble for chiral fermions to exist, i.e., to have a nonvanishing
chirality index.?!

IV. NONELLIPTIC DIRAC OPERATORS IN HIGHER-
DIMENSIONAL NGT

Let us write g5, and g4 in terms of their symmetric
parts 5, and p** and their skew-symmetric parts f5, and
k%4, repsectively,

8sa =hss + S50, & =p""+k* (27)
If we assume that 4 = det{hy, )70, then the metric tensor
hz, = h,5 always has an inverse

hs h 32 =64. (28)
The following relations can be derived:

g=det(gs,) =h+f+ (h/2h*h“f 55 s,

(29)
g™ =det(g®™) =p+ k+ (p/2pzaPank k"%,
and
g=h/p=frk, (30)
where p*4p,, = 84. Our Dirac operator is
D =p* I 9;=EZI''Y,, (31)

where the E % are defined by Eq. (22). This definition of the
Dirac operator is not unique in the nonsymmetric theory.

Thus, the physical spinors couple through p** = p*%. If
we assume that p = det(p®*) vanishes somewhere in the
compact space, then E 3 is not invertible everywhere. Thus
Z is not an elliptic operator, which is a necessary condition
for the existence of chiral fermions: i.e., we can have
Nc(2)#0.2! In the Riemannian case, the metric is just the
square of the vielbein ¢}

834 =8ax = €344, (32)
and g should be nonvanishing everywhere in the compact
space.

Thus in NGT we can preserve # #0 and have p =0 at
some point in the space such that Z is not an elliptic opera-
tor and therefore can possess a nonvanishing chirality index.
Since & #0the metric properties of the space, defined by 45,
and h ¥4, are preserved in the manifold.

V. MODELS OF UNIFIED THEORIES BASED ON
NONSYMMETRIC KALUZA-KLEIN THEORY

Let us consider examples of a unified theory using our
generalized Kaluza—Klein scheme. We choose p = 28 with a
real tangent space based on the group of transformations
GL(28,R). By dimensional reduction this is reduced to
GL(14,R )X GL(14,R) and GL(14,R ). The basic group in
N = 14-dimensional space is SL{14,R ) with a 10-dimension-
al compact space. The symmetry breaking that occurs under
compactification could then lead to the scheme
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SL(14,R }—S0(13,1}—80(10) X SO(3,1) (33)
—SU(3)x SU2) x U(1) X SO(3,1)
—SU(2) X U(1) X SO(3,1).

Thus in four-dimensional space-time the compact group
SO(10) would describe the grand unified scheme for particle
physics. The problem of left- and right-handed fermion
asymmetry is avoided since the fermions couple to the non-
symmetric field structure. We choose even N and avoid the
case of a single } representation of the spin group with
¥s= + 1 and ys = — 1 parts with the same transforma-
tions under SOV — 1,1).

It is possible to go to more complicated schemes such as
one based on quaternion'”*? and octonion!” algebraic reduc-
tions of the higher-dimensional tangent space. In the case of
the quaternion reduction of the theory, the relevant group is
GL(p,C), which contains the compact unitary group SU(q) as
well as the group of homogeneous Lorentz transformations
SO(3,1). We could envisage the schemes in p = 24-dimen-
sional space:

SL(24,C}—SL(12,C) X SL(12,C }—>SL{(12,C) (34)

and
SL(12,C)}—>SL(8,C) X SL{4,C) X GL(1,C)
—SU(8) X SO(4,C) X GL(1,C)
—8U(8) X S0O(3,1) X GL(1,C)
—8U(3)xSU(2)x U(1) xSO(3,1) X GL(1,C)

—SUR)XU(1)XSO(3,1)XGL(L,C).  (35)

Now the relevant grand unified theory is SU(8).

Further work has to be done to obtain detailed predic-
tions of the unified theories of the kind displayed in the above
models. In particular, the significance of spontaneous com-
pactification in our non-Riemannian Kaluza-Klein scheme
must be studied in detail.

VI. CONCLUSIONS

We have shown that a non-Riemannian Kaluza-Klein
theory, based on a hypercomplex, nonsymmetric g5,, can
have a nonvanishing chirality index, leading to nonequal
left- and right-handed zero mass modes of the generalized
Dirac operator in the compact space, because the vielbein

% in the Dirac operator & may no longer have an inverse
everywhere. However, the symmetric part of g5,, which
constitutes the metric tensor of the theory, still has an in-
verse everywhere, thereby retaining the purely geometrical
properties of the space. Thus the line element defined in
4 + n-dimensional space by

ds® = g 5, dx= dx* (36)

is still well-defined in the theory, even though det(¢g'**) van-
ishes somewhere in the manifold, rendering the generalized
Dirac operator a nonelliptic operator that permits a nonvan-
ishing chirality index. In this way we realize that the non-
symmetric field structure is related to the existence of physi-
cally realizable fermion field operators.
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Some static solutions in the general scalar-tensor theory
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Exact solutions are found for the static gravitational fields for a matter-free space in the general
scalar-tensor theory of Nordtvedt-Barker-Schwinger. The singular behavior of some of the
invariants has also been discussed for the solutions in Barker and Schwinger theories.

I. INTRODUCTION

Static perfect fluid distributions with high symmetries
such as spherical, cylindrical, and planar symmetries in gen-
eral relativity are widely discussed in the literature.' How-
ever, the corresponding problem in scalar-tensor theory still
lacks thorough investigation. Recently increasing interest in
general scalar-tensor theories seems to stem mainly from
attempts to extend the principle of conformal invariance to
also include gravitational phenomena (gravity becoming it-
self the manifestation of a broken symmetry”®). Also Ko-
dama® has shown that the use of scalar fields may enable one
to construct nonsingular field-theoretical models for ele-
mentary particles. Recently Banerjee and Santos'® have dis-
cussed static perfect fluid in Brans-Dicke theory.!’

In the present paper we have considered gravitational
field equations in the general scalar-tensor theory of Nordt-
vedt'? in a static nonrotating space-time with two mutually
orthogonal spacelike Killing vectors. This metric may be
interpreted to represent cylindrical, toroidal, planar, or
pseudoplanar symmetry depending on the behavior of the
space coordinates.

The scalar-tensor theory proposed by Nordtvedt con-
siders the parameter w as a function of the scalar field ¢ and,
in the special case @ = const, it reduces to the theory of
Brans-Dicke.!

Our paper is organized as follows. In Sec. II we have
written the field equations and their general solutions. In
Sec. III and Sec. IV we have found exact solutions in the
Nordtvedt’s scalar-tensor theory of gravitation with scalar
field ¢ being obtained from specific choices of w as a function
of ¢ as proposed by Barker'? and Schwinger.® In Sec. V we
study the singular behavior of some of the invariants, viz.,
Kretschmann curvature invariant and curvature scalar.

Il. FIELD EQUATIONS AND THEIR SOLUTIONS

We consider a static space-time possessing two space-
like Killing vectors which are mutually orthogonal and also
orthogonal to the timelike Killing vector. One can choose
the coordinates so that the metric has the form®

ds® = 9 dt > — 19 gx?
— ) dy? — B g2, (2.1)

It corresponds to cylindrical symmetry if £ and 7 repre-
sent the azimuthal and longitudinal coordinates, respective-
ly, so that £ € (0,27) and 7 € ( — 0,0 ). If both £ and 7 are
angular coordinates, we call the system toroidaily symmet-
ric, whereas if both £ and 7 represent longitudinal coordi-
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nates [p€(— o0, + o) €(— o0, + )], the symmetry
can be called “pseudoplanar” [to obtain the well-known
planar symmetry, one should put in addition, B (x) = u(x})].

In the following we attempt to find exact solutions of
the field equations in Nordtvedt’s general scalar-tensor the-
ory corresponding to the metric (2.1) for a matter-free space.
However, one can without loss of generality, use the coordi-
nate condition

A=y+u+p. (2.2)
This coordinate condition enables us to write the field
equations in a symmetrical form.

The field equations in the Nordtvedt’s general scalar-
tensor theory!? are

Gi= = 2[00, — 6.0"]

- %w:z —8081, 2.3)
_ P8 do
0= = o s (2.4)

where ¢ is the scalar field and w is a function of 4. The field
equation (2.3) can be written explicitly as

Gl=e 2 U=e”“[%(¢7,)2—— ’1—:?_] (2.5)
Gi=e*[B" +9" —U]

G A
Gi=e *[y"+u"-Ul

LS5 e
Gi=e 2[B"+u" —-U]

=e—u:— ﬂ(l’;)zﬂ%" _ ¢7] 2.8)

2\ ¢
Equation (2.4) for the scalar field leads to
— 24 n2
Op=e¥¢" = _e 7)) do (2.9)
2043 d¢

Here and in what follows, the primes indicate differentiation
with respect to x and
U=BI1/ +Blyl+ylyl. (2.10)
Now we attempt to solve this system of five equations

and five unknown functions 7, u, 8, o, and ¢. Adding (2.5)
and (2.6) one can immediately obtain the relation
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B"+y" = —(@"/¢)V +B)—¢"/¢. (2.11)
Subtracting (2.8) from (2.6) and (2.7), we have, respectively,

V' —p"=— /8Ny — 1) (2.12)
and

YV —B"=—@ /¢y —B’) (2.13)
Adding (2.11) and (2.13), we have

V' +V/b+6"/2=0. 214)
On integration Eq. (2.9) yields

¢'=CRo+3)7"3 (2.15)

C being an integration constant. Once w{¢ ) is known other
equations can be integrated.

Ill. SOLUTIONS IN BARKER’S THEORY

Within the framework of Nordtvedt’s'? general scalar-
tensor theory Barker'® has proposed a particular » — ¢ rela-
tionship in the form

olg)=(4—3¢)/(2¢ —2). (3-1)
Use of (3.1) in (2.15) and integration gives
$=1+(Kx+KF, (3.2)

where K, and K, are integration constants. Now from (2.14)
and (3.2) we have

y=M,+ M, tan"'(K\x + K,) — } log[(K,x + K, +1],
(3.3)

where M, and M, are constants of integration. Now using
(3.2)in(2.12) and (2.13), on integration we have, respectively,

p=7—(DJ/K))tan" (K \x + K) (3.4)
and

B=v — (Dy/K)) tan" (K \x + K), (3-5)

where D, and D, are integration constants.

Equations (3.2)3.5) constitute the complete solution
for the metric (2.1). In order that this solution satisfies all the
field equations, we must have a relation between the con-
stants K|, M,, D,, and D, given by

3M? 4+ D,D/K? =1 + 2M,(D, + D,)/K,. (3.6)

IV. SOLUTIONS IN SCHWINGER’S THEORY

Schwinger® and Milton and Yee'® have formulated a
scalar-tensor theory (as a mass-varying theory), but it can be
put in the form of a standard scalar-tensor theory with a
suitable choice of the function o(¢ ) and after a transforma-
tion to “particle units” has been carried out.'*

Now we consider the @ — ¢ relation as proposed by
Schwinger in the form

20(¢)+ 3 = 1/ag, (4.1)

where a = const. Using relation (4.1) in (2.15) and on inte-
gration, we have
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é = a(Cx + C,)*/4,

where C and C, are integration constants.
Now using (4.2) in Eq. (2.14) and integrating, we have

y=K,— K,/(Cx + C,) — log[Cx + C,], (4.3)

(4.2)

where K, and K, are integration constants. With the help of
(4.2), Eq. (2.12) and (2.13) yield, respectively, the solutions

p=v+4D,/aC[Cx + C,] (4.4)
and

B=v+4D,/aC[Cx + C\], (4.5)

where D, and D, are integration constants.

Equations (4.2}{4.5) constitute the complete solution
for the metric (2.1). In order that the solution satisfies all the
field equations, one must have a relation between the con-
stants a, C, D,, D,, and K, given by

3K2a%/4 + 4D,D,/C? = 1 + 2K,a(D, + D,)/C. (4.6)

V. SINGULAR BEHAVIOR OF INVARIANTS

We now study the regularity of the solutions from the
behavior of some of the invariants, viz., the Kretschmann
curvature invariant .£° = R,, , R*/* and the curvature sca-
lar R = g/ R;; (given in the Appendix).

In the case of Schwinger’s theory the invariants .¥ and
R tendto « asx—( — C,/C). Therefore, .£ and R are singu-
laratx = — C,/C. Hence, there is singularityatx = — C,/
C within the framework of Schwinger’s theory. Similar is the
situation about the singularities of the solutions within the
framework of Barker’s theory.

APPENDIX A

The nonzero components of R,, ;. for metric (2.1) are

Rpp=e*[p" +u—-1'w'],
Ry =e*[B"+B2—A1'B'],
Riuu=e"[—y" —7*+1'7],
Ry =e [ p'B'],

Roa= —p've %,

Rype= —B've .

The curvature invariant in terms of metric coefficients for
the metric (2.1) is given by

R= —2e"2[A" —(u'B'+B'Y + 7))

Thus the expression for
£ = Ry, 5 R "/* takes the form

Kretschmann  scalar
L =4{e ¥ THR, L + e HHOR, P

+ e ¥R 410f

+ e *ETP(Ry00) + e T HE TR, 0)

+ e ¥Ry}
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APPENDIX B
The nonzero components of Riemann curvature tensor and curvature scalar for the solution in Barker’s theory are

2D, - 2Dk (kx + k)
R = eX [2P__4tan lkx+k ][ + 471 2
1212 P k, (k, |12 [k + K+ 112
._@_ D, )( _ D, H'
[(kyx + ko)? + 1] (kyx + k) + 1
= 2Dk, (k\x + k,)

Rz = exP[ZP - ‘2kD—3 tan~'(k,x + kz)] [Q +

1

~(s- mﬁiﬁ)(”‘ (kﬁfﬁ)]’

[(kx + k) + 117

D, +D,)
R, 44 =exp[2P [—— +2852— (3—4}
1414 p ] Qo (kx + &) + 1
S(D, + D) D.D
Ry, =exp(— 2P I.S’z— 3T 24 4 4 }
2 = R = NS ekt k11 Tlr 4l + 11

SD, ]

(kyx + ko)* + 1 ,
SD,

(kyx + ka* + 1

Rasza = CXP[ —2P+ 2:3 tan~'(kyx + kz)]{ -S4+
1

Ry = exp[ —2P+ ZkD4

b

tan~ 'k, x + kz)“ — 8524

1
and

_ 8k?
[(kyx + k) + 1]°

where P, Q, and S are
P=M,+ M, tan~"(kx + k;) — } log[(ksx + k;)* + 11,

(D3 + D)

1

exp[3P — tan~'(k,x + k2)} ,

0= — k? _ M kikx + k) 2K (kyx + k)’
(kyx + k) + 1 [(kwx + k5)* + 1} [(kyx + ko + 112 ’
— M.k, _ kykyx + k)
kx+ Kkl +1  (kx+ k) +1
APPENDIX C
The nonzero components of Riemann curvature tensor and curvature scalar for the solution in the Schwinger’s theory
are
Ry, = exp[N+ 8D, {E 4k,C(2D, + D,) 4D,C _ 16D,D, } ,
aC[Cx + C,] alCx +C,]* a[Cx + C,]? a?[Cx + C1*
8D 4k,C (2D, + D)) 4D,C 16D.D
Ry =¢€x {N+____1__”E+ 3 1 2) _ 2 _ 12 ]’
1313 = P CICx 4 C, alCx+C,I*  alCx+ G  @[Cx+CT°

_ 4kC(D, +D,) | 4C(D, + D)) ]

R = exp(N [——E
1414 = expll) a[Cx+C,1* | alCx+Cl*

4CD,+Dy) , 4C(D,+D)  _ 16DD
R = X —N[T—— 3 1 2 | 1 2 1,
= = NN T = el T alces G’ | @Cx+ CTF
Rm,.=exp[— Ve 8D, [_T DAC _ ___4DC 3]
aC [Cx + C] a[Cx + C,] a[Cx + C|]
8D 4D.k,C 4D,C
R =ex{——N——2—-{—T kC 1 ]
3434 = XD aC[Cx+ C,] T alCx+CF  @lCx+CTF
and
2
=—8C—exp{—3N— 8(D1+D2) ]
a?[Cx+ C1* aC[Cx + C,]
where
2k ,
N=2k,— —==2 _ _2log[C C:l,
4 Cx + C, og[Cx + C]
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2k,C? c? 2k3C?
TG+ GP G+ GE [Cx+C)Y
. kic? c? 2k,C?
TG+ GF [+ Cl  IGi4CP

K. Schwarzchild, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. K1. 424

(1916).
ZR. C. Tolman, Phys. Rev. 55, 364 (1939).
3A. Marder, Proc. R. Soc. London Ser. A 224, 524 (1958).

