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Analytic expressions are derived for the elements or the trace of generalized cyclic matrix 
functions. Application to the representation of the linear difference operators with constant 
coefficients and periodic boundary conditions is considered, in order to express functions of such 
operators in closed form. 

I. INTRODUCTION 

Much attention is paid nowadays to physical theories 
based on lattice models. Not to mention solid state theory, 
problems in d dimensions (d> 3, up to infinity) are currently 
studied in lattice statistics, and increasing use is also made of 
lattices in field theory to approximate the continuum. The 
most natural tool for handling such problems is offered by 
generalized cyclic matrices (i.e., multiple direct products of 
cylic matrices), and in fact the solutions of many lattice prob­
lems are just given by some element or the trace of a general­
ized cyclic matrix function. Although some interesting 
methods of calculation for special cases have been pro­
posed 1-4 earlier, to my knowledge, no general theory of such 
functions had been presented yet. 

The lattices to be considered have two fundamental 
properties: infinite size and periodicity. Both properties have 
to be fully exploited to guarantee an exact solution to lattice 
problems. The well-known property of cyclic matrices to 
admit the primitive roots of unity as eigenvalues allows us, in 
some simple cases, to diagonalize the finite matrix variable 
by means of a finite unitary matrix, and then to take the limit 
over an infinite number oflattice sites. Although this proce­
dure may be correct for some matrix functions, for more 
reliability and generality, the thermodynamical limit in lat­
tice statistics or the continuum limit in lattice field theory 
should be obtained from the infinite matrix properties, as 
will be shown in Sec. II of this paper. In some cases, much 
simpler analytical expressions of the matrix functions' ele­
ments are obtained by taking advantage of the orthogonal 
properties of Chebyshev polynomials; application of those 
results to express the resolvent or other functions of a linear 
difference operator are considered in the last section. 

II. PERIODIC LATTICES AND CYCLIC MATRICES 

Let us consider a d-dimensional simple cubic lattice Z d, 

of side v, with periodic boundary conditions. A finite sxs 
matrix a k is assigned to each one of the N = ~ sites located 
at k = (k l , k2, ••• ,kd ), k;E z. Next we introduce the follow­
ing sN XsN generalized cyclic matrix 

A = L mk, ® mk, ® ••. ® mkd ® ak • 
kEK 

(2.1) 

Here, mj is the topological vX v cyclic matrix of order i, 
defined by 

(01 mj II) = (01 mj Iv -I) = t5(i,l), (2.2) 

where 15 (i,/) is the Kronecker symbol and I is the column's 
index varying from 0 to v-I. The matrix mj has a single 

nonzero element in each row, and as for any cyclic matrix we 
shall always refer to the entries of the line 0, the entries of the 
other lines being obtained by cyclic permutation. The sum­
mation in Eq. (2.1) is made over a finite subset of neighbors of 
the site 0 at the origin: K = [k: Ikl <n } CZ d. 

For application in solid state physics, the points of the 
lattice can be thought of as equilibrium locations of the 
atoms in a crystal. Then the matrix A can stand for a real 
space dynamical matrix, the representation of a tight-bind­
ing or a Heisenberg Hamiltonian, etc.; so that the entries of 
ak can represent couplings between sites 0 and k, e.g., force 
constants, hopping integrals between orbitals, exchange in­
tegrals between localized spins, etc. The value of s is fixed by 
the nature of the interaction and the number of interacting 
species associated with each lattice site; n is the range of 
interaction. 

For application to classical fields the lattice Zd is just an 
approximation to the continuum Rd , where the partial dif­
ferential operators take the discretized form oflattice opera­
tors. In this case the a k 's are scalars, whose values are deter­
mined by the derivative's order and the lattice spacings in 
each coordinate direction; a precise definition will be given 
in Sec. V. [SeeEqs. (5.7) and (5.8).] In thiscasethevalueofn 
depends on the differential operator's order. 

The Ij entries of the s~ X s~ generalized cyclic matrix 
A are s~ - I Xs~ - I generalized cyclic matrices, whose en­
tries Ij are s~ - 2 X s~ - 2 generalized cyclic matrices, etc. It 
is then convenient to use the components of the vector 
1 = (/1,/2, ... ,ld) to label thesxs noncyclic matrices, which 
are the entries of A, in the form (0 ... 0IAI/I • • • Id ) or more 
concisely (OIAll). 

It is worth pointing out that the definition (2.1) where 
the sum is taken over all the elements of K, concerns the 
simple hypercubicallattice; but restrictions on the k.'s al­
lowed values lead to the whole class ofhypercubicalla~tices. 
For example, in the case d = 3, a fcc lattice with second­
neighbor interactions corresponds to the set K = [(0, 0, 0), 
(± 1, ± 1,0), (0, ± 1, ± 1), (± 1,0, ± 1), (± 2, 0, 0), (0, 
± 2, 0), (0,0, ± 2)}. 

Now we summarize the topological matrices' proper­
ties to be used in this article. The v X v matrices m· are com-
mutative and satisfy the following identities: I 

mo= my = 1y, 

mjmj = mjmj = mj + j , 

(m;Y' = mjp ' 

(2.3) 

(2.4) 

(2.5) 
Hereafter, we start by considering the general or aniso­

tropic case, where the components a k of the matrix A in Eq. 
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(2.1) vary with the bond direction k (an example is offered by 
the hopping integrals between p or d orbitals, in the matrix 
representation of a tight-binding Hamiltonian). In Sec. IV 
we study the isotropic case, where ak = a 1kl (corresponding 
to s orbitals in the previous example); use of the obtained 
results is made in Sec. V to treat scalar difference operators. 