535 J. Math. Phys., Vol. 26, No. 3, March 1985

4C. W. Misner and H. S. Zapolsky, Phys. Rev. Lett. 12, 635 (1964).

K. A. Bronnikov, J. Phys. A 12, 201 (1979).

SK. D. Krori and J. Barua, Indian J. Pure Appl. Phys. 12, 818 {1974).

7J. D. Bekenstein and A. Meisels, Phys. Rev. D 22, 1313 (1980).

8J. Schwinger, Particles, Sources and Fields (Addison-Wesley, Reading,
MA, 1970).

*T. Kodama, Phys. Rev. D 18, 3529 (1978).

19A. Banerjee and N. O. Santos, Int. J. Theor. Phys. 20, 315 (1981).

!1C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).

12K. Nordtvedt, Astrophys. J. 161, 1059 (1970).

3B. M. Barker, Astrophys. J. 219, 5 (1978).

14K. A. Milton and J. N. Yee, Phys. Rev. D 10, 420 (1974).

T. Singh and T. Singh

535



Fermionic couplings in Kaluza-Klein theories

R. Finkelstein and M. Villasante

Department of Physics, University of California, Los Angeles, California 90024
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The totally symmetric and totally antisymmetric direct couplings of fermions in d-dimensional
space are investigated. Explicit forms are given for d<11. A different way of handling the d-

dimensional Dirac algebra is also described.

I. INTRODUCTION

Recent interest in Kaluza-Klein theories stems mostly
from dimensional extensions of local supersymmetry. In
particular, simple Yang—Mills in ten dimensions may be re-
duced to the maximal extension (¥ = 4) of supersymmetric
Yang-Mills in four dimensions’; and simple supergravity in
11 dimensions may be reduced to the maximal extension
(N = 8) of supergravity in four dimensions.? The fundamen-
tal fermionic fields in the Yang-Mills case are the Weyl-
Majorana spinors appropriate to ten dimensions and in the
supergravity case the corresponding fundamental fields are
the Majorana vector spinors.

There is also a classical solution of the 11-dimensional
supergravity field equations that splits the 11-dimensional
manifold into a four-dimensional space-time and seven-di-
mensional internal space.® This unforced output of the 11-
dimensional theory provides not only a realistic space-time
but also a possible internal space since its dimensionality is
the minimum compatible with the symmetry of
SU(3)x SU(2) < U(1).

The Kaluza—Klein idea for unifying gauge interactions
with gravity is, of course, not limited to the supergravity
approach. In general if the ground state is M % X B, where Bis
a compact space, continuous symmetries of B will be ob-
served as gauge symmetries in M * (see Ref. 4).

In all of these higher-dimensional theories there is need
for efficient ways of dealing with the spinor algebra. For
example, one frequently encounters Fierz transformations
in the usual on-shell formulations, while the complications
become greater if one attempts to construct off-shell theor-
ies. On the phenomenological side, one notes that the inter-
action among four fermions frequently becomes effectively
zero range because of the great mass of the intermediate bo-
sons; and the effective interactions therefore reduce to direct
quadrilinear forms.

As these direct Fermi interactions appear both actually
and potentially in many theoretical schemes, we have
thought that it may be useful to examine these couplings in
higher-dimensional theories and in a way independent of su-
pergravity. We also describe a different way of handling the
Dirac algebra.’

1I. NOTATION

The Dirac algebra in d dimensions may be defined by
the anticommutation relations

(¥Vx)e =205,  jik=1,...d, 2.1)
where the ¥, are all Hermitian
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Ve =

Let us introduce the notation

r(g) = ﬁlﬁz""!ﬁd’ (2-2)
where

g = (21:82)s

8 = (0’1)

If ¥, transforms like a d-dimensional vector under the
d-dimensional orthogonal group, then the rank of the tensor
associated with I" (g) is

g=82=;gk- (2.3)

If I" (g) is written out explicitly, one component of the rank
three tensor is, for example,

L@ =vnVa¥p
where the indices are never equal and always appear in the
natural order m < n < p. Each component of the rank g ten-
sor is associated with a different vector g.

The I" (g) are unitary and are either Hermitian or anti-
Hermitian according to the relation

I *(g)=€lg)l"(g), (2.4)
where
elg) = (— )&, (2.5)

Let the individual y, be either pure real or pure imagi-
nary and let the number of imaginary ones be p. Let C be the
product of the imaginary ones only. Then

Ct=C '=¢pC (2.6)
and
C=(—yep)C, (2.7)
where ~ means transpose. Then
C™'nC=(-Fn (2.8)
C'r@C=(~F¥—)Tg
=(— Yeelg)l"(g), (2.9)

where ¢ is the number of imaginary matrices in I"(g). Let
E=C™'TI. (2.10)

Then if ¢ and y are two spinors, it follows that $Ey is a
tensor of the same rank as I". We may also write this tensor as
YTy, where § = ¢C ~'. The matrices E are symmetric or
antisymmetric according to

E(g)=(— Velg + p)E(g). (2.11)
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Computations that make direct use of (2.1) are manifestly
covariant but may become very lengthy if d is large. For this
reason we shall use instead of (2.1) the following relation

r'@r@)=rE)7re -+ (2.12)
In this notation the composition law is
T'@I(b)=(—)*(—)""I(a+b), (2.13)
where T is the triangular matrix
T,;=06-))
=0, i<j (2.14)
=1, i»j.
Then
T'®) (a) = (— P™+*™T(a)I" (b),
and by (2.12)
(_)bn+n1§=(_)ab+-b_ (2.15)
Also
(=)™ =(—)ela), (2.16)

W@, b)), =3 @+b)(—)™[(=)*+(—)"]
(2.17)
The I' in these relations are antisymmetric by construction.
If I' (a) is not written in the above notation but is instead
written in covariant notation and is also antisymmetrized
then formulas like (2.17) are written as follows:

/=0 2j ) N Oy
X Iyl with @ = Min {k,[m/2]},
(2.18)
i{1_,M. ..... Mzk'f',I"NI ..... sz+1}
@+ 1) (21N ‘
= 3 (—y2EL (K D s
Ao T2p N \%+ 1
XT iy e, @ =Min {kp),
(2-19)

___i(_)i+l(m—';’;—l)!( 2k ) (M gMoyia

~ 2%+ 1 [Ny Ny
XLy o @ =Min (k— 1,[(m —1)/2]},
(2.20)
) [er ..... MZ,‘,,,’I..N1 ..... sz+1]
= i (— )JM(yc‘!' 1) 5[;“]"” 51‘::;
I 2p+1—2p\ 2 J W TN
XTI y2rimyaeil g = Min (k,p).

(2.21)

Example:
Toillustrate the use of our abbreviated notation consid-
er a contraction like

V¥ ¥ Wi
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or in general

"2‘; I (gl (m)[" (g),

where the sum is over all components of the tensor I" (g) of
rank g. Then

2 rermnr (g)=xz (gl (@) (m)( — o+ ==

=(—)“’"€(g)1“(m)zz (=)=

=(—F"elg)W (mg)l"(m), (2.22)

where
Wimg)= 5 (-

The function W (m,g) is computed in the next para-
graph. It is

Wimg) = W (myg) = 20 cred-m .

(2.23)

(2.24)

1li. FIERZ IDENTITY

Let us next write the Fierz identity in the above nota-
tion

(MYING) = 3. elg) (-MT (€N6) (0T @l

(3.1)

where

yv= 2ld/21,
and

M=I(m), N=I(n).
In particular, consider

M (kin) = K (k)N (n), (3.2)
with

kn=0.
Then

m=Kk+4n,

(3.2a)

m=k +n. (3.3)

In this case the quadrilinear form is a tensor of rank k. Then
by (2.12)

K (KN ()" ()N (n) = K (K)N (m)N (n)I" (g)( — )™
=K (K (@eln) —)=*™ (3.4

Therefore

AMy)PNG) = % S G KW (@) (BT (&)

8
X e(g)e(m)( — )&+ . (3.5)
The contracted form of this relationship is

S (M (k|njy ) (4N (o) )

1 ng
=7§g:€(n+g)uz,“zn(—)
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XA KK (@] ¥ @)
1
== zg‘, en+g ,2,, W (g.k,n)

X[ K (k)" (2)$] (4T (8)r), (3.6)
where the following sum is over n:
Wgkn) = > (=)= (3.7)
ak =0
Then
Wigkn) =3 fl)(—F, (3.8)
where f(u) is the number of solutions of the equation
ng =y, (3.9)
subject to the constraints on n
n°=n, andnk=0.
One finds
flu)=C8 Cizk"%, (3.10)
where
g=g—gk (3.11)
Then
g -
Wigkn)= Y CECizf 3 - (3.12)
u=0

The function W (g,n) may also be expressed as a contour inte-
gral around the origin

W(g,n)=L_56dzz—"-'(1 —ZFl4+2Z0%E (3.13)
27i

Example: In particular, if the quadrilinear is an invar-
iant then £k =0 and

g

Wien) = Wign = $ €1 CIz8(~ .

0

(3.14)
or
Wig,n) =L§dzz“"“‘(l —zZF(1 4275  (3.15)

2mi

In these cases W (g,n) depends only on (g,n). [Equation (3.14)
is also the equation referred to in (2.24). Compare (2.23) and
(3.7) withk =0.]

If k = 0, (3.6) becomes

Y AL (my) @ ()

Zn L ) )
= ; eln +g)W (g:n) ‘Z,g AT (g)8) (4T (g)x)- »

If the quadrilinear is a tensor of rank & then (3.6) holds; but if
it is an invariant, then the special result (3.16) holds. In these
two cases the appropriate forms of W(g,n) are given by
(3.12)3.15).

IV. IDENTITY OF CREMER, JULIA, AND SCHERK?

If k #0, then W (g,n) depends on g as well as g. To illus-
trate the usefulness of formula (3.12) we prove the following
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identity of Cremer, Julia, and Scherk ford = 11:
y{re=%®ry, 9.y, — Lo tp, M%7}
+ 3 {r*=*%y, 9.y — [pt, 9, "%}
+3{[r*=r 21 ¢,9.Lp + Lgip, ¥ [T*.I" ]}
=} [r*=,r ?] (§,Is9,). (4.1)
Proof:

By (3.1) a typical term on the left is Fierz transformed as
follows:

Z M (k|n)y, P M (n)

= =~ 5 3 (MK @M @) (G (@), )ete),

4.2)
where
M (k|n) = #=or,
M (k) = Ir#,
Mm)=r*,
The notation is hybrid, since (v,a) are contracted against
M (k|n).

The additional minus sign on the right comes from the
anticommutativity of ¢, and ¢,. The g sum extends only
fromg =0tog = 5since I'(11)~ 1.

Since ¢, and ¢, are anticommuting Majorana fields

VoI (8, =(— Pelg) (¥, T (g) ¥.).

But by (4.1) v and a are contracted against matrices

antisymmetric in v and a. Hence the only nonvanishing
terms satisfy

(—Pelg)= — 1,
or
g§=125, (4.3)
since g<5. Now define
Amg)= > [M(klm)I" (g} (m)
mk—0
— M (m)I" (g)M (k|m)], (4.4)
and
A(k,n,g) = 2_‘, ([M (k),M (n)] I" ()M (m)
+ M m)I"(g) [M (k)M (n)]). 4.5)

Then Eq. (4.1) becomes after its left side is Fierz transformed
by (4.2)

3 628) + A (b 1)+ BLe)] (BT (8. el

= — (M@, (1) (4T (1)¢,). (4.6)
To pass from (4.1) to the present notation one must double
the first term of (4.1) since (va) is counted twice in (4.1). As
previously noted the only nonvanishing terms in the g sum
are g = 1,2,5. Therefore (4.6) may be established by proving
the following simpler identities:
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M (42,8 + 44,18 + 14,18 =0 g=25 (4.7)
and
% [4(82,0) + 4(4,1,1) + ¥ (4,L1)] (T (1),)
= — (M@4), L' (1) (g T (1,). (4.8)
To prove (4.7) and (4.8) note first
M (k|m)I" ()M (m) — M (m)I" (g)M (k|m)
= (M (k|m) M (m),[" (g)) ( — )™+ ™. (4.9)
Since, k is even and km =0,
M (k,m,g) = elm) (— )"*W (g,m) (M (k).I" (g)) = O,
4.10)
if kg is also even. By (3.12) one finds
Wgl)=x, Wg2)=1x*-17), (4.11)
where
x=7-2g g=g-—gk (4.11a)
One also computes for n = 1
A k,n,g) = 2( — F(k — 2gk) (M (k).[" (g))- (4.12)
Then
5[ #4428 + #4418 +.741,g)]
= F(gx) (M (4).I"(g)), (4.13)
where
Flgx)=4[1+22(—fF—4g(—F
—((*x*/2) +(— x)] - (4.14)

We find the values of F(g,x) given in Table I. From these
values one sees that (4.7) and (4.8) are correct and therefore
that the identity of Cremer, Julia, and Scherk also holds.

V. PERMUTATION SYMMETRIES OF FERMI
COUPLINGS?

Let
E,(abcd) = .Z (@C ~'I'(g)b) (cC ~'I'(g)d),
=g
g=0,..D. (5.1)

Let

PE,(abcd) = E, (P(abcd)), (5.2)
where P (abcd ) is a permutation of abed.

Then

PE, = ; E, P(g,g) (5.3)

Let E be a vector in the space spanned by the E,

TABLE 1. Values of F(g,x).

g gk g x F(gx)
1 1 0 7 -1
2 1 1 5 0

1 4 -1 0
5 3 2 3 0
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E=3 hE,. (5.4)
The same vector in the new basis PE, will have new compo-
nents (h ')

hy=S Plgg)h'y .

There are 4! permutations in general, but four of these
correspond to the unit matrix. Thus there are only 3! differ-
ent matrices and these provide a representation of 7, the
permutation group on three objects; that is, 7, and its three
cosets in 7, have the same representation.

Denote the elements of 7; as follows: I,4,B,C,AB,BA.
These fall into three classes: the identity J; the transpositions
A, B, C; and the two elements of period 3, 4B and BA. Hence
the following matrices commute with every member of 75:

R,=44+B+C, (5.6a)

R, =AB + BA. (5.6b)

One also has C = ABA. Then all matrices may be gener-
ated from the noncommuting matrices A and B. Let us take
A= (ab)and B = (bd).

In the Hermitian representation that we are using A4 is
diagonal and’

(5.5)

A(g.g) = (—Pelg + p)Slg.g’), (5.7)
and Bis
Blg,g)=2""elg+¢)
X[ g'g"2n —g)\2n — g)1]*"? Y (8.8, (5.8)
where
S @&) = z [(2n +m — g — glig — m)
X (g — m)im!] = — ). (5.8a)

In this representation the transposition matrices are real and
symmetric.

There are three irreducible representations of 7;: Two
of these, I",_ and I"_, are one dimensional, and the third is
two dimensional. Respectively, I, and I"_ are completely
symmetric and antisymmetric. The projection operators as-
sociated with the irreducible representations are, in general,

n; -
ei=szi(P)P’

where y,(P) is the trace of Pin the irreducible representation
I, n, is the dimensionality of I';, and the summation is over
the N members of the permutation group. Then

e+=%(1+R1+R2)’
e_=}(1-R,—R)),
e;=1(2—R,).

We are particularly interested in the symmetric and anti-
symmetric representations.

The number of times ¢, an irreducible I'; is contained in
any given representation is

L,
¢ —NZX‘ (P)X(P)’

(5.9)

(5.10)

(5.11)
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where y(P) corresponds to the given representation. P is
summed over the group.