III. ANISOTROPIC CASE 

To proceed with the derivation of the elements of some 
matrix functionf(A), we need to estimate first the matrix N , 
for a positive integer p. Repeated use of the rules (2.4) and 
(2.5) gives 

AP = I m ® •• ·®m ® II(akr, (3.1) 
~Pk = P :tkoPk :tkdPk kEK 

where, by convention, the overlined factor represents the 
sum of products in all possible orders. For instance, 

ata2 = ata2 + a 2at + a la 2a l. (3.2) 

Recalling the relation (2.2) and the direct product prop­
erties, the matrix element I can be written as 

(OINII) = I 8(Ikpk,l) II(akY". (3.3) 
~Pk =P kEK 

To proceed, we replace the Kronecker symbol by its 
Fourier representation 

(21T)-d [1Texp[ - {ykk -1}0] dO = 8(~kpk,I), 

in terms of the d-dimensional vector 

0= (01, O2,,,,, Od), 

and obtain 

(OIN 11) = (21T) - d J~ 1T ~I:P R(ake - jk.er 

Xeil
.e dO 

(3.4) 

(3.5) 

(p<v/n), 

(3.6) 

where 

a(O) = Iake- ik
.
e. (3.7) 

kEK 

Equation (3.6) is valid provided thatp < v/n; otherwise in the 
summation (3.1) some topological cyclic matrix would be­
come a unit matrix, because, according to Eqs. (2.3H2.5), if 
p = v/n we have (m,,¥, = 1v. 

Hence, for any function expressible as a power series 
00 

f(A) = IaPAP, 
p=o 

the matrices N can be evaluated using (3.6) only ifv_oo, a 
necessary condition to assure the validity of (3.6). Then the 
following result holds. 
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Theorem 1: Let A be thes~ Xs~ matrix (2.1) and a(O) 
the sxs matrix (3.7); then, in the limit v-oo, the block ele­
ment I of the matrix function f(A) is given by the Fourier 
transform ofthe matrixf(a): 

!~(Olf(A)II) = (21T)-d [!(a(o))e/l.edO. (3.8) 

Upon setting I = 0, we obtain corollary 1. 
Corollary 1: The trace of the matrix f(A) in the limit 

V-oo is given by the Fourier transform of the trace of the 
matrixf(a): 

!~ v- d Trf(A) = (21T)-d [}rf(a(O))dO. (3.9) 

Note that the traces in the above expression are those of 
an infinite and finite matrix, respectively. Having considered 
an infinite lattice from start, the results are expressed in 
terms of the continuous variable O. This vector can be consid­
ered as the continuous limit of the reciprocal vector associat­
ed with a finite lattice, taking only discrete values inside the 
Brillouin zone, to use the solid state physics' language. But it 
is necessary to now make an important and somewhat subtle 
remark, in order to enlighten a point which is rather obscure 
in the classical treatments of the translational symmetry, 
based on Bloch's theorem (Le., their ability to deal with any 
function defined on an infinite lattice). As stressed above, in 
the power series expansion of the functionf(A), the elements 
(OIAP II) are dependent on vforlargep values, and it is in the 
limit v- 00 only that this dependence vanishes, yielding the 
simple results of Eqs. (3.8) and (3.9). Here the advantage of 
the lattice's infinite size has been properly taken into ac­
count. 

Use of Theorem 1 can be made to evaluate the elements 
of some generalized cyclic matrix functions of physical inter­
est. All results are valid in the limit N-oo, as understood. 
The inverse of the matrix (2.1) follows readily from (3.8) as 

(OIA -III) = (21T)-d[}a(0))-lell.e dO. (3.10) 

The resolvent matrix, defined by 

G(z) = (z - A)-I, (3.11) 

is also straightforward to derive from (3.8) as 

(OIG(z)ll) = (21T)-d J~ y - a(O))-lell.e dO. (3.12) 

Paramount interest is offered by the spectral density, which 
is obtained from the relation 

n(E) = (1TN)-1 Tr 1m G(E - iO+), (3.13) 

by using Eq. (3.9) as 

n(E) = 2 -d 1T -(d+ I) ~ [}r Im(E - iO+ - a(O))dO, 

(3.14) 

which can be put in the form 

n(E) = (21T) - d ~ J~ }(E - Aj(O))d 0, (3.15) 

where Aj(O) are the eigenvalues of the a(O) matrix. 

The determinant of the matrix (2.1) follows readily from 
the well-known relation 
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log det(A) = Tr 10g(A). (3.16) 

Making use of Eq. (3.9) we have 

N -I log det A = (21T) - d f~ }og(det a(9))d 9. (3.17) 

IV. ISOTROPIC CASE 

Now we consider the most common situation, where 
the interaction between the lattice sites k and 0, expressed by 
the matrix a k , is only Ikl-dependent, i.e., isotropic in space. 
New interesting analytical expressions for the matrix func­
tion elements will be derived in this case. So let us now dis­
cuss matrices in the form 

B = L(1 + ~k,)-IMk, ® ... ® (1 + ~k.l-IMkd ®ak , 

keK 
(4.1) 

where ~k denotes the Kronecker symbol ~k = ~ (O,k j ); now 
I I 

the components of the k vectors are non-negative integers 
keJVd and the v X v symmetric topological matrix of order i 
is defined by 

Mj=mj+m_i> 

and obeys the relation I 

Cp(MI)= Mp , 

(4.2) 

(4.3) 

where Cp (x) is the pth-order Chebyshev polynomial of the 
second kind. Those polynomials satisfy the identity5 

Cp (2 cos 0) = 2 cos pO, (4.4) 

and they are orthogonal with respect to an inner product 
defined by 

(f(x),Cp (x) 

= (217"(1 + ~p))-J~ 1(1 - X2)-1/2f(2x)Cp(2x)dx (4.5) 

= (17"( 1 + ~p)) -I fTf (2 cos 0 )cos pO dO. (4.6) 

Now taking advantage of the relation (4.4), we define 
from B, according to the prescription (3.7) and the relation 
ak = a 1kl ' the following matrix: 

b(9) = L(1 +~k,)-I(ejk,ll, +e-jk,ll,) 
keK 

... ( 1 + ~k)-I(ejkfid + e - jkfid)a
k 

= L(1 +~d-ICk,(2cosOI) 
keK 

... (1 + ~k)-ICk)2 cos Od)ak • 

Then applying Theorem 1, we have 

(Olf(B II) = (21T) - d f~ !(b(9))e11.e d 9, 

(4.7) 

(4.8) 

but b(9) being an even function in OJ (V;) the last expression 
-d 

Can be rewritten as 

(Olf(B)II) = 1T- d fTf(b(O))COS IIO!"· ·cos IdOd d9 

= (21T) - d fTf(b (9))Cl, (2 cos ( 1) 

(4.9) 
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and by generalization of the inner product (4.5) to d dimen­
sions, making a change of variables, we have the following 
theorem. 

Theorem 2: Let B be the symmetric s~ Xs~ matrix 
(4.1); and for x = (XI' X2, ... ,xd)ER d, let b(x) be the sxs 
matrix given by 

b(x) = L(1 + ~k,)-ICk,(XI) 
keK 

(4.10) 

then the block element I of the matrix functionf(B) is given in 
the limit v-+ 00 by the scalar product: 

~n;(Olf(B)II) = V(b(X)), iIP +~I)ClJ(Xj))' (4.11) 

Then obviously we have Corollary 2. 
Corollary 2: The trace of the matrix functionf(B) is giv­

en by 

~n; v- d Trf(B) = 2d (Trf(b(x)), iIICo(Xj )), (4.12) 

Functions of matrices are generally defined as infinite 
power series expansions in terms of the matrix variable. Con­
sideration of the orthogonal properties of Chebyshev poly­
nomials allows much easier calculation of matrix elements 
by using Theorem 2; especially taking into account the prop­
erty 

(XP,Cq(X) =0, forq>p (4.13) 

reduces calculations to the evaluation of matrix polynomi­
als, whose degree does not exceed some finite values fixed by 
I andK. 

V. CYCLIC MATRIX REPRESENTATION OF LATTICE 
OPERATORS 

To define variables at the sites of a lattice, actually exist­
ing or acting as an approximation to the continuum R d

, 

yields a discretization of partial differential equations and 
associated operators. We will discuss now the representation 
of d-dimensionallinear equations with constant coefficients 
and periodic boundary conditions in terms of generalized 
cyclic matrices, and the possibility to obtain closed expres­
sions for the associated lattice resolvent operators by virtue 
of the above properties of functions of infinite generalized 
cyclic matrices. 

Let "'(x) be some discontinuous function defined on the 
(discrete) sites x of an infinite d-dimensional toroidal lattice 
T d

, with a spacing h = (hi' ... ,hd ) which is finite though 
small. Alternatively the value of ",(x), x = ~1 = II;h;ETd, 
I;EZ can be labeled t/t(ll' ... ,ld)' A d-dimensional difference 
equation obeyed by the variable '" is obtained by replacing 
each derivative in the partial differential equation by a finite­
difference approximation, so that an infinite set of simulta­
neous algebraic equations involving the values of '" at the 
lattice points can be written down in accordance with the 
following prescriptions. 

The forward lattice first derivative in the ath-coordi­
nate direction is defined by6 

aa+t/t(ll"" ,ld) = h;; I(t/t(ll"" ,la + 1, ... ,ld) 

(5.1) 
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the matrix representation, in the'" basis set, of this operator 
is the direct product of d infinite matrices 

a: =h;I(1 ® ... ®(m l -1)®·· .®1). (5.2) 

Similarly, the backward lattice first derivative 

a;; ",(II' ... ,Id ) = h a- I(t/!{/I' ... ,la' ... ,Id ) 

- ",(II' ... ,Ia - 1, ... ,Id )), (5.3) 
has the matrix representation 

a;; = h a- 1(1 ® ... ® (1 - m_ l) ® ... ® 1). (5.4) 

Likewise, a symmetric lattice gradient can be defined by 

a~"'(/I' ... ,Id) = (2ha)-I(t/!{/I'··· ,Ia + 1, ... ,Id) 

- t/!{/I' ... ,Ia - 1, ... ,Id )), (5.5) 

and represented by 
a~ = (2ha)-1(1 ® ... ® (m l - m_ l) ® ... ® 1). (5.6) 

Then from the previous expressions higher-order differ­
ence derivative operators easily follow, namely 

(a:Y'(atnq =h;Ph p-
Q1 ® .. ·®(ml -1Y' 

® ... ®(1-m_Ilq ®···®1, (5.7) 

(a:Y'(aa-)q =h a-(p+
qI1 ® .. ·®(ml -1Y' 

x(1-m_ l)q®···®1. (5.8) 

Using those basic formulas any linear lattice operator with 
constant coefficients can be readily obtained. For example, 
the lattice Laplace operator which is defined to be 

d 

4= L a: a;;, 
a=1 

has the matrix representation 

4=h l-
2(M I -21)®1 ... ®1 + ... 

+h d-
21 ® ... ®(M I -21). 

(5.9) 

(5.10) 

Similarly the general two-dimensional second-order partial 
differential equation 

For applications in quantum and statistical mechanics 
one often has to evaluate the exponential of some differential 
operator H; if H can be put in cyclic matrix form, closed 
expressions are readily derivable for the matrix elements of 
exp(PH)(pis a scalar). A trivial example is offered by the case 
H = 4, which corresponds to the d-dimensional propagator 
for a free particle. 8 By virtue ofEqs. (5.10), (4.10), (4.11), and 
(4.6) the matrix elements can be written 

(0 I exp(p 4/2)11) 

=1T- d [ ••. f1Texp(p.Ih;-2(COS{); -1)) 
o Jo 1= I 
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~'" ~'" ~'" a", all a.,.-2 + a12 a. a. + a22 -a. 2 + bl -a. 
~I :XI :X2 :X2 :Xl 

a", + b2 - + c'" = 0, (5.11) 
aX2 

can be approximated by the set of algebraic equations writ­
ten as 

(allh 1- 2(M I - 21) ® 1 + adh lh2)-I(ml -1) 

® (1 - m_Il + a22h 2-21 

®(MI - 21) + blh I-I(m l -1) 

® 1 + b2h 2-21 ®(m l -1) + c1 ® 1)", = 0, (5.12) 

in matrix notation. 
Now the previous prescriptions yield the generalized 

cyclic matrix representation of any linear operator with con­
stant coefficients L, it is then straightforward to obtain the 
lattice resolvent operator G = L -1 in closed form by using 
Theorem 1 or 2, according as Lis nonsymmetric or symmet-
ric. 