VI. CHARACTERS

Since 4 is diagonal we have simply
2n
xd)= 3 (—Pelg+p)=€(—p)—)™
g=0
We are working with Euclidean signature so that
p=n—1mod 4 or p = n mod 4. In either case
xi4) = en). (6.2)

B is not diagonal but must have the same trace as A since it
belongs to the same class. By (5.8)

(6.1)

2n

B == 3 (= § (—resen

n
g=

(6.3)

1 & 4 dz ~g—1 21 —g(1 _ »\8
=;g;o(—)3€2—ﬂz (142751 — 2,
(6.4)

where ¢ is a small circle around the origin. This character
may be computed by interchanging the order of summation
and integration. One finds

_Lfde (14" § (ZF(1=2) (g5
x(B)_z" L2mi oz & zf (1+z) (6.3)
= €(n), (6.6)
as required. The remaining character is
XAB)=y(BA) = % A(gg) B(g'g)
= 3 (~Yee+p)Blgl  (67)
Let us separate the even and odd values of p.
(a)Let p =2g + 1. Then
€lg +p)=(— Ve[ — g). (6.8)
(b) Let p = 2¢. Then
€lg + p) = — Jelg). (6.9)
Then for p odd
YUB)= — (=) 3 d -2 Blea) (6.10)

=(—r'+'[z (- FBlgg)

+ Z ( _)1/2¢g+l)B(g’g)]
odd
—(—pr{ $ (-reeiar)
+ 3 (-reei-121-1)
A=1

g

£(1+Z)2n n (_)A(I_Z)ZA
2 z = 2 \1l 4z
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3 ilz_(1+z)2"+‘ n (___)/1(1__2)2/1]
2mi 1—z & 142
(—)e+? ﬂ(_)n (1—zp+1
2" 2mi 2"+ 1422+ (1—2z)
X[1—z—(1+ 2z}
The denominator of the integrand may be factored
Zl+2P+(1—2P=[2+(1—)z+i] [22+(l+i)z(;i]2.)
.1

The contour about the origin may be deformed to enclose
these four roots. Then for p odd

(6.11)

__\e+1
vaB)= =" [sin(2n )Ty
3 12
X cos (21 + 1) %] . (6.13)
For p even
__yg+1
vaB) =" {cos(2n )Ty
3 12
xsin (2n + 1) %} . (6.14)
For either even or odd p
YUB) = —ein) - vB {cosion + ) IT — (—y
xsin(2n + 1) 1’1] : (6.15)
12
This formula leads to the following results:
Y4B) =1,  n=3m, (6.16a)
=0, n=3m+1, (6.16b)
=—1, n=3m+2. (6.16¢)

VII. SYMMETRIC AND ANTISYMMETRIC
REPRESENTATIONS

According to (5.11) the numbers of symmetric (c., ) and
antisymmetric (c_) representations are

¢y =4 Lyll) £ 3xl4) + 2¢(4B)]

=1[2n+ 1+ 3€(n) + 2y(4B)]. (7.1)
As€(x +2m)=(— )" €lx)
(@) n=3m, ¢, =m+1[1+e—mj], (7.2a)
b) n=3m+1, c, =m+}i[1+em), (7.2b)
() n=3m+2, c, =m+i[1Fe—m)]. (7.2¢)
The results up to d = 12 are summarized in Table II.
TABLE I1. Numbers of symmetric (antisymmetric) forms.
d n m c, c_
2 1 () 1 0
4 2 0lc) 0 1
6 3 1{a) 1 2
8 4 1(b) 2 1
10 5 1(c) 2 1
12 6 2(a) 2 3
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TABLE III. Symmetric and antisymmetric forms in (6,7) and (10,11) dimensions.

g 0 1 2 3 4 5 6 7 8 9 10
symmetric 1 0 0 25 W5 0 0
d =1{6,7)
anti- c,=1
symmetric 0 1 0 0 0 -1 0 c_=2
~1 0 ] 0 W15 e 0
symmetric ] 0 W35 ] ] 1 W30 0 0 ] wes
0 1 iz o 0 0 /84 0 0 1 W10 d=(10,11)
c, =2
i- = 0 51,5 =1
ant 1 0 o WO 0 L S L o °
symmetric
w X X X X X X

The cases of special interest are the 10- and 11-dimen-
sional Kaluza—Klein theories that lead by dimensional re-
duction to maximally extended Yang-Mills and supergra-
vity theories in four dimensions. In addition the Euclidean
d =17 case is also of interest as the internal Kaluza-Klein
space corresponding tod = 11. .

The specific symmetric and antisymmetric forms may
be obtained with the aid of the corresponding projection op-
erators or alternatively as common eigenvectors of 4 and B.
The eigenvectors of B may be obtained by noting

A=C~'BC. (7.3)

Since A is diagonal the eigenvectors of B are the columns of
C. But C may be calculated directly as the product 4BA4. One
obtains the results in Table III.

The forms described in Table III are all of the type

F=3% 4,3 (al'(gh)(cl(g)d).

The entries in Table III are the values of 4,.

For Majorana spinors, which can only exist in
2,3,4,8,9 mod 8 dimensions, we can use Dirac conjugation in
our expressions, since for these ¥"C ~! may be replaced by
AN

Thelast line describes the terms that vanish if (abed ) are
all Weyl spinors having the same Weyl parity. This condi-
tion drastically simplifies all forms in Table III except the
first antisymmetric form in six dimensions, which remains
unchanged.

(7.4)
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In obtaining these forms commuting spinors have been
assumed. If anticommuting spinors are used instead, then
the symmetric and antisymmetric forms are interchanged. If
some of the fermionic factors are vector spinors rather than
simple spinors, then the corresponding forms will of course
also be antisymmetric in the vector indices.

For supergravity applications the fermionic factors
could be anticommuting vector spinors in 11 dimensions or
commuting Killing spinors in seven dimensions, but we have
not studied possible supersymmetric extensions of these
forms.

In an octonionic realization of Englert’s compaction of
11-dimensional supergravity, Giirsey and Tze® display both
the torsion and the field strength as completely antisymme-
tric forms on the septads. As far as we have been able to
discover, however, there is no simple relation between these
forms and the corresponding antisymmetric spinor forms of
this paper.
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A vector model for electroweak interactions
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In this paper we present a vector model for the electroweak interactions. The Cartan map gives an
isomorphism between Dirac bispinors and an isotropic class of Yang-Mills vector fields. The
isotropic Yang-Mills vector fields F, = E, + /H, with £ = 1,2,3, satisfy the condition that the
matrix of scalar invariants (F;-F, } equals a scalar multiple of the identity matrix. We show that all
the bispinor observables commute with the Cartan isomorphism, including all gauge
transformations, as well as Lorentz transformations. We derive the Yang—Mills equivalent Dirac
equation. As a consequence of the vector model, we obtain a new Lagrangian for electroweak
interactions, which is an alternative to the Weinberg—Salam Lagrangian. Moreover, we show that
the vector model predicts that the Weinberg angle 8, satisfies sin® §,, = 0.25, which is close to the
measured value of sin? 6, = 0.23. The vector model accommodates all the lepton and quark
flavors. Furthermore, it predicts the conservation of baryon number and lepton number, as well as
electric charge in electroweak interactions. The vector model also gives a new interpretation to
antiparticles. In the vector model, an antiparticle is characterized by its opposite baryon number,
lepton number, and electric charge; yet both particles and antiparticles propagate forward in time

with positive energies.

I. PRESENTATION OF THE MODEL

In a recent paper,’ we investigated some problems of
assigning spinors to physical states; namely, that spinors are
tied to a specific Cartesian coordinate frame, that a spinor
representation is not coordinate-free and consequently can
only be defined on a very restricted class of manifolds, and
that the relativistic transformations do not act properly on
spinors.

The difficulties in the case of spinors were resolved by
the Cartan map, which is a locally one to one coordinate map
from spinors (that is C ) onto the manifold® of isotropic vec-
tors in C 2. Unlike spinors, isotropic vector fields are coordi-
nate-free, and hence have curvilinear components in arbi-
trary coordinate systems. For example, whereas isotropic
vector fields can be defined on the manifold S 4, spinors can-
not. Indeed, S * is not parallelizable, and therefore the Carte-
sian frames necessary for “spinor structure” cannot be de-
fined on it.> Also, unlike spinors, isotropic vectors are
transformed unambiguously under Lorentz transforma-
tions.

We further showed that the Cartan map commutes
with all spinor observables, and leads to a simple Dirac equa-
tion which preserves the isotropic vector constraint. Other
authors have also discussed relations between antisymme-
tric tensors and spinors, and in particular, relations between
constrained tensor systems and spinors, similar to the Cartan
map isomorphism.*

In this paper, we extend the Cartan map to bispinors. A
bispinor ¥ = ( £,7*) consists of a spinor £ and a conjugated®
spinor 77*. The extended Cartan map takes each bispinor Pto
a triplet of Yang—Mills fields (F,,F,,F,), as depicted in Fig. 1.
These Yang-Mills fields (F, = E, + /H, for k = 1,2,3) sa-
tisfy the isotropic condition that the matrix of scalar invar-
iants (F;-F, ) be a scalar multiple of the identity matrix. That
is, by definition,
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F;-F, = A0,
with j,k = 1,2,3 and 4 a complex scalar field.

We show in Sec. III that the extended Cartan map is
locally one to one from C* onto the manifold of isotropic
Yang-Mills vector fields. We also show that the extended
Cartan map commutes with all bispinor observables, and
gauge and Lorentz transformations. Henceforth we will use
the term Cartan map for either the extended or usual map as
appropriate.

In addition to the Cartan isomorphism between bispin-
ors and the isotropic Yang-Mills vector triplets (F,,F,,F;),
we also discuss the Weinberg—Salam map from bispinors to
trispinors depicted in Fig. 2. A trispinor consists of a spinor
pair v, £) € C*and a conjugated spinor 7* € C . Trispinors
were used by Weinberg and Salam to model the electroweak
SU(2) X U(1) gauge interactions.® We show that the isotropic
Yang-Mills vector fields provide a different though similar
model for the electroweak interactions. Both the trispinor
and vector models obtain their properties from the Dirac
bispinors, via the maps shown in Fig. 2.

¢ CARTAN MAP
n.
.

BISPINOR
PAIR ¥ ¢ c* F3

my

YANG-MILLS
-+
TRIPLET Fk e C?

FIG. 1. The Cartan map.
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DIRAC WEINBERG - SALAM

BISPINOR TRISPINOR

[5 WEINBERG - SALAM MAP v
n* 3
o

YANG - MILLS
TRIPLET

FIG. 2. The Weinberg—Salam map.

The study of isotropic Yang-Mills vector fields reveals
the bispinors have SL(2,C) gauge symmetry. The gauge
group SL(2,C) acts on Yang-Mills triplets (F,,F,,F;) via the
complex orthogonal matrices. An important subgroup of
SL(2,C)is SU(2), which has the usual three generators. These
three generators give rise to “formal rotations” of F,, F,, and
F;. By the Cartan map, the electromagnetic gauge transfor-
mations become the formal rotations about the “three-axis,”
that is, they leave F, unchanged and formally rotate F, and
F, into each other. We will therefore denote the electromag-
netic group of gauge symmetries as U(1);, which is a sub-
group of SL{2,C).

Previously, when considering bispinors,” physicists
were only concerned with the U(1); electromagnetic gauge
symmetry. Here, we consider the larger group of gauge sym-
metries, SL(2,C ). The classification of bispinor invariants un-
der SL(2,C) is different than their usual classification under
U(1),.

As shown in Sec. II, there is associated with each iso-
tropic triplet of Yang—Mills vector fields (F,F,,F,), a unique
complex scalar p, and also a unique quadruplet of orthogo-
nal real Lorentz currents (Jy, /1, J» J3). Both the singlet (p)
and the quadruplet of currents (j, ) are irreducible represen-
tations of the SL(2,C) gauge group, and by the Cartan map,
these are all bispinor SL(2,C) invariants.

The usual bispinor invariants under U(1); are those that
are unchanged by electromagnetic gauge transformations
(i.e., unchanged by formal rotations about the three-axis).
These invariants in vector theory notation are g, Fs, j,, and .
In particular we will show in Sec. III that j, is the particle’s
probability current and j; is the chiral current. Table I lists
those invariants by their usual notation, and gives their equi-
valent notation in the vector theory.

For the gauge group SL(2,C), the three-axis does not
have a privileged role, and F,, F, and,, j, must be included
in the complete set of bispinor invariants shown in Table II.
We propose that currents derived from (i, /;, j2, j3) play a
role in the vector model that is similar to the role played by
the electroweak currents in the Weinberg—Salam model.

For the wave equation to be SL(2,C ) gauge invariant, a
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TABLE I. Usual bispinor invariants.

Usual Vector model
notation notation
Scalar s Rep
Pseudoscalar P Imp
Probability current J Jo
Chiral current Js Ja
Spin tensor i F,

quadruplet of real Higgs scalars ( ¢, @,, ¢,, ¢5) is also re-
quired. That is, ¢, are real scalars for Lorentz transforma-
tions, but transform as a quadruplet under SL(2,C) gauge
transformations. In Sec. IV, we extend the usual Lagrangian
for bispinors to incorporate these Higgs fields. From this
Lagrangian [discussed more fully below—see formula (1.8)]
we obtain a complex triple of conserved Noether currents,
denoted {J,,J,J5). The Noether currents J, may be ex-
pressed in terms of the real orthogonal currents j, and the
real Higgs scalars ¢, by the formulas®

ReJy = Goji — brdo>

Ika = — €mn ¢mjn ’
with k, m, n = 1, 2, 3. (See Table III.)

There is, thus, a real conserved Noether current for
each of the six generators of SL(2,C). In particular, for the
electromagnetic generator, we obtain (e/m) Re J; as the elec-
tric current (where e is the magnitude of the electric charge
and m is the mass). Formula (1) shows that for the conven-
tional choice of Higgs scalars ¢, = (0,0,0,m), the electric
current is just — ej,, where j, is the probability current (see
Table I).

Isotropic Yang-Mills fields (F,,F,,F;) transform under
a bigger gauge symmetry group SL(2,C ) X U(1),, which con-
tains SL(2,C). The subgroup U(1), consists of the “neutral”
gauge symmetries.” By the Cartan map, the chiral gauge
transformations on bispinors become the neutral transfor-
mations acting on F,. These neutral transformations map
F, to F, ¢, where y is a phase.

The Lagrangian L, given in formula (1.8), is invariant
under SL(2,C). The kinetic part of L is also invariant under
SL(2,C)xU(1),, however, the mass part of L is not invariant
under U(1),.

From the kinetic part of L, one can define a (noncon-
served) Noether current'® for U(1),. This is the neutral cur-

(1.1)

TABLE II. Complete set of bispinor invariants under SL(2,C).

P = singlet, complex scalar

-FJ

F, = triplet, Yang-Mills fields

|F,

i

j.' = quadruplet, real orthogonal Lorentz currents
2

3]
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TABLE III. Additional observables of the vector model.

= quadruplet, rea/ Higgs scalars

J, = triplet, conserved Noether currents

K = singlet, neutral current

rent K, expressed in terms of the orthogonal currentsj, and
the real Higgs scalars ¢, by the formula

K= 4%,

(see Table III).

In particular, let us compute (e,/m)K with the conven-
tional Higgs scalars ¢, = (0,0,0,m), where ¢, is the magni-
tude of the neutral charge. From (1.2) we see that (e,/m)K is
equal to — e, j;, where j, is the chiral current.!!

In Sec. IV we show that the gauge-invariant vector
equivalent of the Dirac equation is given by

iD,S°F, + (DF,,)-F,/p=1,,

with subscripts (kmn) taken in cyclic order, and where

(1.2)

(1.3)

D, = Yang-Mills covariant derivatives,
§ % = Proca spin-one matrices,
F,F,=46,,,

p={F,XFF;)/A.

Equation (1.3) is equivalent to the usual Dirac equation
for bispinors, with the Higgs scalars ¢, = (0,0,0,m).

The vector model gives a new interpretation to the mass
terms of the Dirac equation. We see from (1.3) that the mass
terms are the conserved Noether currents J,, which appear
as sources on the right-hand side of the wave equation.

If we state that J,, J,, J;, and K are the electroweak
currents, and that ( ¢,, ¢,, ¢, ¢5) are the Higgs scalars, then
we have a vector model for the electroweak interactions sim-
ilar to the Weinberg-Salam model. We will always regard
the Yang—Mills triple F,, and the Higgs quadruplet ¢, as the
fundamental fields: J, and X are determined by them.