As an example we consider the two-dimensional bihar­
monic equation 7 

(5.13) 

from Eq. (5.10), assuming unit lattice spacing, we have for 
the matrix representation of the lattice biharmonic operator 

LB = (MI - 21)2® 1 + 2(MI - 21)®(M I - 21) 

(5.14) 

So that application of Theorem 2 gives the resolvent in the 
form 

(OOILB 11/1/ 2 ) 

= (1 + /)1,)(1 + /)Iz )«((Xl - 2f + 2(xl - 2)(X2 - 2) 

+ (X2 - 2f + E)-I,CI, (xIlClz (x2) , (5.15) 

which, by using Eq. (4.6), takes the form 

(5.16) 

d 

= II exp( - Ph ;- 2)lI,(ph ;- 2), (5.17) 
;=1 

which is simply the product of d one-dimensional propaga­
tors expressed in terms of the modified Bessel5 functions 
Ip(z). 
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6G. D. Smith, Numerical Solution of Partial Differential Equations: Finite 
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8L. S. Schulman, Techniques and Applications of Path Integration (Wiley, 
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A proof of the existence of an essentially self-adjoint extension of a symmetric SOo(4, 1) Nelson 
operator, which is constructed out of the generators of a positive mass, arbitrary spin unitary 
irreducible representation of the Poincare group, is presented. Our analysis of SOo(4, 1) and its Lie 
algebra provides us with an example of an observation of Harish-Chandra: There exist subspaces 
of the space of differentiable vectors of a representation of a noncompact group which are 
invariant under the Lie algebra, but the closures of the subspaces are not invariant under the 

group. The chief results of this paper should hold true for SOo(n, 1 ). In particular, we should have 
a realization of an arbitrary principal series irreducible unitary representation of SOo(n, 1) on the 
direct sum of two identical unitary irreducible representation spaces of the motion group in an n­
dimensional Minkowski space, which has one timelike dimension. 

I. INTRODUCTION 

It was first pointed out by Harish-Chandra that there 
are subspaces of the set of differentiable vectors of a repre­
sentation of a noncompact Lie group which are invariant 
under the Lie algebra, but the closures of the subspaces are 
not invariant under the group. 1 This unexpected behavior 
seems largely to have remained unnoticed by most theoreti­
cal physicists; they usually assume that if we are given a 
representation of a Lie algebra by symmetric operators in a 
linear space t/J, which is dense in a Hilbert space 71' (dense 
with respect to the topology given by the inner product), then 
there exists a unitary representation of the associated Lie 
group in 71'. We present here an example of Harish-Chan­
dra's remark that should be of interest to both mathemati­
cians and mathematical physicists: We describe representa­
tions of the Lie algebra of the Poincare group fj on the space 
of differentiable vectors (/J (m,s; ± ) of an irreducible unitary 
Poincare group representation,2 and we construct on this 

space a representation of the Lie algebra of SOo(4, 1 )-the 
simply connected covering group of the de Sitter group--by 
symmetric operators. We show that the closure of the space 
(/J (m,s; ±) does not furnish us with a representation of 

SOo(4,1). However, we are able to show that the direct sum 
of two identical spaces of differentiable vectors, (/J (m,s; ± ) 
ED (/J (m,s; ± ) for irreducible unitary Poincare group repre­

sentations does furnish us with a representation of SOo(4, 1) 
on its closure, the direct sum of two identical unitary irredu­
cible representation (VIR) spaces of fj : 
7I'(m,s; ± ) ED 7I'(m,s; ± ). [7I'(m,s, ± ) denotes the space of 
a positive mass,2 arbitrary spin, positive or negative energy 
VIR of fj. ] We are able to realize all of the principal series 

VIR's of SOo(4,1) in this manner. 
Before we state our results for the general case we de-

scribe those representations of sOot 4,1) which are realized 
as equivalent multiplier representations on either the three­
sphere or on the two-sheeted three-dimensional (compacti-

fied) hyperboloid,3.4 and prove our claims for those cases. 
First, however, we discuss some important results on infi­
nite-dimensional group representations, which we will need 
later on. 

The description of the SOo(4, 1) multiplier representa­
tions on the three-sphere or on the compactified hyperboloid 
shows the geometrical origin behind the noninvariance of 
the closure of the space of differentiable vectors of a Poincare 

group representation under the SOo(4,1) representation: 
The vector fields defined on each branch of the hyperboloid, 

which are associated with the SOo(4, 1) Lie algebra genera­
tors, are not complete,5 and the action of SOo(4,1) on each 
branch of the (noncompactified) hyperboloid must be de­
fined as the action of a local Lie group. 6 

We now make a few remarks concerning notation. 
Lowercase Roman indices generally run from 1,2, 3 or 0, 1, 
2,3,4, and Greek ones run from 0, 1,2,3. The metric tensor 
of Minkowski space M 3,1 is 1JlLv = diag(l, - 1, - 1, - 1) 
and nab = diag(l, - 1, - 1, - 1, - 1) is the metric tensor 
ofa (4 + I)-dimensional Minkowski space, M 4,1' The trans­
lation generators in M 4,1 , are denoted by a four-vector opera­
tor plL = (EOP,POP) and the contravariant four-momentum 
vector is pi" = (E,p). The position operator acting on ,2"2(R4), 
where R4 is the character space of the four-dimensional abe­
lian translation group (momentum space), is given by 

QIL= -i~= -(i~'~V ). ap
lL 

aE i P 

II. THE SPACE OF DIFFERENTIABLE VECTORS 

Let G be a Lie group and denote its Lie algebra by ~. 
Let (U (G ),JY) be a bounded continuous representation of G 
in a Hilbert space 71'. We say that veJY is a C 00 vector for 
the representation U if g--.U (g)v is of class C 00 on G (gEG). 
Obviously the C 00 vectors form a vector subspace of 71'; we 
denote the subspace by iP 00 (U (G )I, or simply by iP 00 when 
no confusion arises. 
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We have the following well-known result. 7 

Theorem 2.1: Let (U(G,K)) be a bounded continuous 
representation of the Lie group G on a Hilbert space K. For 
XeY define the linear map dU (X) on .@CO(U(G)) into Kby 

'dU(X) l' U(etX)v - v I v=lm . 
t---+O t 

Then each dU(X) leaves .@CO(U(G))stableandidU(X) is a 
representation of Y on .@ 00 (U (G )). 