The vector model reveals that the Dirac equation has
broken SL(2,C) symmetry in a way not previously consid-
ered. Usually, the Dirac equation is written for bispinors,
denoted ¢ = ( £,7*), which are comprised of a spinor £ and a
conjugated spinor 7*. Associated with ¢ is the spinor pair
¥ =(£,m) and its conjugate pair ¢¥* = (p*, — £*), where
7 = — (77*)*. We will show in Sec. IV that Dirac’s equation
has broken SL(2,C ) gauge symmetry by writing it as an equa-
tion for spinor pairs, instead of bispinors, using the bijective
map ¢—4 from bispinors to spinor pairs. The following
Dirac equation from Sec. IV explicitly includes the Higgs
scalars and is equivalent to Eq. (1.3) by the Cartan isomor-
phism. It is invariant under both Lorentzand SL(2,C) gauge
transformations:

D oY= — ¢, 7Y*, (1.4)
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where D, are the Yang-Mills covariant derivatives, o, are
Pauli matrices, the 7, are the gauge matrices (see Sec. III),
and ¢, is a real scalar Higgs field, a SL(2,C) gauge quadru-
plet. Solutions of Eq. (1.4) also satisfy the Klein-Gordon
equation,'” which in the case of free particles is given by

D°D, = — (¢, W, (1.5)
so that the mass is given by
M=,/—¢_6°. (1.6)

As previously stated for the vector equation (1.3), Eq. (1.4) is
equivalent to the usual Dirac equation when ¢, is chosen by
convention to be

., =(0,0,0,m) . (1.7)

Equation (1.4) is the Euler-Lagrange equation for the fol-
lowing Lagrangian:

L =Re{(D,0%¢) (& rs ¥) + M*Ppg*}/M

(see Lemma 4).

This Lagrangian, which is also an invariant scalar un-
der both Lorentz transformations and SL(2,C) gauge trans-
formations, is different than the Lagrangian used in the
Weinberg-Salam'® model, even though the Higgs field has
the same number (four) of real components. Thus, the new
Lagrangian will give us new predictions.

Specifically, the vector model predicts that the Wein-
berg angle 8,, used in the Weinberg-Salam model for
electroweak interactions, satisfies sin? 8, = 0.25, which is
close to the measured value'® of sin? §,, = 0.23, and that the
neutral charge is 1/4/3 times the electric charge. If in the
vector model, we represent the F,. by their spinor coordi-
nates ( £,7), then the generators 7, and ¢, of the neutral and
electromagnetic gauge transformations may be explicitly
identified with the following matrices:

1 0
,=1=[ ],
0 0 1

10
%=H=k —J'

In the Weinberg-Salam model the electroweak interac-
tion is represented by trispinors'>

(1.8)

(1.9)

v

§
17#

Let the usual generators #, and ¢; of SU(2) X U(1) for the
Weinberg-Salam model be denoted by ¢ and ¢ ;. Acting on
trispinors, the generators ¢} and ¢ ; are represented by the
matrices'®

I
tg=10 —3 0|,

o o0 -1

4 0 0
t5=(0 -1 0

[0 o o

Since these matrices are diagonal, we may restrict them to
just the bispinor ( £,7*). To translate these generators into
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the vector model for comparison with (1.9), consider their
action on the pair ( £,7). Acting on the spinor pair ( £,7), we
have

P
s=[50 o)

so that we get from (1.9),

to= — 3t} +1. (1.10)

The two models (vector and Weinberg—Salam) give two
versions of the Yang-Mills covariant derivatives'”:

Do =ihV* + eV itk + eV 5t°,

D'*=ihV® — gW stk — g, W§t'°,
fora =0,1,2,3 and k = 1,2,3, where D “is the covariant der-
ivative for the vector model, D '* is the covariant derivative
for the Weinberg—Salam model, e and ¢, are the absolute
values of electric and neutral charges, respectively, g and g,
are the coupling coefficients, the V'3 are the Yang-Mills po-
tentials in the vector model (directly observable), and the
W g are the Yang-Mills potentials in the Weinberg—Salam
model (not directly observable). Since they represent the
same interaction, D ¢ and D "“ must be equal, thus

—eVit, —eVoto= gWsts + gWits .

L= —1t;—15,

(1.11)

Substituting (1.10) into (1.11) and equating coefficients of ¢ ;
and ¢}, we have

gWS =eVs+3eVs, gWs=eVs—eVs. (112
Furthermore,!®

W$=V§cosb, + Vgsiné,,

We= —VSsinb, + VScosb, , (1.13)

where 8, is the Weinberg angle.

Equation (1.13) shows an essential difference between
the vector model and the Weinberg-Salam model. In the
vector model, V'§ and V'§ are the directly observed electric
and neutral potentials. Whereas, in the Weinberg—Salam
model W¢§ and W are not directly observable. They are
related to the observable potentials V' and V' § by the formal
Weinberg rotation (1.13). Solving {1.12) and (1.13) we obtain
a prediction for the Weinberg angle 6,, as follows: From
(1.12) and (1.13),

gcosf, =3¢, gsinf,=e,
g sinf, =e¢, g,cosf,=e.
Therefore,

tanf, =}cotf, = g,/g,
and sin® §,, = }. Moreover,

eo=etan @, = (1/y3)e.

Thussin? 8, = 0.25, and the weak (neutral) charge e, is 1/4/3
times the electric charge e.

By the following argument the vector model also pre-
dicts that the electric charge of the neutrino is zero, and that
its neutral charge is 2/y/3 times the electric charge e. In the
vector model we regard the neutrino as having a very small
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mass m’, and the Higgs scalars may be given by ¢,
= (0,m",0,0). Then from formula (1.1) it follows that the
electric current vanishes: (e/m') Re J; = 0. Also from (1.2},
the neutral current (e/m’)K = — e,j,. We substitute ¢,
= {0,m',0,0) into Eq. (1.4), and observe that in the massless
limit (letting m' approach zero) the spinor pair associated
with the neutrino has the form ¢ = (£,£), and hence [see
formulas (3.3)]

Fi=—%ot=—J.

Regarding j* = £0°£ as the neutrino current, we see that
K= —eji=2j= (2/V3)ej ,

in agreement with the Weinberg—-Salam model. Thus, the
electric charge of the neutrino is zero and its neutral charge
is given by (2/4/3) e as claimed.

In Table IV we list the predictions of the vector model
including predictions for the masses of the gauge fields, ¥,
W,, and Z (Z = V). Except for these masses, which are
smaller than predicted by the Weinberg—Salam model, the
rest of Table IV agrees with the Weinberg—Salam model pre-
dictions, provided that the Weinberg angle satisfies sin’ 8,,

= ] as proved above."®

When the Higgs scalars ¢, assume conventional values,
there is further correspondence between the vector model
and the Weinberg—Salam model as shown in Table V. The
electric and neutral currents are identical for both models,
provided that the Weinberg angle 8,, satisfies sin’> 6, = 1.
For example, the neutral current of an electron in the Wein-
berg-Salam model is given by*°

Joewra = — (€/3)[ 5+ (1 —45sin®8,)jo] -

Clearly, this agrees with the vector model prediction
— (e/+/3) j; derived above, when sin® 6, = }.

In Table VI we extend the assignment of Higgs scalars
é. = #./M toinclude all quark and lepton flavors. An im-
portant property of this choice of Higgs scalars is that they
are additive in all electroweak interactions (such as beta de-
cay). This additivity is necessary if we assume that the seven
charged Noether currents (e,/M)K, (e/M) ReJ,, and
(e/M) Im J, are additive in interactions. To see this, consid-
er the particles at rest when their j,’s are equal. We may then
assume that the probability currents j, satisfy j, = 0 and ;3
= 1. From Table VI we see that ¢, = 0; whereas formula
(1.1) gives (¢/M)ReJ$ = — ed,. Hence the additivity of
(e/M W, implies that the ., must be additive. We propose

TABLE IV. Predictions of the vector model.

Weinberg angle: sin® 8, =}

Charges®
Electric Neutral
Electron -1 —1/3
Neutrino 0 2/\3
Masses®

m,, = 40 GeV/c? (80 GeV/c?)
m, =23 GeV/c* (90 GeV/c?)

*These charges agree with the Weinberg—Salam model predictions pro-
vided that sin’ 8, = {.
®Masses predicted by the Weinberg-Salam model are shown in parenthesis.
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TABLE V. Electric and neutral currents with conventional Higgs scalars.
a=1-—4sin’d,.

Vector Weinberg-Salam
model model
Electric current — &y — €y
{electron)
Electric current 0 0
(neutrino)
Neutral current —(e/\3)js ~ (e/\B)js + o)
(electron)
Neutral current (2e/43)j (2e/43)j
(neutrino)

that electroweak interactions (which change particle identi-
ties) will conserve the sum of the Noether currents and,
hence, of the Higgs scalars ¢, giving us four additive “quan-
tum’” numbers which are conserved.

For example, consider the beta decay,

d—u+e+v,.

From Table VI and formula (1.1), the electric current for the
particles u, d, e, v, is given by — (eds) jo, so their electric
charges are equal to 4¢, — le, — ¢, 0, respectively (i.e., the
Higgs scalars give the correct electric charges for the parti-
cles). The additivity of electric charge in all electroweak in-
teractions, follows from the additivity of ¢, (shown in Table
VI).

To obtain the correct charge, it must be true that 4, (e)

= — ¢,(e). We propose that this is true for all particles and
antiparticles, i.e, that the Higgs scalars for the antiparticles
(e.g., antineutrino, etc.) equal the negatives of the particle
Higgs scalars. Then, in the particular example of beta decay,
the additivity of ¢, means that for each a = 0,1,2,3,

bald) = Ba(u) + B.(0) + 4.(7.)

(see Table VI). L )

The additivity of the Higgs scalars ¢,, 4,, and ¢, leads
directly to three familiar conservation laws. Using Table VI,
we derive the following relations:

B= —|} #, = baryon number,

L= ¢,—}é,+ &, = lepton number,

C = — ¢, = electric charge.

Since B, L, and C are linear functions of ¢, they must be
additive also. Thus, the vector model predicts the conserva-
tion of baryon number and lepton number, as well as the

electric charge, under the proposition that the Noether cur-
rents are additive in electroweak interactions.

TABLE V1. Higgs scalars for quarks and leptons. ¢, = ¢, /M.

Quark flavors* b
u,c,t {©, ﬁ: e gr - i)
dsb 0 —% -3
Lepton flavors* 4.
e, i,T (0,0,0,1)
VesVusVr {0,1,0,0)

* Antiparticles: replace ¢, with — ..
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The proof of this proposition will require a more com-
plete Lagrangian than given in (1.8) which will include the
dynamics of the Higgs fields. Such a Lagrangian must be
invariant under gauge transformations for the sum of the
Noether currents to be conserved. Although it is obvious
that such a Lagrangian can be formulated, the dynamics of
the Higgs field needs further investigation. This subject will
be addressed in a forthcoming paper.

The vector model suggests that the Higgs field extends
into the neighborhood of each particle. When two particles
approach each other, their Higgs fields must superimpose,
and then be redistributed. The redistribution of the Higgs
fields causes the identities of the particles to change. How-
ever, the redistribution of the Higgs fields is subject to the
additivity of the Higgs scalars ¢, and hence to the additivity
of the Noether currents.

Note, however, that there is an essential difference
between the vector model and the Weinberg—Salam model.
In the vector model, an electron becomes a neutrino when
the Higgs field ¢, changes. However, in the Weinberg—Sa-
lam model, this is accomplished introducing an additional
neutrino “state.” The vector model is, therefore, more econ-
omical because it does not require a proliferation of *“states”
to describe new particles.?! Instead, the Higgs field ¢,
switches to different mass shells. Methods for switching
“mass shells” are currently being studied, and will be ad-
dressed in a following paper.

The vector model also gives a new interpretation to the
antiparticles. The baryon numbers, lepton numbers, and
electric charges of a particle and its antiparticle sum to zero,
which as we have seen, implies that their Higgs fields sum to
zero. For example, ¢, (¢) = — ¢, (e). Substituting — ¢_ for
¢, in the Dirac equation (1.4), we see that antiparticles propa-
gate forward in time with positive energies, whereas previous-
ly they have been regarded as propagating backward in time.
(In the Weinberg-Salam model, initial and final states are
interchanged for antiparticles. However, this is not required
for the vector model.)

In summary, the vector model for electroweak interac-
tions predicts the Weinberg angle, and also the conservation
of baryon number, lepton number, and electric charge. How-
ever, at present there are some defects. The assignment of
Higgs scalars to quark and lepton flavors do not now reflect
differences in their families. For example, the muon conser-
vation is not yet predicted. Also, the theory so far does not
require the parity violation of weak interactions. Finally, in
the vector model, the Higgs fields are dynamic. Therefore,
we will be able to predict transition probabilities for the weak
interactions as soon as a Higgs field Lagrangian is added to
the Lagrangians for the spin-half particles (1.8) and for the
gauge fields. The formulation of this Lagrangian is currently
being studied.

In the remainder of this paper, we lay the foundation for
the mathematical results used in the presentation of the vec-
tor model. In Sec. II we introduce isotropic Yang—M ills vec-
tor fields and discuss their properties; we present algebraic
identities of the Cartan isomorphism in Sec. III; and we de-
rive the isotropic vector wave equation which is equivalent
to Dirac’s equation for bispinors in Sec. IV.
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iI. ISOTROPIC YANG-MILLS FIEL.DS

Let (E,H) be the real components of a complex three-
dimensional vector field F on R * defined by

F=E+/H.

It is well known that if E and H are regarded as the compo-
nents of an electromagnetic field, then Lorentz transforma-
tions acting on F are represented by complex orthogonal
3 3 matrices.?? Complex orthogonal matrices leave invar-
iant the Euclidean quadratic form:

FF=F:+F:+F:=E*—H*+2EH. (1)

For example, consider the Lorentz transformation that
combines a boost 77 and a rotation 8 about the x axis, given by
the real 4 X 4 matrix

coshn sinhy 0 0

sinhn cosh 7 0 0
0 0 cosd —sind 2.2)
0 0 sinfd cos@

By including boosts and rotations about all three axes, matri-
ces of the form (2.2) generate the Lorentz group. Acting on
complex vectors F = E + /H in C 3, the matrix (2.2) becomes
the 3 X 3 complex orthogonal matrix with determinant 1,

1 0 0
0 cosl@ +iyg) —sin@ +in)|,
0 sin(@ +in) cos(@ + i)

(2.3)

and hence E,H € R ? transform as electromagnetic fields.
From (2.1), E? — H? and E-H are Lorentz scalars.

A complex vector F is called isotropic if F-F vanishes.
We see from (1) that for isotropic vectors F = E + /H, E and
H are orthogonal and have equal lengths, in all reference
frames.

More generally, if F, and F, are any three-dimensional
complex vectors, then the complex orthogonal matrices
leave invariant the Euclidean inner product F,-F,. Thus,
F,-F, is a scalar invariant under Lorentz transformations.

For three such vector fields F,, F,, F; there are seven
Lorentz scalar invariants, namely, F; F, forj, k = 1,2,3, and
also F, X F,'F,. The triplet (F,,F,,F,) will be called isotropic
if it satisfies the Lorentz invariant equations

F;F, =Ad; ,
for complex scalar A.

For isotropic complex vector triplets (F,,F,,F,), we may
define another complex scalar p by the formula,

p = (F,xXFyF;)/1. (2.5)
It is easy from (4) and (5) to show that A = p?. Formula (4)
then becomes

F;F, = p%6, . (2.6)

Theorem: If (F,,F,,F;) is an isotropic complex vector
triplet, then there exists a unique real orthonormal Lorentz
basis

€a) = (€le9€(a) »
with a = 0,1,2,3 such that for k = 1,2,3

—_— o0 0 )
Fi/ p=eg ey — ey €0 —ieg Xey, .

(2.4)

2.7)
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Proof: Set f, = F,/ p, then from (5),
f-f, =6, and f,Xfrf;=1. (2.8)

The complex vector triplets ( f,, f,, f,) satisfying (2.8), com-
prise a single orbit of the Lorentz group [i.e., the isomorphic
group of SO(3,C ) matrices]. Similarly, the real orthonormal
Lorentz bases e, also comprise a single orbit of the Lorentz
group. Since by a straightforward derivation from (2.2) and
(2.3), the map (2.7) commutes with Lorentz transformations,
it suffices to prove that it is one to one.

By an SO(3,C) transformation, any triplet ( f,, f,, f,)
which satisfies (8) can be made to satisfy (£}, = 8,. From
(2.7), since the f, are now real vectors, we see then that ey,
Xey, = 0for k = 1,2,3, which implies e, = 0. Since the e,
are orthonormal, e, = (1,0). Then from (2.7) and (2.8), we
obtain e, = (0, f;). We conclude that the ¢, are uniquely
determined, so the map (2.7) is one to one. Q.E.D.

SL(2,C) matrices®® also act as formal gauge transforma-
tions on the triplet (F,,F,,F,). These formal transformations
do not involve the space-time coordinates; they just permute
the vector fields F,, F,, and F;. For example, as discussed in
Sec. I, the electromagnetic gauge transformations are ele-
ments of SL(2,C) that act as formal “rotations™ about the
three-axis; i.e., they “rotate” F, and F, into each other, and
leave F; unchanged. Also as discussed in Sec. I, the gauge
group SL(2,C) may be extended to SL{2,C )X Ugy(1), where
elements of Uy(1) map F, to F, e for k = 1,2,3 (y denotesa
phase).

Triplets (F,,F,,F;) which transform under Lorentz
transformations and formal SL(2,C ) X Uy(1) gauge transfor-
mations, we will call Yang-Mills triplets. These triplets may
be classified with regard to their seven Lorentz scalar invar-
iants. A Yang-Mills triplet is isotropic if as in (2.4)

F;'F, = Ad,
which is also a gauge-invariant condition.

We conclude from (2.5) and (2.7) that every isotropic
Yang-Mills triplet (F,,F,,F;) uniquely determines a scalar p
and an orthonormal basis from which we define four real
orthogonal currents j, = | p|e,,. The SL{2,C) gauge trans-
formations leave p unchanged and irreducibly act on the
quadruplet (j, j1, /2 Js) as formal “Lorentz” transforma-
tions. The U,(1) gauge transformations change the phase of
p, but leave the currents j, unchanged. Thus, the combined
gauge group SL(2,C )X Uy(1) acts irreducibly on the triplet
(F,,F,,F;), on the singlet (p), and also on the quadruplet
(Jor J1s J2s J3)-

We prove in the next section, using the Cartan map,
that F,, p, and ji,, comprise all possible bilinear invariants
which can be associated with bispinors. Consequently, we
show that the Cartan map gives an isomorphism between
bispinors and isotropic Yang-Mills vector fields.

lll. THE EXTENDED CARTAN MAP

Let§ = [§ ] € C?bea spinor. The conjugate spinor as-
sociated with { is

e=[ By lec
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where the bar denotes complex conjugation. Themap {— & *
is a bijection, since { = — { **.

The Cartan map®* is defined to be a bilinear map b from
C?x C?into C* given by

b Lm) = — (%) 7*,
fora =0,1,2,3, and where 0” = (I,0), o = (0,,0,,0,) are the
Pauli spin matrices acting on C 2, I is the identity matrix, and
£ and 7 are spinors or conjugate spinors. The Cartan map
allows us to construct all the “bilinear” (more precisely qua-
dratic) invariants of a spinor £. Since b °( £, £ ) = 0, the non-
vanishing invariants of { are given by

F=i({, ) j=b(58%),
whereb = (b ',b%b> and b = (b°D).

It was shown?* that FeC * satisfies the isotropic condi-
tion F-F = 0. Moreover F = E + /H transforms under the
Lorentz group action as an electromagnetic field (E,H).
Also, j equals the probability current,

= Z—Uag ’
which is a Lorentz four-vector. The isotropic vector
F = E + /H determines j* = (J°, j) by the formulas

FS=IE|, j=EXHV|E].

We showed that the map {—F gives an isomorphism
between spinors and isotropic vector fields. Now, we extend
this map to Dirac bispinors, mapping bispinors 3 onto the
isotropic Yang—Milis triplets (F,,F,,F;) discussed in Sec. II.

A bispinor ¢ = ( £,7*)eC * consists of a spinor £€C 2 and
a conjugated spinor 7*eC 2. Associated with {ﬁ is the spinor
pair Yy =(§,m) and its conjugate y* = (*, —{*), where
7 = — [p*)*. The maps ¢~ and ¥—y* are bijections,
since 7 =_— n** and ¢ = y**. Because of these bijections,
bispinors ¥, spinor pairs ¢, and conjugate spinor pairs i/* are
all equivalent ways of expressing a Dirac bispinor. However,
whereas SL(2,C) gauge transformations may be defined for
spinor pairs (£,77), and also for the conjugate spinor pairs
(p*, — & *), they are not defined as complex matrices acting
on bispinors. We will show in Sec. IV that Dirac’s equation
has SL(2,C) gauge symmetry by writing it as an equation for
spinor pairs, instead of bispinors (using the bijective map
y—4 from bispinors to spinor pairs.) [Note that for the
spinor pair ¢, the electromagnetic gauge generator (via the
map 17;—»1//) becomes 7. Hence, in the vector model, electro-
magnetic gauge transformations become the formal “rota-
tions” about the three-axis.]

The extended Cartan map defined below commutes
with both Lorentz and SL(2,C) gauge transformations. In
order to view the gauge symmetry of the extended Cartan
map, it is preferable to express it using spinor pairs, instead
of using the equivalent bispinors.

Definition: The extended Cartan map is defined to be a
bilinear map from C*X C*into C*® C* given by

B y)=(0"Y) (15 X*), (3.1)
for a, £=0,1,2,3, and where o° =(l,0), 75 = (I, — 7),
o =(0,,0,,0,) are Pauli spin matrices acting on C*,
T = (r',7,7°) are the gauge matrices acting on C*, and ¢,y
are either spinor pairs or conjugate spinor pairs. Note that
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whereas the Pauli matrices ¢ = (0,,0,,0,) generate the
space rotation group, the gauge matrices t = (7 1,7 %,7 3) are
the three generators for the gauge subgroup SU(2), which
JSormally “rotate” the spinor pair. Moreover, ¢ and T com-
mute. We will adhere to the following notation:

o=, —0)=0, T=(I-1=7,,

0, =(Lo)=07 T1,=(L7)=1".
A complete set of bilinear combinations of the components
of the bispinor ¢ can be obtained from Bg( ¢, ¢) and Bg
( ¥, ¥*). Since,

B¢ ¥)=B5(¥,¥)=0,

for k = 1,2,3, the only bilinear (quadratic) invariants of ¥
which do not vanish are (see Table II in Sec. I)

p=iB3(¥), F =B (¥ ¥), js=Bs(¢v*),
(3.2)

wherek= 1,2,3, =0,1,2,3,B; =(B,B%.,B%), and
B; = (B%,Bg). Note that whereas p and F,, are complex, the
J p are real.

It will be useful to write the four currents ; explicitly in
terms of the spinor components of ¢ = ( £,7*):

Js = §o°C + fjoy, i = — Lo —10°¢,
(3.3)

E=ilgo"n—no°C), 5= — {o°C + fo.
Asin Sec. II, one can show that j; with 8 = 0,1,2,3 are a real
orthogonal Lorentz basis for R 4, with scalar lengths equal to
| p|, and with both p and the j; determined by the F,.. One
may show that the map y¥—(F,,F,,F;) is an isomorphism
from bispinors onto isotropic Yang—Mills triplets as a conse-
quence of the following three lemmas.

Lemma 1: As defined by formulas (3.2), we have the
following.

(a) p'is both a Lorentz and an SL(2,C) gauge scalar.

{b) The F, transform as a Yang-Mills triplet for Lor-
entz and SL{2,C) gauge transformations.

(c) The j ; transform as Lorentz four-vectors and as an
SL(2,C) gauge quadruplet.
As with the SL(2,C) gauge transformations, chiral transfor-
mations commute with the Cartan map.

Lemma 2: For chiral gauge transformations, we have
the following.

(a) p undergoes a change of phase.

(b) F,,F,,F; undergo a change of phase.

(c)jmjvjz’js do not Change‘

Lemma3:Lety = (£,m)and ¢’ = (¢ ',n7') be two pairs of
spinors (or conjugate spinors). Then the following identities
are true.

() Boh)BW¥) = — iB,h¥)Bi(4¥),

with (jjk ) taken in cyclic order, where i, j,k = 1,2,3 are the
subscripts.

(b) Bo(voy.y)=vB, ().
(¢) B, (vov,y) =vBL (W) + ivX B (¢) .

@ B3 ¥)= 3 o).
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(e) Bi(v-ry, ¢) =v,B5(Y) + ieuv; BEWY),
where veR 3, a@ = 0, 1,2,3 and the subscripts i, j,k = 1,2,3.

) B3, ¥)=Bo¥),
By ¥, ¥) = — By, ¥'),
B, ¥)= —Bil ),
B¢, 4) =B, ¥),
for k = 1,2,3 (i.e., the bilinear maps, B and B, are
symmetric, whereas B, and B} are antisymmetric).
Theorem: The extended Cartan map ¥—(F,,F,,F;)
from bispinsors onto isotropic Yang-Mills triplets is a Jocal-
ly one to one (coordinate) map from C* onto the four-(com-
plex) dimensional manifold:

M= {(F,F,,F;) e C9|Fj'Fk = Aby;
k=123 AeC}.

The only identifications are ¢ with — . The coordinate
map commutes with both Lorentz and SL(2,C)XU(l),
gauge transformations.

IV. THE DIRAC EQUATION

Dirac’s equation is usually stated as an equation for
bispinors ¥ = ( £,7*). However, the symmetry properties of
Dirac’s equation are more obvious when it is written as an
equation for the spinor pair ¥ = ( {,7) obtained via the bijec-
tive map 1, which sends ( £,7*)—( &,7).

The Dirac equation for bispinors is given by

(P°—Pwo) L =mny*, (P°+Pop*=m¢, (4.1)
where ¥ = ( £,77*) is a bispinor field, P* = (P°,P) = ihV* +

potentials, 4 is Planck’s constant, and m is the mass.
By conjugation, we get

(P°—Pwo) L =my*, (P°—Polp=ms*, (4.2)
and also the conjugate equations
(P°+Po)l*=mn, (P°+Po)n*=m. (4.3)

Let us consider the spinor pair ¢ = ( £,7) and also the
conjugate spinor pair ¢* = (7*, — § *). Equations (4.2) and
(4.3) can be written as

Poo,y= — $°T. Y%, PO, Y*=4T. ¢, (44)
where ¢ © = (0,0,0, — m}) is the real quadruplet of Higgs sca-
lars, o = (I,0) are Paulih matrices, 0° = (I, — o), 7 = (1,7)
are gauge matrices, and 7° = (I, — 7).

It is evident that Egs. (4.4) are invariant under Lorentz
transformations provided that ¢, for eacha = 0,1,2,3 trans-
forms as a Lorentz scalar. Moreover, it is straightforward to
show that Eqs. (4.4) are invariant under SL(2,C ) gauge trans-
formations provided that ¢, transforms as a (real) SL(2,C)
gauge quadruplet.

Using the fact that o and 7* commute, we can derive
the Klein~Gordon equation, which in the case of free parti-
cles is given by

PP y=—(8°.)¢.

Therefore, the mass is given by

M= - ¢ a¢a .
Lemma 4. The Dirac equation,
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Po, = — $°7, ¢*
with

3
P, =ikV, +e V2 +e S Vir,,
k=1

may be derived by applying the Euler-Lagrange equations to
the Lagrangian

L =Re{(P°, ¥) (8 Prs ) + M pg*}/M .
Moreover, we have the following.

(a) The Lagrangian L is an invariant scalar under both
Lorentz and SL(2,C) gauge transformations.

(b) The conserved Noether currents derived from L [one
for each generator of SL(2,C)] are given by

Jk = ¢0jk - ¢kj0 - iekmn ¢m jn ’
with k = 1,2,3.

(c) The kinetic part of the Lagrangian L is an invariant
scalar under neutral (chiral) gauge transformations.

(d) The neutral (chiral) current is given by

K= ¢%,,
which corresponds to the single generator of Ug(1).
(e) The interaction part of the Lagrangian L is given by

— ﬁ 0 a __e; 2 k ya
L, 7 VOK*+ MRe k§=:1 viJe, 4.5)
where e, and e are the neutral and electric charges, respec-
tively, and the ¥ £ are the Yang-Mills (complex) potentials.

(fy With the conventional choice of Higgs fields ¢,

= (0,0,0,m), the Lagrangian L reduces to the usual Lagran-
gian for Dirac’s equation (4.1).

Note that in formula (4.5), both K and V° are real. How-
ever, both J, and V' * are complex for k = 1,2,3, which is a
consequence of the gauge group SL(2,C ). Note also that (5) is
equivalent to

e e 3
L=20y°k=1 2 ¥ [ReVE)ReJE
1= ng,( N %)

2 > k a
v kgl (Im V) ImJE). (4.6)
Formula (4.6) shows clearly that the interaction is complete-
ly described by the seven real currents Re J,, Im J,, and K
and the seven real potentials Re V¥, Im V*, and ¥° corre-
sponding to the seven generators of SL(2,C )X Ug(1).
In the remainder of this section, we will derive the vec-
tor equivalent of the Dirac equation.
Application of the extended Cartan map B, to the first
equation of (4.4) gives, using Lemma 3(e),

B,(,P,0"¢) = —B,(¢, ¢, 7°¢*)= —J,.

Similarly, the left-hand side of (7) becomes, using Lemma 3,
parts (c) and (a), '

B,(¥,P,0°¥) = —iD,S°F, + BY ¢,Py)
= —iD,S°F, — (i/ p)F;’B,( ¥,Py)
= —iD,S°F, + (DF,)'F,/p
= —iD,S°F, — (DF,}F,/p,

4.7)

(4.8)
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where §¢=(I,S) are the Proca spin-one matrices, D“
=i(h /2)V* + potentials, D = (D,,D,,D,), and the (ij k)
subscripts are taken in cyclic order. Note that the Cartan
map B, (¢, y) for k = 1,2,3 is symmetric in the variables ¢
and y, and in commuting P¢ into D %, Planck’s constant %
becomes i /2. Thus, we have proved the following theorem.
Theorem: Via the Cartan map, Dirac’s equation for bi-
spinors is equivalent to

iD,S°F; + (DF))F,./p=1J;,
where the subscripts (ijk ) are taken in cyclic order.
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We show that the product of local current operators in quantum chromodynamics (QCD), when
expanded in terms of condensates, such as ¢, G, G ., I Y9Iy, f,,.G,G 2, G ¢, , etc., yields
a series in Planck’s constant. This, however, provides no hint that the higher terms in such an

expansion may be less significant.

I. INTRODUCTION

The ground state of QCD has fermions and gauge boson
condensates such as Jn/}, G, G,,, etc. These condensate
operators appear in the operator product expansion’ (OPE)
of the products of local currents such as ¥ *(x)y,, ¥, (x) (where
a is the color index) in addition to the usual perturbative
effects? due to the presence of the colored gauge field interac-
tions. We present a systematic procedure to be useful in car-
rying out the above expansion in the momentum space.’
Alongside, a set of suitable approximation rules is aiso pre-
sented.