By the theorem, since i d U furnishes us with a represen­
tation of Y on .@ 00 (U (G )), i d U extends to a representation 
of the universal enveloping algebra ~(Y) on .@OO(U(G)) 
with i dU(l) = 1.8 

We now state the following important result due to 
Goodman. 9 

Lemma 2.1: Let XI",Xn be a basis for Y; suppose that 
veJY' lies in the domain of r: = dU (Xa t 
= dU(Xa)dU(Xa)···dU(Xa) for m = 1, 2, ... and l<a<n, 

then ve.@ 00 • 

The following result characterizes .@ 00 (U (G)) as the 
largest subspace of K which is stabilized by dUlY). This 
theorem will be very important later on. The characteriza­
tion was stated to our knowledge first by Nagel, JO but not 
proved. However, it certainly seems to be known by other 
researchers in the field, II and is a straightforward conse­
quence of Goodman's result. 

Theorem 2.2: .@ 00 is the largest subspace of K such 
that 

n 

(i)'@oo C n .@(Ja ), 
a=l 

(ii) Ja .@oo C.@oo for each ala = 1, ... n). 

Since the proof does not seem to appear elsewhere, we pre­
sent it in Appendix A. 

We remark that .@ 00 is dense in the representation 
space K. This follows from Garding's theorem on the den­
sity of the Garding subspace ® (Ref. 12) and also Nelson's 
theorem that ® C .@ 00 • J3 

For symmetric elements of ~ (Y) and U unitary we ob­
tain the following. 

Theorem 2.3: Let the representation U (G) on Kbe uni­
tary. Then the representation dUlY) of Y on .@oo is sym­
metric, i.e., all of the operators dU (X) (XeY) are symmetric 
operators in K. If Me~(Y) is a real symmetric polynomial 
function in the variables XI""Xn, 

M =M(XI""Xn) 

= L Ca, ... an P(Xa, ... XaJ (Ca,,,.a
n 
eR), 

where 
1 

P(Xa, ..• XaJ = .. L Xa(a(I)) ",Xa(a(n)) 
n. a(a(I))".a(a(n)) 

and the representation d U (Y) on .@ 00 is symmetric, then 

(wldUt(M)v) = (wldU(M)v). 

That is to say, dU(M) is a symmetric operator. 
Note: A Lie algebra representation is always a map from 

the Lie algebra into skew-symmetric operators, if the corre­
sponding representation of the group is unitary. Thus, we 
have the appearance of the factor i in the above. We do not 
always make this trivial distinction between the "mathemat-
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ica1" and "physical" representations, and sometimes we call 
a mapping of the Lie algebra into symmetric operators a 
representation, as we did in Theorem 2.3. 

III. MULTIPLIER REPRESENTATIONS OF SO.,(4,1) ON 
.2" 2(P) 

We now describe certain multiplier representations of 

SOo(4,1). First we recall some facts about local (global) ac­
tions of Lie groups on manifolds and multiplier representa­
tions. 14,15 

Definition 3.1: Let G be an m-dimensional Lie group, V 
a neighborhood of the identity in G, and let Ube an open set 
in Rn containing zero. A local action (tP, V) of the Lie group G 
on UCRn is an analytic mapping tP: V X U~R.n such that 

(i) for all xeU, tP (e,x) = ex = x 
(e is identity in G); 

(ii) for every g, heV with tP(g,x) =gxeU(xeU), 
tP (h,tP (g,x)) = tP (hg,x) = (hg)x. 

From (i) and (ii) it follows that tPg = tP (g, ):x~gx is locally 
one-to-one for fixed g. 16 

Let exp Xt, XeY (Lie algebra of G) be a one-parameter 
group in G. If xoeU we call the curve x(t) = (exp Xt)xo 
= tP (exp Xt,xo) the trajectory of XO under exp Xt. 

Next we define a local multiplier representation T" of G 
on the set d = d( U) of all complex-valued functions on Rn

, 

which are analytic in a neighborhood containing zero, which 
is contained in a set U on which a local group action is de­
fined. 

Definition 3.2: Let Gbe a Lie group, (tP, V) a local action 
of G on Uc Rn (U an open subset of Rn containing zero). A 
local multiplier representation T" of G on d with multiplier 
v, consists of a mapping T" (g) of d onto d defined for ge V, 
led, by 

[T,,(glf](x) = v(g,xlf(gx), xeU, (3.1) 

where v(g,x) is a complex-valued analytic function of g and x 
and satisfies 

(1) v(e,x) = 1, VxeU, 

(2) V(glg2,x) = v(gl,x)V(g2,gIX). 

gl,g2,glg2eV, xeU. 

From (2) follows a local homomorphism condition 

[ T,,(g Ig2lf ](x) 

= [T,,(gI)T,,(g2lf ](x) (g1,g2,glg2eV). 

Now we define the so-called generalized Lie derivative 
for a local multiplier representation. 14 

Definition 3.3: The generalized Lie derivative Dx I of a 
function f U~C. led under the one-parameter group 
expXt:U~Rn (t sufficiently small so that expXteV) is the 
analytic function 

d 
[Dxl](x) = dt [T,,(expXt)/] It=o(x) 

m n atP. al 
= /~I ;~I ~ ag

j
' (g(t),x)lg=e ax; (x) 

m 

+ L ~ Pj(xlf(x). (3.2) 
j=1 
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Here the gj'S are the coordinates in a parameter space of the 
group: g = (g1,g2, ... ,gm}EV, and the functions Pj(x) are de­
fined by the differential equations 

m d L Xj lj(x) = - v (expXt,x) I t=O (3.3) 
j= I dt 

[X = (XI,x2, .. X m )withgj (t) = exp(Xjt)]. Thissetofallgen­
eralized Lie derivatives form a Lie algebra which is a homo­
morphic image of f1. We call such an action of f1 on U a 
generalized infinitesimal action. The operations, are, of 
course, addition and Lie product of Lie derivatives. The gen­
eralization to these local multiplier representations of the 
converse of Lie's second fundamental theorem17 is the fol­
lowing. ls 

Theorem 3.1: Let Xext
( U) denote the space of all analytic 

differential operators on U. Let t/J:f1~Xext(U) be a general­
ized infinitesimal action of f1 on U, an open set in R" con­
taining zero. Let all t/J (X) (Xef1) be ofthe form 

m 

t/J (X) = L ajDj(x), 
j= I 

where 
m 

X= L aJj 
j=1 

(the I j are a basis for f1) and where 

" a 
Dj(X) = L Pj;(x) - + Pj(x) = t/J (lj) 

;=1 ax; 

are a set of m linearly independent differential operators de­
fined and analytic in UCR", which are the images ofa basis 
for the Lie algebra f1. Then the set of all the t/J (X )'s is the 
algebra of generalized Lie derivatives for a local multiplier 
representation Tv of a group G whose Lie algebra is f1. If G 
is simply connected, the local mUltiplier representation of G 
is unique except for the possible choice of VC G. 

The action of G on xOeU is obtained by solving the dif-
ferential equations 

d m 
-x;(t)= L ajPj;(x(t)), 
dt j= I 

x;(o) = x? (i = 1, ... ,n), 

d m 
- v(exp Xt,xo) = v(exp Xt,xo) L aj Pj(x(t)) 
& j=1 

(v(e,xO) = 1), 

wherex(t) = exp Xt Xo (Xef1). Specifically its action is given 
by 

[Tv(exp Xt If] (xo) = v(exp Xt,xo)/(exp Xt xo), 

where v(exp Xt,xo) and x(t) are the solutions of the above 
differential equations. 

Obviously the local definitions which we have made in 
the above can be applied to a manifold M if we consider U to 
be the image of a subset of M in a chart on M. 

Definition 3.4: An infinitesimal f1 action on a manifold 
M is defined to be a homomorphism t/J of f1 into the Lie 
algebra of all differential vector fields on M.19 

We define a global G action on a manifold M as fol­
lows 19: 

367 J. Math. Phys., Vol. 26, No.3, March 1985 

Definition 3.5: Let G be a Lie group and let M be a 
manifold. Let g (M) denote the group of all diffeomor­
phisms of M into itself. A global G action tI> on M is a map tI>: 
G XM~M withg~tI>g a homeomorphism of G into ~ (M). 
If the map tI> is one-to-one the action is said to be essential. 
[tI>g(x) = gxeM.] 

We would like to know when an infinitesimal f1-action 
on a manifold M generates a unique global action of G on the 
manifold. For M compact we have the following theorem 
due to Palais.20 

Theorem 3.2: If G is simply connected and M is a com­
pact Hausdorff manifold, then every infinitesimal f1-action 
t/J on M, generates a unique global action cP of G on M. 

Next we define a multiplier representation Tv of G on 
M. 

Definition 3. 6: Let G be a Lie group and let tI> be a global 
action of G on a manifold M. Let 'y2(M,p,) be the Hilbert 
space completion of the space of all complex-valued func­
tions on M which are square integrable with respect to a 
measure f-L defined on M. A multiplier representation Tv of G 
with multiplier v is a bounded, continuous representation 
Tv(G) ofG on 'y2(M,p,) with Tv (g):'y2(M,p,J-'y2(M,p,) de­
fined for geG and/e:t"2(M,p,) by 

[Tv(gV'] (x) = v(g,xV'(gx) (xeM,gx = tI> (g,x)), (3.4) 

where tI> is a global action of G, on M, and v(g,x) is a complex­
valued, a.e. (almost everywhere) continuously differentiable 
function in x and g such that 

(i) v(e,x) = 1, 't/xeM, 

(ii) v(glg2,x) = v(g1,X)v(g2,gIX), 

gl,g2eG, xeM. 

Just as in the local case we may show that the homomor­
phism property 

[Tv(glg2V'](X) = [Tv(gI)(Tv(g2)V'](X) (3.5) 

follows from (ii) combined with the action cP of G on M. 
The analog of the Lie derivative of an analytic function/ 

onM (fed(M), where d(M) denotes the space of all analyt­
ic functions on M] is the generalized Lie derivative. 

Definition 3.7: The generalized Lie derivative Dx / of 
fEd (M ) with respect to the vector field t/J (X )(X 
= ~j:, I aJj ef1) associated with the one-parameter group 

tl>g(t) = cp.xpxt:M~M is the analytic function 

d 
(Dx/)(x) = dt [Tv(expXtV'](x)lt=o' 

Computation in a Euclidean coordinate system t/J;(p) 
= (X I(P),x2(P), ... ,x,,(p)) (t/J is a differentiable map from an 

open subset U of Minto R", whose n components t/J; we 
denote by x;) yields 

(Dx/ o t/J-I)(X) 

m" atl>;(x,g(t)) I a(fot/J-I) 
= L L Xj (x) 

j= 1;= I agj g=e ax; 

m 

+ L Xj lj(x)(/o t/J-I)(X), (3.6) 
j=1 

where CP;(x,g) = t/J;(gx) and where the functions Pj(x) are de­
fined, as in the local case, by the differential equation 
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m d L ~ lj(x) =-y(expXt,x)lt=o' 
j= I dt 

The set of all generalized Lie derivatives of a multiplier rep­
resentation of a Lie group form a Lie algebra which is a 
homomorphic image of Y. The operations are, of course, 
addition and Lie product of Lie derivatives. 

Next we describe certain representations of the de 8itter 
group and its Lie algebra on subspaces of spin-zero unitary 
representations of the Poincare group. The Poincare group is 
the semidirect product of the Lorentz group 800(3,1) with 
the abelian four-dimensional translation group T4 , 

eJl = 800(3,1)Q<T4' 

80(3,1) is the component connected to the identity of the 
group of all real linear transformations ofR4 which preserve 
the quadratic form 

x~ -xi -x~ -x~ 

on R4. The simply connected covering group of eJl we denote 

by 9 and is equal to 800(3,1)Q<T4' where 
800(3,1) = 8L(2,C) is the simply connected covering group 

of 800(3,1). Positive mass, integer, or semi-integer spin 
VIR's of 9 were constructed by Wigner.21 We denote the 
VIR spaces of these representations by JY'(m,s; +) or 
JY'(m,s; - ), the + or - signs referring to VIR's with dif­
ferent signs of the eigenvalue of the generator of translations 
in the xo direction. Realizations of these representations for 
spin zero are provided by Hilbert spaces of .!f2 functions on 
the positive and negative branches of the momentum hyper­
boloid (the character space of T4 for these representations): 

(a)p~ - IpI 2 = m2, Po>O, 

(3.7) 
(b)p~ -lpl2 = m2, Po<O, 

where (Po,p) = (PO,PI,P2,P3) denotes the coordinates in the 
character space. The two branches are depicted in Fig. 1, 
where it is shown how they form the cone in projective four­
momentum space.22 The following measure on T 3+ is invar­
iant under the Poincare group: 

(3.8) 

We may construct on T 3+ the Hilbert space .!f2(T 3+ ,dp"J,). 
We have the well-known result23 

H(m,O; + ) = .!f2(T 3+ ,dp"J,). 