It has been found useful, for numerous reasons, to ana-
lyze the OPE of the products of local current operators.* For
one, it is possible to estimate the magnitude of the conden-
sates (Y, G:, G5,,..) from such an expansion.® Since this
expansion series has an infinite number of terms, its analysis
poses some difficulties especially because the expansion pa-
rameter cannot be regarded as small. It is therefore difficult
to argue that it is meaningful to terminate such an expansion
after the first few terms. We show that the expansion in con-
densates is a series in Planck’s constant #. Since Planck’s
constant has dimension, this provides no clue whether the
higher-dimensional condensates are less significant. How-
ever, such expansions in # frequently have been carried out
in the calculations of effective action where it has been pre-
sumed to make sense.®
1l. CONDENSATE EXPANSION FOR QCD

The fermion part of the QCD Lagrangian in the pres-
ence of a background color gauge field is

Le =9liB — mly, (1)
where B, includes a background field 4, as
D®=3,6%—i(g/2)-A® A5, 2

and ¢ is a column matrix. The background field 4,, corre-
sponds to the presence of gluon condensates. Therefore, the
fermion propagator satisfies

(7, (9,60 — (i8/24 5,4 ) — m]Selx, x') = 5(er’)3-
It is convenient to specialize to coordinate gau(ge)
[x.4 %x) = 0] and write’

* Permanent address: Department of Physics, McGill University, Mon-
treal, Quebec, Canada H3A 2T8.
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AL(x)= — 4[GL,(Ox" +---]. (4)
We go to momentum space by writing
’ d4k — ik {(x, x'
Sl x)= | oo ISelk) (5)

Substituting (4) and (5) in Eq. (3) and solving for Sp(k ) we get
(restoring # explicitly)

SEk) = (1/k*) [ k5™ + (igh/4kA 2y, GZ7 .S k)], (6)

where d. is a derivative with respect to the momentum vari-
able k. Since the second term on the right-hand side has an
explicit factor of #, it is possible to make successive intera-
tions to arrive at a series in Planck’s constant. Let us make
the lowest approximation and write

SQ=5,,k/k> (7)
Therefore,
k G igﬁ k a oT k
SPk) = 60+ B Gy 6o a,(;;). (8)

We are interested in evaluating the polarization tensor 17,,,
defined as

o, =i J d*x 470|117, (x\,(0)[0), 9)
where, for simplicity we chose

(%) = Px)y,, v (x), (10)

and a is the color index.

The procedure we outline will go through the other
types of currents as well as can be checked by an explicit
calculation. It is straightforward to check that the propaga-
tors for gluons can also be written as an expansion in
Planck’s constant in the presence of a background gluonic
field.

Since QCD also has a fermionic condensate (chiral sym-
metry breaking), it is necessary to expand the fermionic field
by writing

VO(x) = ¢ °(x) + £ “(x), (1)

where ¢ °(x) is regarded as originating from the fermion con-
densate, and f %(x) as the fluctuations. Substituting Eq. (11)
in (9) we get
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(¢
—i f d*x 80| TF “(x)y, £ (xIF *(O).f+(0)[0)

+i f d*x e™*
X (0| TF “(x)y,. 8. (x)6 * (O)y,. £ +(0)|0)
+i f d*x &7/

X (0| T4 “(x}y,.f o (xIf * (O}, 4, (0)|0)

=l +I2 +1, (12)
where the superscripts in /7 simply represent the three terms
appearing in the preceding expression. The other terms in
the expansion can be shown not to contribute in the limit of
large g° (short distance). The first term in this expansion can
be easily evaluated by carrying out a Wick expansion of the
time-ordered product. Thus,

)= — ijd‘x ¢44(0| TF “(x]f , (0/0)

X ¥, {01, (0)f4(x)[0), - (13)
Since
(O|TF (»¥(¥)|0) = H/DS(¥' — y), (14)
we get, by substituting (8) and (14) in (13), an expansion in
Planck’s constant. The first term (independent of the gluon
condensate) is

m,=- (15)

2
% (9.9 — 98] + -+
where we have disregarded the log-divergent term because it
does not depend on ¢°. Such a term, when differentiated with
respect to g° (as would have happened if we wished to deal
with the Borel-transformed series), drops out. In the above
calculations, we have also neglected the masses of the
quarks. Otherwise, corrections dependent on the quark
masses would appear.

When S (k) from Eq. (8) is substituted in (13), terms
depending on the gluon condensate also appear. The first
nonzero contribution is given by (we have carried out the d “x
and one of the momentum integrations)

f 2 [ %7""1 w0 k

(4+k) 4+t oreyké
U rata( L5 )lrerer. oo

It is tedious but straightforward to evaluate the above object
and get

XYu

Ing

m, = - yyr= (9.9, — 4,,9°)
& 6,60 (g,q, — g+ . (17)
4817’2 4 q[l v qpvq *

To evaluate the higher-order terms in gluon condensates it is
required to expand the propagator by using the iterative
equation (6) by writing
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SPlk) = /i + B2E £ Joy,6oma,.50k)

k 2
(18)
It can be checked easily, that the f,,. G 535G 35 G 5, conden-
sate term goes with a factor of # and the quartic gluon con-
densate goes with #.

Next, we need to expand the expression for 4§ (x) in
terms of G, (x) in the coordinate gauge around G 4(0).
When equations of motion are used for the G,4’s we obtain a
series of expansions in # for /7,

Since /7, and /1,,,° yield identical results, it is suffi-
cient to consider only one of them:

m2 = ifd“x Cauts
X (O1TF *(x1y, 60 (218 * O +(0)/0)
- i f d*x €#7(0| TF *(x)f ,(0)|0)

X7, $ °(0a X}y, - (19)

For (0|Zf “(x)f,(0)|0), we use Eq. (8) and (14) and expand
¢.(x) around x = 0:

Palx) = @,(0) + x°F, ¢ + . (20)

It is necessary to retain the second term and integrate
over x if the conserved (¢,.q, — q,.. ¢°) structure is to emerge.
The first term is easy to evaluate. Note the ¢ *(0)8,(0) is
normalized as

¢ *(0)8,(0) = NS, (21)
where N = 4, to take account of three degrees of color and
four of spin.

For the second term, x* may be brought out of the inte-
gral by writing it as a derivative with respect to ¢. Inside the
integral, the term ¢ %3, ¢, may be reduced as

abaa¢a =i$bTr[Ya7ﬂ]y¢a‘ (22)
Using the equations of motion and normalization (21), we get
ag + M0y = [2m#dé)/q44.9, — 9.9  (23)

We observe the explicit appearance of # in the numerator.

We can now proceed to include the gluon condensate-
dependent term in the propagator and generate higher-di-
mensional condensates such as ¢o,,,4 °$G**, which goes
like #7.

So far, we have not dealt with the perturbative expan-
sion. The perturbative series is obtained in the usual manner
by noting that

i f d*x €440 TJ, (xM, (0)|0}stcsenterg
—i f d*x et

X (0| TJ,, (xM,, (0} ™5 * |0}, ernction- (24)

Note that Ly, in our case is arrived at by shifting the gluon
field B — Ay + b, and the fermion field ¢, — ¢, + /.
In the unshifted Lagrangian, b; and f, are the gluonic and
fermionic fluctuations, respectively.
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We have presented a systematic way of evaluating the
condensate terms in momentum space in the operator pro-
duct expansion of local current operators. We note that such
an expansion corresponds to a series in Planck’s constant.
Such expansions in Planck’s constant have been used exten-
sively in computations of effective actions.
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Scaling properties of total energy of heavy positive ions in d-dimensions
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Using density functional theory in the asymptotic limit of very heavy positive ions, it is
demonstrated that the well-known scaling property of the total energy E,(Z, N) of an ion with N
electrons and atomic number Z is a special case of the d-dimensional result

E (Z,N)=ZW+4-aVdb=dif (N /Z):d #4.

I. INTRODUCTION

Interactions between charges in dimensions d other
than three have been of interest over a long period. Thus
Lenard’ studied a one-dimensional charged gas with linear
r; interaction between charges i and j, while Dyson® was
concerned with the two-dimensional logarithmic interac-
tion. Much later, Parrinello and March?® studied the thermo-
dynamics of electron crystallization in d-dimensions.

Recently Pucci and March® have pointed to the interest
in relations between total energy E and chemical potential x
in apparently complex molecular systems such as the linear
polyacenes. Notwithstanding such apparent complexity,
they have demonstrated from approximate theories that E /
Ny tends to a value near to  as the number of rings tend to
infinity, a result they conjecture to be dominated by the
d = 2 dimensionality. The potential importance of dimen-
sionality in bound-state formation in molecules has also been
explored to some extent.>® In Ref. 5, the importance of Har-
tree self-consistency was emphasized. Since, however, even
in the asymptotic limit of large numbers of electrons N to
which the present paper is directed, the treatment of molecu-
lar systems by analytical, as opposed to numerical, methods
remains difficult, we have been motivated by the above con-
siderations to first consider the role of dimensionality in the
Hartree self-consistent field theory of heavy positive atomic
ions.

Il. CHARACTERISTIC LENGTHS IN ELECTRON
DISTRIBUTION IN &~DIMENSIONS

As is well known, the length scale of a heavy atom’
varies proportional to Z ~ '/, This is derived from the Thom-
as-Fermi theory, which is known to yield asymptotically
correct properties in three dimensions® in the limit of large
numbers of electrons N.

Therefore, to establish the length scale in d-dimensions,
we turn to the work of Kventsel and Katriel® on the d-dimen-
sional Thomas—Fermi equation. Writing the maximum local
momentum p,(r) through the relation

PAN/2m = p + e® (r)=eV (r), 2.1)
these workers obtain the differential equation obeyed by ¥,
which differs from the electrostatic potential ¢ only through

a constant
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FPY  (d—1) o B
= - = 14 /2,
P T o Pa

(2.2)
8, — 8me(\2rme/h )’
‘T rdn+y

Taking the Thomas-Fermi density p(r), with the
boundary condition that as »—0,

¥ (r)>[dnZe/(d — 2)2,17 ¢, d>3, (2.3)
with 2, = dn?/?/I"(d /2 + 1), for a point charge of magni-
tude Ze, Kventsel and Katriel® point out that the normaliza-
tion integral f p(r)dr diverges for d»4, for such singular po-
tentials as given by Eq. (2.3). We assume below that such
divergence can be “cured” by introducing finite nuclei,
which, because of the totally different length scales of nuclei
and atoms, could not significantly influence the length scal-
ing of interest to us here.

Thus, we shall write first

V(r) = [4Zemr* — 7 /(d — 202, 1y 4(7)
=D, y,(n"*~*, (2.4)

where y,(r) tends to unity as r tends to zero from the bound-
ary condition (2.3). The differential equation for y,(7) is
readily shown to take the form

r’éx. W4
3—-d
PR »
=Bd-D @s2 — ”de/z" (4—d)d/2' (2.5)

As the final step in establishing the length scale of the 4-
dimensional electron cloud, we write

r=b,x. (2.6

Then the choice of b, as proportional to Z? — V44 —4) re.
moves the Z dependence completely from the differential
equation for y,. This establishes the length scale therefore,
as desired, and yields of course, the usual three-dimensional
result by « Z ~1/3,

lil. CHEMICAL POTENTIAL AND TOTAL ENERGY
SCALING

As in three dimensions, d-dimensional heavy positive
ions have a finite semiclassical radius, say r,. Outside 7,
therefore, the ion has an electrostatic potential which is the
same as though the charge at the origin were (Z — N e. Since
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plra) =0, by definition of the semiclassical radius, and
p«p,® from the usual phase-space arguments, it follows
that ps(r;) = 0. Thus, from Eq. (2.1) we have

p=—ed(r]) (3.1)
and hence, from the point charge form (2.3)
p=[—4mZ—N)/d—22,](r,) "% d>3. (3.2)

This immediately leads to the desired scaling property of the
chemical potential as
p=Z(b,) “F,N/Z) (3.3)

using the boundary condition dependent only on N /Z as
givenin Ref. 9. Substituting the result below Eq. (2.6) for the
Z dependence of b, yields

p=ZY4- D (N /Z), (3.4)

Of course, afull theory of h, (N /Z )in Eq. (3.4) will eventually
require solution by numerical methods of the usually nonlin-
ear equation (2.5).

The final step to arrive at the scaling of the total energy
E,(Z, N) of the d-dimensional positive ion can be made in
the asymptotic limit under consideration here by using the
thermodynamic relation'®

=(5_E)
k N /Z

which yields to leading order
E, Z N)=2ZW+4d-dVvds—dif (N /Z), d>4. (3.6)

(3:5)
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Equation (3.6) is the main result of this paper. The substitu-
tion of d = 3 reduces Egs. (3.4) and (3.6) to well-established
results in the self-consistent field theory of heavy positive
ions.!® The case d = 4 is anomalous,’’ as the virial theorem®
gives immediately that E(Z, N)=0.

Consideration is presently being given to the possible
generalization of these scaling properties to some multi-
center problems of current interest in molecular physics.
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In this paper we calculate exactly the lineshape for a model of an excited two-level atom in
interaction with a continuous spectrum of radiation for the problem of spontaneous emission.
Specifically, for the case of a d = 1 radiation field, we use the exact results reported in our earlier
work [J. Math. Phys. 14, 414, 423 (1973)] for the probability p(r) of the atom’s being in the excited
state at time 7 to obtain an analytic expression for the lineshape of the emitted radiation (i.¢., the
photon). We also calculate the lineshape using two Wigner—Weisskopf style approximations and
the results, for a given choice of coupling function, are compared numerically with the profile
generated using the exact solution. These comparisons show convincingly the success with which
these two approximations can be expected to reproduce the qualitative and quantitative features
of the exact lineshape for values of the coupling constant & ranging between 0.01 and 0.3. Finally,
we calculate explicitly the scattering operator corresponding to the above spontaneous emission
problem and work out exactly the probability of forward and backward scattering of a photon by

the atom at and away from resonance.

1. INTRODUCTION

The model to be discussed in this paper is that of an
excited two-level quantum system interacting with a radi-
ation field. The two-level system will usually be thought of as
an atom with two accessible electronic states between which
a transition occurs with emission or absorption of radiation.
However, the “atom” could just as well be a molecule or a
spin and the radiation field could be a set of closely spaced
molecular states, a phonon field or any of a variety of things,
provided the dimensionality 4 of the field, the electromag-
netic multipolarity of the atomic/molecular transitions, the
spin, and parity are properly taken into account.

In a series of papers by the authors {Refs. 1-10, hereaf-
ter referred to as I-X), we have worked out the exact dynam-
ics of an excited two- or three-level atomic system in interac-
tion with a d =1 field of electromagnetic radiation, as
governed by a certain Hamiltonian (see text below). Specifi-
cally, in IV and V we studied the spontaneous emission of a
two-level atom and in VII and VIII the induced emission;
the further contributions IX and X dealt with the exact dy-
namics of three-level quantum systems. In these papers, only
the time evolution of the atomic state (or states) was consid-
ered. For the purposes of seeing what experimental conse-
quences there might be of our theoretical studies, it is more
sensible to consider the lineshape of the emitted radiation
and to include in the model a more realistic {three-dimen-
sional} geometry. Both of these tasks require no further de-
velopment of analytic techniques (as was the case in I-X),
but do require a fair amount of manipulation of existing ex-
pressions and calculation {Sec. II}. In this contribution we
focus on the first of the above problems, and calculate the
lineshape for the problem of spontaneous emission (Sec.
I1I A), as determined from the exact solution to the underly-
ing quantum-statistical problem, presented in IV-V. Thenin
Sec. III B we introduce two Wigner—-Weisskopf style ap-
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proximations and calculate the lineshape corresponding to
these two approximations. The results obtained and their
characteristic features are compared numerically in Sec. VI
for a specific choice of form factor {(which specifies the inter-
action between the atom and the radiation field) and for var-
ious choices of the coupling constant a. Finally, we consider
in detail the scattering of radiation by the two-level atom and
work out exactly the probability of forward and backward
scattering of a photon at and away from resonance.

We now specify the Hamiltonian for the model under
study in this paper. It should be said at the outset that the
restriction to a one-dimensional radiation field (which has
been made throughout the series I-X] is not essential: It is
made chiefly for ease of presentation and for simplicity of the
numerical computations. Provided one counts modes prop-
erly, all the formal results go through exactly as for d = 1.
The Hamiltonian is then

H=¢oa*+ea*a+y [_;- hw,(ata; + 1)]
A

+ ; (h*a*a, + h,aa?),

where €, and ¢, are the energies of the ground state |1) and
excited state |2) of the two-level atom, and where the opera-
tors are defined by

a={1){2|, a*=2){1],
(nilazlmy) = [2(n, + 1)]V28%m, —n, — 1)

= (mylat|n.) .
Here the state |1, ) is that which has n,; { = 0,1,2,...} photons
in the A th mode of the radiation field, and & *(--) is the
Kronecker delta. Further, fiw, is the energy of a photon in
the A th mode, fif = €, — ¢, is the energy separating the two
levels of the atom, and the /4, give the coupling between the
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atom and the radiation field. A basis for the Hilbert space of
the system is given by the product states

|5:na })=1i) 1:1[ 2}

withi=1,2andn;, =0,1,2,....

An important property of this Hamiltonian is that in
the above basis it becomes block diagonal. The blocks or
“sectors” of the Hamiltonian are the eigenspaces of the oper-
ator

1
N=a*a+—>Na*a, — 1,
2; AYA

which commutes with H. The eigenvalue of N associated
with the state |;;{n, }) is (/ — 1) + 2, n;, and so N measures
the number of photons present when the atom is deexcited
(i = 1). Papers I-VI dealt exclusively with the sector where
N =1, while in VII and VIII, a solution for N = 2 was ob-
tained for a finite and an infinite system, respectively. We
remark in passing that the operator N was defined in VII
simply as

N=a*a+i2a§‘{ai.
27

In this paper we consider only the N =1 sector, the
sector appropriate for the discussion of spontaneous emis-
sion or the scattering of a photon off the deexcited two-level
system. It is necessary to work with a continuous spectrum
of radiation modes (i.e., an infinitely sized cavity) in order for
either of these problems to be well defined, on account of the
quasiperiodic behavior (Poincaré recurrences) of a system
with a discrete set of modes. It is most convenient to define
the Hilbert space of the N = 1 sector specifically to take ac-
count of this; in other words, to define a space of functions of
the mode parameter A, rather than a space of sequences in-
dexed by A. This will be the first step in the calculation of the
spontaneous emission lineshape, to which we now proceed.

Il. FORMULATION

The Hilbert space 7 for the problem is defined as fol-
lows. Consider the triple (¢, c,, ¢}, where ¢, is a complex
number, and ¢, and ¢, each map the non-negative real line
into the complex numbers. Then c=(c,, ¢,, c,) belongs to #°
if its norm ||c|| exists and is finite. The norm is defined by

el = leo?+ [~ dao{ e, (@) + el

The inner product of ¢! and ¢?, say, is given by
=2 + [ dofSekllo) + Eleidio)]
0

where bars denote complex conjugates. The interpretation of
c is that ¢ is the probability amplitude for a state in which a
two-level atom is excited in the absence of any excitation of a
one-dimensional radiation field; ¢, (@) is a wave function for a
state in which the atom is deexcited and a photon is moving
from left to right with probability |c, (w)|? dw that the photon
energy belongs to the interval [w,0 + dw]; ¢,(w) is defined
similarly for a photon moving in the other direction, from
right to left.

557 J. Math. Phys., Vol. 26, No. 3, March 1985

Let H denote the Hamiltonian which governs the evolu-
tion of the system described by our Hilbert space. Then if for
some ¢, ges¥°, Hg = ¢, we have

co=HE g0+ (L) [ dolh(ole.to) + Ffolgi] |

(1a)
¢, (@) = wg, (@) + Via/mAER, (@)g, ; (1b)
¢ilw) = wgi(®) + Jla/mAER, (0)g, . (1c)

Here a is a dimensionless coupling constant, being a one-
dimensional analog of the fine-structure constant of ordi-
nary quantum electrodynamics, #E is the energy difference
between the two levels of the atom, and the functions 4, and
h; determine the frequency (or energy) dependence of the
interaction between the atom and the radiation field.

If the system is in state c(0) at time ¢ = 0, then at later
times ¢ the state is given by

cft) = exp[ — iHt /#1c(0),

or more conveniently in resolvent form

c(t)=ﬁfgdze_"“(—g-— )_'c(O). @)

Here ¢ is a Bromwich contour above and parallel to the real
axis of z,and (H /# — z)~ ' is the resolvent of H /#, defined for
all nonreal z (at least), since the spectrum of the self-adjoint
operator H is purely real.

It is useful to scale the time by the coupling constant a
(this is necessary if any ‘“weak-coupling” approximations are
to be well defined) and simultaneously make all variables
dimensionless. Accordingly, we make the definition
7 = aEt, and we transform the Hilbert space 7, so that to
any ce” there corresponds a new element ¢ of a space 7,
where

Co=¢o, & d)=VAEc,(REA).
Note that

el = ell? = 2ol + [~ a2 [1e, )7 + )]
and in fact the full Hilbert space structure is preserved by
this transformation. We also define

hoi4) = ERE b, (RER) .
Now, from Eq. (2), if (7)e#° corresponds under the Hilbert
space transformation to c(f }e#°, we have

1 e H -1

¢ = — d - '57(—- — ) ¢(0) . 3

tr) = [ age-e(E _ ) a0) ®)
Let

(H /ahE — £)7'80) =g, .
Then,

(H /ahE — £)g, = ¢(0),
and so, from Eqgs. (1),

[&0)]o = (1/a — £)(ge)o

()7 [ thire)a)
+ kA g hid)]
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and
[20)],,4) = /a — £)g;)ih)
+(1/ma) h, (4 )(ge)o -

These equations can be solved for g, to yield

_ 1 . _ ﬁ 172 oo
(gg)o—ﬁg) [[c(ono (£) f di
[h (2)1&0)], (/1)+h,m>[c(on,(/l)]]
A—af
8e)s ) = [1/14 — a€ )] {alc(0)],,(2)
—la/mh, /(A )igelo} - (4)
Here the function H is defined by
_t h(A)
e)=r—e-2 [T tlL, 5

in which we deﬁne
hiA)=301AA)F + BA)P] - (6)

In order that g, and H (€ ) be well defined we must im-
pose the following regularity condition on the functions h,,

f da et |hrl(/{)|2 v (7)

and |h, AP is bounded for all non-negative A. The condi-
tion implies essentially that h, JA)/(A — &)is, forall £ not on
the positive real line, a function with bounded Hilbert-space
norm.

In addition, in order that the dynamics of the system be
“ergodic” in the sense defined in our earlier study, we im-
pose the constraint that & (4 }—0 as A—0 sufficiently fast that

J‘ “dAh(A)

o A

exists ,

and further that
(7/2)
SedihA)/A
These conditions ensure that & (€ ) has no zeros for £ off the
positive real line.

We wish to use Egs. (3) and (4) to derive the infinite-time
limit of the solution é&(7). This limit tells us to what asympto-
tic state the system will relax if it starts at 7 = 0 in state ¢(0).
In particular if [¢(0)], = 1 and [&(0)],,(4 ) = O, the asympto-
tic state describes the lineshape for spontaneous emission. It
turns out that

lim &(7)
does not exist but that

lim e#7*[8(7)],,,(4)

is well deﬁned for all non-negative A. This is all that is needed
physically since it is the limit of |[&(}],,(4 )|*> which is of
interest. Alternatively, we can view e*7/?[&(1)],,(4 ) as the
wave function in the interaction picture. For present pur-
poses it will be useful to retain the slightly clumsier Schro-
dinger picture.

First we note that

lim [¢(r)]o=0.
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To see this and to facilitate future calculations we introduce
some definitions:

—iér
fl(T)—%J 5/\ , ~ ®)
A (@i h(A)[a(on,(,i)+iz,(/1)[é(0)],(i)
Ge)=(2 ) f al 7 af ’
fin = - | e EGE). o)
217'1 H(§)

Here, G €)is well defined by condition (7). Observe that f;
does not depend on the initial condition c(0), but that G and
/> do. The structure of the definitions f; and f, as Laplace
transforms permits the following inversion equations:

iET.
H(§) f dr e*’fi(7);
G _ f dr ¥ fr) . (10)
HE)

Then from Egs. (3) and (4) it is easy to see that
Y —_ 1 — &7
letrlo=1 [ dg e
= [&0)]o filr) + V(2/7) foA7) .

Our result follows if we can show that f,(7) and f,(7) tend to
zero as 7— oo It is sufficient to check this for £;; the calcula-
tion for £, is similar. From Eq. (5) it is clear that H is analytic
and nonzero except for a cut along the positive real axis. The
contour ¢ in the definition (8} of /i can therefore be de-
formed by Jordan’s lemma [note that IH (&)~ '>0asé—> o,
arg £ #0]toa contour 4% , say, surrounding the positive Teal
axis (see Fig. 1). If H * (£ ) denotes the limiting values of H as
its argument tends to real £ through values with positive/
negative imaginary part, then we can conclude that

1 |
fl(T)—— dfe "
f [ +(§) H- (é’)]
Now since
ﬁt(§)=i_§_l d'lh('{):FZh(aé')
a T o A—af

(11)

(here Z denotes the Cauchy principal part), it can be seen
that [I/H + _1/H" ] is bounded on the positive real line.
Further, since plainly we require that £1(0) = 1, the integral

Im¢

Re ¢

FIG. 1. The contour &%
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J‘ d§ [A l N 1 ]
° H*¢) H™E)
exists, and so the Riemann—Lebesgue lemma ensures that
lim fi(r) =0
Again from Eqgs. (3) and (4) we find that
[&(n],,(A) = e 272[2(0)],,(2)

(12)

Now since

L[ deem*tgo= 120Nositr + (2) it

and
— i&r
1 d e =ie

wite © A— at «a
by the convolution property of Laplace transforms we obtain

that
_LJ' d e_igf(gg]o
2mri A—aé

=_J—’d7" —(r—7Va

X [ [0 filr) +V2/m) folr)] -
From this result and Eq. (12) we can see that

— At/
s

lim e*7=[(r)],,(A)
= [2(0)],,(4) — (i/NTa)h,,(A)
x j " ar el [E0l1o i) + (%)'”m} (13)

= [E0),.4)
SN SO G AL V) I
‘/'7;&‘ HYA /a) T H*A /a)

by Egs. (10). The limits H* and G * are needed for the real
argument A /a since the definitions (8) and (9) use an integra-
tion contour % in the upper half-plane of &.

1ll. CALCULATION OF THE LINESHAPE
A. The exact resuit

We now specialize the results presented in the preced-
ing section to obtain the lineshape of a photon emitted spon-
taneously by the two-level atom. Since the initial state ¢(0)
obeys [¢(0)], = 1, [€(0})],,(4 ) = O, we see at once that

GE)=fin=0
and so
c:f,(/l J=lim &4 "[2‘(1’)],,,(/1 )

= —h,AWra H+(A/a).

The probability density for the dimensionless energy A of the
emitted photon (the lineshape) is thus
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h (A2
e = L o) (15)
an H*(/l /a)H A /a)

since
H*A/a)= H-(1/a)

[see Eq. {(11)]. Now, from Eq. (11) we can express Eq. (15)
more explicitly:

les (A )12
=%|1‘1,,,(/1)|2([ .1 ?J- df"’(/‘)

+alh@)F) (16
It is easy to check that
[[ @ tlerip+ieramy =1.
Note that
lem@)* + ler(d)?
=2 hid)

= = [by Eq. (6)],
am H*(A /a)H ~(A /a)

_ 1 [ 1 _ 1 ]
2ric LH+(1/a) H-(A/a)
[by Eq. (11)].
Then, the above result follows at once from
1 d§

2mi ¢ H (& )
It is plain from this normalization and from the form of Eq.
(16) that as a—0, the function

le? ()7 + |er(A)?
approaches the Dirac delta function 6 (A — 1). Thus for very

weak coupling, the lineshape, as one would expect, is in-
creasingly concentrated at the resonant frequency.

B. The Wigner-Weisskopf approximation

It is interesting to compare the exact result, Eq. (16),
with the well-known Wigner—Weisskopf (WW) approxima-
tion to the lineshape. To obtain this approximation, one
starts from Eq. (13) for the case of spontaneous emission:

esid) = hald) F A,
am 0

but replaces fy(7) by its WW approximation. This approxi-
mation is effected by observing that if the function H (£} is
analytically continued from the upper half-plane of £
through the positive real axis into the lower half-plane, then
a zero appears at a point £, say, with Re£,>0 and
Im &, <O0. Since in our dimensionless notation the frequency
in resonance with the two-level atom is A = 1, the quantity
Reé,— 1/a

is the Lamb shift and ( — 2 Im &) is the linewidth (inverse
lifetime) for the decay. The WW approximation for fi(7) is
simply e ~ **, so that for ¢3(4 ) the WW approximation is

ViaZm) [k A VA —ay)] ,

and for the lineshape it is
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a b1

7 A —aReé&) +ai(Imé)?
Usually Re £,and Im £, are approximated for small a by the
formulas:

Reg—o_________lg Tduhp)
a T o wu—1

Imé, = —4h(l),
and this approximation yields for the lineshape

2 |h,,u>|2([x i 2 gwf d#h(u)

+4a2[h(1)]2)~l (17)

which looks, at least, very much like the exact expression
(16).

Sometimes a still cruder approximation is made in
which the numerator |h, (A )|? is replaced by Ih, ;(1)]. This
device may be regarded as just another step in the degrada-
tion of the formally exact result, Eq. (16).

In some calculations it may be of interest to consider the
proportion of the total energy in the range [1,A + dA Jrather
than the proportion of total probability. This “energy line-
shape” can be found from Eqgs. (16) or (17) by multiplying by
A, since it can be verified that

f’ dAA [lezA)? + lerR)F] =1.

IV. PROPERTIES OF THE MAPPING FROM TIME ZERO
TO ASYMPTOTIC STATES

We now return to Eq. (14) to establish some of its prop-
erties as a preliminary to the discussion of the scattering of
radiation by the two-level atom. It is useful to define a map-
ping £2 * from time zero states to the asymptotic states to
which they evolve as 7— + w0 : £2 *(cq,¢,,¢,) denotes a pair
(¢ ,c;°) defined by the equations

h A
eoid) = el ) — J;ia)
w __(2)G*A/a) 8
x[ﬁﬁ(,i/a) (fr) Hi/a)l’ (%)
where _
~ 2 fo b (Aled)+ kel
G@)E(%) /ZJ; di A )Cr(/l)j'aé( Jei! ) (19)

Our first result is that 22 * is a (linear) isometry (and
therefore one-to-one) mapping of 57 on to the Hilbert space
of asymptotic states, i.e., the space of pairs (c¢°,c;°) with ob-
vious norm and scalar product. Formally, the isometry
property is

[ @ teriyr + e )

= Jeol? + f T dA (e A + Jed)P]

and it follows immediately from the fact that the evolution
operator e~ "#*/* jg unitary. To show that £ * is an onto
mapping, it is probably best to exhibit its inverse explicitly.
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This can be done most conveniently if the pairs (c,,c;) and
{c,cr°) are transformed:

x,A) = INZREY ][RR )e,(4) + Bd )eild )]

x,A) = [INZRA) ] [A(d e, (R ) — B, R )eiR)] - (20)
Then 2% can be thought of as mapping (co.k;,x,) into
(rc° ). One observes at once that (0,0,«,) is mapped simply
into (O,x, ), i.e., that time zero radiation states with only ax,, -
type component do not interact with the atom. Similarly,
states like (c,,x,,0) are mapped to states like («°,0). Thus all
we need consider is the inverse image of asymptotic states
(xs°,0).

The operator £2 * itself can be written explicitly as act-
ing on (c%«,):

[2 () JA) = 5,04 ) — (

2h(A4) )vz 1
ma H*(A /a)

X [eo —V2/MG A /)] . (21)

It can be verified that the inverse is given by

2y, EARER)
Co——(;) f A Eisa 22)
RAmEAT
KMF”WJ " H-(u/a)u—1)
+Lx;‘°(/{) +(/1,/a)+1'1’ (A/a) (23)
2 H~(A/a)

These equations can be obtained directly by setting up the
problem of the inversion of £2 * as a singular integral equa-
tion and solving it @ Ja Muskhelishvili,!' and can be checked
by direct substitution if one uses the Poincaré—Bertrand re-
sult:

f _du g;f d#¢(#,.u)

_gf dﬂ@f d,u ¢(/‘u“)
(£ —A)p —p)

= —T$AA), (24)
for well-behaved functions ¢ of two real variables. The calcu-
lations that justify the above statements are given in the two
Appendices. Appendix A contains the substitution of Egs.
(22) and (23) into Eq. (21) and the verification of the result by
that means; Appendix B contains the solution of the appro-
priate singular integral equation. Note that Egs. (22) and (23)
yield well-defined expressions for all x* with finite norm,
because of condition (7). This allows us to conclude that the
mapping £ * is onto.