Likewise on T;- we have the Poincare group invariant mea­
sure 

dp&> (p) = 11!2Poldp, dP2 dp3' Po> 0 

and the Hilbert space 

.!f2( T 3- ,dp &> ) ~H (m,O; - ). 

(3.9) 

For convenience we write these Hilbert spaces simply as 
.!f2(T 3+) or .!f2(T 3-) when no confusion arises. 

Now let us denote the space of all bounded linear opera-
tors on .!f2(T3+) [or.!f2(T3-)] by &h'(.!f2(T3+)) 
[or &h'(.!f2(T3-)]. 

Then the action of 9 on .!f2(T 3+) [or .!f2(T 3-)] is 
given by the mapping U:9-+&h' (.!f2(T 3+)) [ or 
&h'(.!f2(Tn)] with 
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FIG. 1. The three-sphere of radius m and the hyperboloid of radius m in 
projective four-space (R5

). The cone C4 = {xlro - x~ - x~ - r. - X; 
= O} intersects the plane Xo = m in the sphereS3 and C4 intersects the plane 

X 4 = m in the two-sheeted hyperboloid T3 = T / uT 3-' P" = (xol mx4 , 

x,lmx4 ) and p" = (x~mxo, x,lmxo) relate usual coordinates (p" and p,,) 
on T3 and S3 to projective coordinates x •. 

(3.10) 

where p-+A -I P is the usual linear action of 80(3, 1) on ]R4 

[Ae80(3,1)] and oeT4• 

This representation is easily shown to be continuous. 
For computation of Lie derivatives it is necessary to transfer 
these actions of 9 onto certain images of .!f2(T 3+) [or 
.!f2(T 3-)] associated with the charts on T3 obtained by the 
projection 11" of T 3+ or T 3- onto R3, as shown in Fig. 2. "r. + ) 

[or"r. -)] is defined by 

"r.+)(po,p;) =P;, 

"r.+)-I(p;) = ((p2 + m2)112,p;), 

"r. - )(Po,p;) = Pi> 

"r.-)-I(p;) = (_ (p2 + m2)112,p;). 

(3.11) 

(3.12) 

With these projections we define the isometric mappings 

H( + ):.!f2(T 3+ )-+.!f2(R3,dp"J,) 

3(H(+Y)(p;) =!("r.+)-I(p;)), 

(3.13) 

1(31 2(31 

FIG. 2. Projection of T 3+ onto R and T 3- onto R . 
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O( - l:y2(T 3- )--+y2(R3,dp9) 

3(0(-Y)(Pi) =/("r-l-I (Pi))' 

where y2(R3,dpgl;) [or y2 (R3,dp9)] is the Hilbert space 
completion of the space of allfH3 --+c which satisfy 

f d3p -
(J,/) = 2(p2 + m2)1/2/(plf(p) < 00. 

Using 0 ( + l (or 0 ( - l) we can define equivalent actions of '9 
on y2 (R\dpgl;) [or y2 (R3, dp9)] by 

Ud-+I=O(+l UO(+l-1 

or 

Ud--I=O(-l UO(-l-I. 

Using this equation and Eq. (3.10) we compute the Lie de­
rivatives of the one-parameter subgroups of 80(3,1) rota­
tions and the translations in the charts on T3 defined by "r + l 
or"r - l. The well-known results are24.25 

[PJ] =pJ(Pi),[Po/](pd 

= ± ~m2 + p2 /(pdEy2(R3,dp.$), 

(3.14) 

[Mt"J"](pd = {Pt a;m -Pm ;t)/(Pi)} 

[MoJ](Pi) = ipo a~k/(Pd 
, l,m,k = 1,2,3. 

Here /EY2(R3 ,dp gl;) [or /Ey2(R3 ,dp 9 )] is any differentia­
ble vector for the Poincare group representations Ud-+

I 
(or 

Ud--
I
). The + sign for the eigenvalue of Po is for 

/Ey2(R3,dpgl;) and the - sign is for/Ey2(R3,dp9)' 

Now we define some local actions of 800(4,1) on cer­
tain subsets of R3. Here, 0(4,1) is the set of all real linear 
transformations of R5 which preserve the form 

x~ -xi -x~ -x~ -x~. 

800 (4,1) is the simply connected covering group of the com­
ponent connected to the identity, 800(4,1) of 0(4,1). 

The linear transformations of R5 which preserve the 
cone C4 (see Fig. 1) induce through projection, a local action 
on T3 as follows: 8upposexo (a = 0,1,2,3,4) is a lightlike vec­
tor in five dimensions, xOxo = x~ - xi - x~ - x~ - x~ = O. 

All transformations A of 0(4,1) [and hence of 800(4,1)] 
preserve the length of this vector, i.e., A ~Xb = yO( Yo yO = 0). 
To each vector xO, we may associate a vector pP' on T3 as 
(pp'/m) = (.xJ'/X4). Let U+ be an open subset ofT 3+ contain­
ing the point (1,0,0,0). Choose V to be a neighborhood of the 
identity in 800(4,1) so that for all PP'E U + 

pp" = m Y" = m (AxY' ET 3+ 

y4 (Ax)4 

(x = (.xJ',X4) with~ = ~). (3.15) 

Equation (3.15) together with these remarks define an 
action of 800(4,1) on T 3+ . In a similar way we may define an 
actionof 800(4,1) on T 3- through the use ofEq. (3.15). [Let 
U - be an open subset of T 3- containing the point ( - 1,0, 
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0,0).] Through the use of the projections "r + l and "r - l these 
local actions induce local actions as defined in Definition 3.1 
of 800(4,1) on "r + l( U +) and "r - l( U -), which are subsets of 
H3. 