The fact that £2 * is a one-to-one mapping may seem
slightly counterintuitive. After all, if one considers the state
that

&(0) = (%, .k, )
evolves into from 7 =0 to 7 = 7, surely this evolved state

must map into the same asymptotic state as ¢(0) itself? Physi-
cally, of course, this is so:
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e y=lim €47/ [8(r)),, (A )

= lim e*"+ 7V [(r + 7')],,(4)

T— o0

=e7/% lim e*7*[2,(7)],4(4), (25)

where ¢ (7) is defined as &(r 4 7’) and is the state reached at
time 7 from the state that at 7 = Qis just &(+’). In fact, Eq. (25)
manifests the rather surprising fact that the entire dynamics
of our system, and not just the asymptotic dynamics, can be
recovered from the mapping 2 *. If, for some asymptotic
state ¢*, we have

&0) =2 )" Ye™),

then, if we form another asymptotic state ¢, say, by the rule
(er)ld) =e*"%c(A),

we obtain that
dry=(27")"Ye).

V. THE SCATTERING PROBLEM

We are now ready to make use of the properties of 2
in order to discuss the problem of the scattering of a photon
by the two-level atom. In the theory of the S matrix (see, for
example, Ref. 12), eigenstates of the system Hamiltonian
without interaction are treated as ingoing states and are
mapped by the S matrix to other eigenstates of the interac-
tionless Hamiltonian, the outgoing states. These ingoing and
outgoing states in our problem must, of course, be states with
the atom deexcited. In this context the operator £2 * and its
time-reversed form 2 ~ are just the Moller operators of S-
matrix theory, and S itself can be interpreted as 2 +{(2 ~)~,
the operator that acts on an asymptotic state at time
t = — oo and brings it through time zero and out to another
asymptotic state at time = + 0. We shall have fully char-
acterized the scattering problem, then, by calculating
2+ )L

The only difference between 2 * and £2 ~ isthatin 2 ~
the expressions H *(4 /a) and G *(4 /a) in Eq. (21) must be
replacedbyH ~(A /a)and G ~ (4 /a). Thisiseasily established
by arguments similar to those leading to Eq. (14) but with the
& integrals in the lower half-plane. Thus let (co,x,,k,) be any
state at time 7=0. Then S maps 2~ (cyk,,k,) into
82 *(coK,,k, ). Clearly k, is unaffected by the whole business.
If we denote the image functions under 2 * as «* =, then
from Eq. (21):

KE=(A)H (4 /a)
Y (%) - co( 2k (4) )vz

Ta

(1) e )

But, from the definitions, Egs. (11) and (19), it is clear that the
right-hand side of this equation is the same with either the
+ or — sign. Thus

k= H*(A fa) =k (A H (A /a),
and so
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(Sk,” =)YA) = [H ~(A /a)/H (A /a)k =(A).

The scattering problem is therefore solved without further
calculation. We note that since

B * ()| = |H ()],

normalization is preserved, as it must be, by the unitary op-
erator S. Further S'is “diagonal” in 4, i.e., it conserves ener-
gy, again a necessary property.

For a better physical sense for the above result, it is
useful to return to the ¢, , representation. The inverse of the
transformation, Eq. (20), is

1 ~ -
¢ )= AN {h A (A) + by (A (A)] .
(26)
We choose for our £ = — o state a state with ¢,” (1) =0,

so that the incident photon travels from left to right. Then,
ko “A)=[1/2h(A 0721k, (4 Je (1),
kg ()= [1/2hA) 184 )c,(A).

Now, «,;” * is mapped into itself by S and «,* ©(1 ) is
H-W/a) 1

H*A/a) QAN
Use of Eq. (26] yields

h(R)e,(A).

+ oo _ 2H (ﬂ/a) 2
TR Al Fr sl A LT
ewn 1 H-(i/a)
i) =g F i ){——-——( o 1} ).

The probability of forward scattering of a photon of dimen-
sionless energy A, then, is just

e/ =@/ le,A))*,

ie.,

L |jhupEd/a
4h*A4) H*(A /a)

For symmetric interactions with |4, (1 ) |2 =
this simplifies to

[1/4[H *(A /)1 H (A /a) + H (A /a)?,
and if
0(A /a) = arg H *(A /a) =

+ By A4))?
WA =hA),

— arg H A /),
it simplifies still further to cos® 6 (A /a). Explicitly,

tan 6 (%)
—2h(A)

T (Va)— (A /a)—2/m) P 55 duh (@ (g —4)

Note that at resonance, A = 1, and € (4 /a) becomes a inde-
pendent, with

tan 0('1)
a

However, if A = 1,

h(1)
(U/mP 5§ duh(p)/(p—A)

lim tan 6(A /a) =0
a—0

and so, in the weak-coupling, i.e., @—0, limit, scattering at
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FIG. 2. A plot of the lineshape |c%(4 }|> vs B (where 4 = a8 ) as determined
from the exact expression, Eq. (16), for the choice of coupling constant,
a=001.

resonance is as with positive a, but no backward scattering
occurs except exactly at resonance. This result is satisfying
to one’s physical intuition.

VI. NUMERICAL RESULTS

In Sec. III an exact expression was derived [viz. Eq.
(16)] for the lineshape for spontaneous emission of an excited
two-level atom in a (one-dimensional) field of electromagnet-
ic radiation (assumed to be deexcited initially) in the limit
where the system size becomes of infinite extent and the
mode spectrum becomes continuous. In our earlier studies of
the time evolution of the system, calculations were per-
formed for several different choices of the coupling function,
in the notation of this paper, /4 (x). These were

hix)=x"2, h(x)=x""4,
and
h(x) = dx/(1 + xP. 27)

It was found in V that the first two choices of coupling func-
tion led to “ghost states” and nonergodic behavior in the

o

i /
)
o.12}— I'I
|
w - /
a {
< /
- 4 .
& 008— /
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- | ./
i A
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™ ;;/ M
oookZ™ ] 1 ] t ]
0.0 5.0 10.0 15.0 200 250
B

FIG. 3. A plot of the lineshape |¢%(4 )|* vs 8 for a = 0.1. The profile corre-
sponding to the exact lineshape, Eq. (16), is represented by the solid line, the
one calculated using the Wigner-Weisskopf approximation, Eq. (17), is rep-
resented by the dashed line and the one corresponding to Eq. (17) with the
numerator replaced by |4,,(1)|? (see text) is represented by the dotted line.
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FIG. 4. A plot of the lineshape [¢35(4 )|* vs B for a = 0.2. The conventions
here are the same as in Fig. 3.

time evolution of p(7), the probability that the atom is in the
excited state at time 7, for sufficiently large values of the
coupling parameter a. In this paper, however, we shall con-
fine our attention to results generated using Eq. (16) with the
“ergodic” form factor (27). We shall also display results for
the |c,,(4 )|? as calculated using the Wigner—Weisskopf ap-
proximation (17) as well as for the case where the numerator
in Eq. (17) is replaced by |4, ;(1)|? we shall refer td these two
approximations as WWI and WWII.

Given the choice (27), four different values of the cou-
pling constant a were selected for study, viz. ¢ = 0.01, 0.10,
0.20, and 0.30. The results obtained for the |c,;(1 )| corre-
sponding to these choices of a are displayed in Figs. 2-5,
respectively. From the results recorded in these four figures,
it is seen that the correspondence between the exact results
for |c,,(4 )|* and the ones generated using WW1I is quite ac-
ceptable up to a coupling strength of a = 0.1; both line-
shapes are essentially Lorentzian. Beyond this coupling,

0.5—

LINESHAPE

0.0 1 ] 1
00 20 4.0 6.0

FIG. 5. A plot of the lineshape [¢35(4 )|* vs B for a = 0.3. The conventions
here are the same as in Fig. 4.
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however, the profiles determined from Eqgs. (16) and (17) ex-
hibit noticeable and qualitatively significant differences. The
exact lineshape is not at all Lorentzian in structure when
a = 0.2, with the profile generated using (16) tending to skew
even more when « is increased to 0.3. The lineshapes calcu-
lated using WWI, Eq. (17), remain approximately Lorent-
zian for all couplings a studied in this paper. Finally, we note
that for all #<0.1, the lineshape generated from the approxi-
mation WWII has the wrong qualitative behavior when
[—0 (viz., the intercept is finite in this limit) but sensibly
describes the results obtained from Eq. (17) in the limit of
large 8.

As a further means of quantifying the success with
which the profiles generated from the approximations WWI
and WWII represent the exact lineshape, one can compare
the coordinates of the maxima in the plot of |c,, {1 )|* vs A for
each a. As is seen from the data listed in Table I, the match-
ing of the peak height and location for profiles generated
using WWI and WWII versus the exact lineshape is quite
acceptable for ¢<0.1, but becomes seriously in error for
a > 0.1. One can also check numerically whether the norma-
lization condition

f dAA[lezA)] + lePR)1P] =1

is satisfied in each of these cases. From Table I it is evident
that only the exact solution displays the proper normaliza-
tion for all values of a; the data show that deviations from
unity become rather pronounced when either Wigner—
Weisskopf approximation is employed in the coupling re-
gime, a >0.1.

VIl. CONCLUSIONS

In this paper we have carried out two exact calculations
based on the N = 1 sector of the model for a two-level system
in interaction with a continuous spectrum of radiation. The
first calculation was of the lineshape of a spontaneously
emitted photon, and we saw that, for weak coupling, the
exact answer was very close to either of the Wigner—Weiss-
kopf approximations. For higher coupling, the exact Lamb
shift appears to be substantially higher than that predicted
by the approximate procedures, and the actual lineshape it-
self quite different. The other calculation was that of the
scattering of an incident photon from the deexcited atom.
Here a very simple result was obtained, permitting easy cal-
culation of the probabilities of forward and backward scat-
tering. It can be remarked here that, in a more realistic three-
dimensional calculation, the only extra complication would
be purely geometrical.

We also derived the explicit Mdller operators for the

scattering problem and their inverses. Although the inverses
were not in fact necessary for the completion of the scatter-
ing problem, we found the interesting result that the Moller
operators and their inverses—just because the operators
were one-to-one and hence invertible—contained implicitly
the full dynamics of the quantum system. This result is intri-
guing in view of the usual presumption that restricting atten-
tion to asymptotic states entails /oss of information.
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APPENDIX A: CALCULATION OF THE INVERSE
MAPPING OPERATOR BY DIRECT SUBSTITUTION

If (cosk, ) are given by Egs. (22) and (23), we wish to com-
pute £2 *(cqx,) and show that it is (x°). From Eq. (21) one
finds that

[£2 (coks) ]2 )
= _ra) 1
= Kx(l ) (17/(1)1/2 ~ +(/1 /a)
/2
- (22) o [ et

w2 ) ) || (A1)

With x,( u) given by Eq. (23), it is necessary first of all to
deal with the expression
(W) )

Al
174 d P .
N P a4 Jy @ "R-wrav—n)

Use of Eq. (24) converts this expression to

(A2)

g,f dv (B ) Pry () @J‘ d h(w)
H-(v/a) o (B —A)v—p)
_ﬂghiz(i)n (/1)_

H (A /a)
Now,
__hly
P
f (,U—V)(V ©)
- dﬂh(#) d/th(;u)
Ty l[g f

TABLE I. Location of lineshape maxima and normalization for various couplings.

Exact expression Wigner-Weisskopf approximation I Wigner-Weisskopf approximation IT
[Eq. (16)] [Eq. (17]] (see text)

a Brax lez) Norm. B le 1 ax Norm. Brnas e 2an Norm.
0.01 98.7 0.159 158 0.995 720 98.7 0.159 120 0.982 940 98.7 0.159 127 0.987 218
0.1 8.50 0.160 191 0.994 640 8.70 0.158 358 0.860 725 8.70 0.159 126 0.912 854
0.2 2.70 0.170 451 0.999 314 3.80 0.155 986 0.725 615 72 0.159 153 0.836 559
0.3 0.250 0.470 024 0.979 732 224 0.151 802 0.601 075 2.06 0.159 155 0.705 799
0.375 0.0210 4.490 135 0.981 673 1.67 0.147 920 0.536 036 1.39 0.159 154 0.647 142
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el )02
-2} 1see Ba any
et e[ () (%)

(2)--(2)]

Therefore, expression (A2) equals

Consequently expression (A1) becomes

L f dv () Ph ()
4 H-(v/a)

ez )+ ()
()= G

_ahmid)
H-(A/a)

I

ix:m’?*“i“”f"w“)_i(hu»mg f“"d B lp) el | 2 (AN [ ()P ()
2 H~(A/a) H- (p/afp—4i) 7@ H*(A/a) o H~(u/a)
L2 (h(/l))”’{ J’ i (h(u))”2 “(ﬂ)[H+(ﬂ/a)+H (p/a)] 21rh3/2(,1)x, )
H*(zl/a) / H- (,u/a)(y/—/l) H-(A/a)
1 (h(u))”“’(#) 1 = (B (p)k2(p) 51 (u A -
—Z | du— H(E)+B-(L)-B+(L)-H
» 1/2, 0 7y + N
+ ZIh(li) __(hu))llzgf d,u A(’:(/‘)) K (,U«) +iK:°(}»)H (l{\a)_+H (li/a)
Hra/ml = H™(p/a)p—4) 22 H~(A/a)
_ :,(M{H (A/a)+H (A /a) [1+ 2ih(A) ]+A 4h kil ]
2H (A /a) H*A/a)! H*A/a)H (A /a)

vt B ()48 (%)

+ 2o f BN () [
" o H(u/afp—2)
()i ()« 7(2)+-(2) -]

Now,

4ihA)=H-(A/a)— H*(A/a),
and so the second term of the above expression vanishes.
Similarly, the first term reduces just to x°(4 ), as we wished
to show.
APPENDIX B: CALCULATION OF THE INVERSE
MAPPING OPERATOR BY SOLVING THE INTEGRAL
EQUATION

The inversion of the operator 2 * can also be effected by
solving a singular integral equation. If one is given
[£2 *(cok,)] (A ) as a function y, {4 ), say, then from Eq. (21)
we see that it is necessary to solve for ¢, and «, (4 ) the equa-
tion

. 1/2

x,(A)[l 4+ 2hA) 2(h A)

H*A /a) n’H*(zl/a)
1/2
Xg,I du (h(#)) K(.u)

_ 2 2
—y,(M+(m) O =y BY)

Following Muskhelishvili, we define the function
o h 1/2 : :
xe)=-L [ g Ks(4)
27i Jo p—E&
X is holomorphic for all £ not on the positive real axis and
tends to zero as |£ |— oo with arg £ #0. As £ tends to a real
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value A from above or below we get the limiting values

(h(/t))” x:()
p—A
4R A)N K1)
Thus Eq. (B1) can be written as

x:p)=—2 [
27 o

[X*4)—X~ (/1)1[1+—A—$”‘/—’a)
+-24) )+ x-4))
H™*A /a)
172
= ki )a)+ () IA{L‘;’m—’a)-
Since
4inA)=H~(A/a)—H*(A/a),
this simplifies to
X*4) X~
H*A/a) H-(A/a)
_ Ay
H-(A/a)

&) sl 5
ma) 4lH*1/a) H-(/a)

This equation says that the function
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KD (1) o
HE/a) \mal 4H(E/a)
which is holomorphic in £ except on the positive real axis,
has a discontinuity, for positive A, of
(A", A VH ~(4 /a).
The above statement is also true for the function
w hiA 1/2 A
L[y RN
2riJo H~Q/a)A — &)
and so the difference between the two functions, being holo-

morphic everywhere, must be an entire function. If this en-
tire function is called P (£ ), we have

X(€)=HE/a)P () — (2/ma)Y(ice/4)
o o 1/2
LB (7, BANYR)
2ri Jo  H(A/afd —§)

Therequirement thatas |£ |— 0, arg £ #0, X (§ }>0alsoim-
plies that P(£) = 0 and also that

e

(B3)

This is Eq. (22). But we also have from Egs. {B2) and (B3) that
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S
(hA)
_[H A/ —H-A/a)] 1
(h (4 )72 27i
o /
x5 [ gl
0 H™(p/a)p—4)
(AN m-(AN] L »id)
+[H (a)+H (a) 2 f]‘(/l/a),

and this simplifies to Eq. (23).

A% [X*a)-Xx~@A)]
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