Next let us define certain generalized infinitesimal ac­
tions of the Lie algebra of 800(4, I) on ..raf ("r + l( U +)) and 
..raf("r - l(U -)). The actions are constructed out of the ex­
pressions for the generators of '9 given in Eq. (3.14) and are 
given by the set of all 

X = ± aILV MILv +.I aV ~ Bv (aILY,aVER) 
IL.V= 0 

with 

MILv = (Mij,Mok ) 

and 

~B ± =~(p +~{PP,M }) (0 <AER), 
AIL A IL 2m PIL 

where the ± distinguish between the two possibilities for 
Po [Po = + (m2 + p2)1/2 for "r + l(U +) and Po 
= - (m2 +p2)1/2 for "r-l(U-)]. We argue below that 

these operators satisfy the commutation relations of the Lie 

algebra of 800(4,1). Thus by Theorem 3.1 these generalized 
infinitesimal actions of Y on U + (or U -) generate local mul-

tiplier representations T~';;'~A'l'/' (or T~';;-'~A'lu, of 800(4,1) 
on ..raf(n-! + l(U +)) and ..raf("r - l(U -)). Their forms are expli­
citly given by 

T (+l -O(+lr. O(+l-I (m'IA'l'/' - (m'IA'lU' 
or 

where 1(m'IA'lu, is given by 800(4,1) 3A--+1(m'IA'l,/2(A ) with 

(1(m'IA 'l'/2 (A )/)(p) 
= Ip(A -1,p)I- 3/2 - i(m'IA'l'/'/(mA -I p/m), 

(3.16) 

where /Ey2(T 3+) [or /Ey2 y2(T 3-)] is the image of an 
fE..raf("r + l(U +)) [orfE..raf("r - l( U -I)] under O( + l (or O( - l), 
and 

( 
__ I p)IL _ a~(A -I) +.I a~(A -1)(pY/m ) 
A - - --:-:=---:------:-=---:---

m a!(A -I) +.I a! (A -I)(pv/m) 

=~CP(A,p), (3.17) 
m 

p(A-I,p) =a!(A- I) + La~(A-I)PP' 
IL m 

(v(A,p) = Ip(A-I,p)I-3/2-i(m'IA'lu,) 

with 

aO
o aO

I a0
2 aO 

3 aO 
4 

a l 
0 all a l

2 a l 
3 a l 

4 
A= a2 

0 a2
1 a2 

2 a2 
3 a2 

4 EP(V) CSOo(4, 1) . 
a3 

0 a3
1 a3

2 a\ a3 
4 

a4 
0 a4

1 a4
2 a4 

3 a4 
4 

[A is an element of 800(4,1) corresponding to the element A 
of 800(4,1) under the covering projection 
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P: SOo(4,1)-+SOo(4,1).] The reason why these local multi­
plier representations cannot be extended to global multiplier 
representations on a larger subset ofR3 is made clear from an 

analysis ofEq. (3.17) and Fig. 1. For certain A 's in SOo(4,1) 
but not in V,pointsin U+ or U- can, under the action of the 
mapping defined by (3.17), be moved from one branch of the 
hyperboloid into the other. As seen from Fig. 1, any A which 
moves points of the left hemisphere of S3 into points of its 
right hemisphere will interchange points in different 
branches of the hyperboloid. 

Despite the above result, the generalized infinitesimal 
action of the Lie algebra of SOt 4, 1) on ..rat (~ + I(U +)) and 
..rat(~ -iI U -)) can be extended to representations on func­
tions analytic on all ofR3

• In fact, it even gives us a represen­

tation of the Lie algebra of SOo(4, 1) on the space of differ en­
tiable vectors for the associated spin zero, positive mass 
UIR's of the Poincare group. We denote these spaces of dif­
ferentiable vectors by ~ ~ and ~ ~ . 

Theorem 3.3: The following expressions are the genera­
tors for representations of the Lie algebra ofSOo(4, 1) by sym­
metric operators on ~ ~ or ~ ~ 

AI~v' (3.18) 

J... B ~± = J... (p~ + ~ {p P,Alp~}), O<AER. (3.19) 
A A 2m 

For Po> ° the representation is on ~ ~ ,and for Po < ° it is on 
~~. 

Proof: We verify straightforwardly, using the commu­
tation relations of the Lie algebra generators of fj that AI~v 
and (1/..1. )B ~± satisfy the commutation relations of the Lie 
algebra ofSO(4,1) 

[ lB± 1B±]-'M A ~ 'A v -I ~v' 

(3.20) 

[AI~v, ~ B/] = (gv p ~ B~± -g~P ~ Bv±)-

Since we have on ~ ~ a representation of ~ (fj), the genera­
tors (1/A)B ~+ and AI~v leave invariant D ~, and (by 
Theorem 2.3) are symmetric operators on D ~ C .,2"2(T 3+)' 

Thus the generators (1/A)B ~+ and AI~v are a basis for an 
SOo(4,1) Lie subalgebra ofdU (~(fj)) onD ~ and they gen­
erate a symmetric representation of the Lie algebra of 
SOo(4,1) in .,2"2(T 3+)' The same arguments show that (1/ 
A )B ~- and AI~v generate a representation of the Lie algebra 
ofSOo(4,1) on ~~ CH(m,O, -) = .,2"2(T 3-)' 

Does there exist a unitary representation of sOot 4, 1) in 
either .,2"2(T 3+) or .,2"2(T 3-) such that its Lie algebra repre­
sentation is the one generated by the symmetric operators 
(1/..1. )B ~+ or (1/..1. )B ~- and AI~v which are defined on either 

of the dense subspaces ~+ or ~-, i.e., aU (SOo(4,1); +) 

[or aU (SOo(4,1); - )] such that 

i(1/A)B~± v=lim(t-I[U(iI,p,±)v-v]) (3.21) 
.-00 

and 

iAi vV = lim (t -I [U(etIpV)v - v]) 
~ .-00 

(3.22) 
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for v either in ~ ~ or ~ ~ ? The answer is no. A very ab­
stract proof of this statement is presented in Ref. 2 (p. 235); it 

uses the reduction of a UIR of SOo(4,1) in a noncompact 
"generalized basis" which "diagonalizes" the noncompact 

SOo(3, 1) subgroup. Through the use of Theorem 3.1 we can 
provide here the geometrical reason for this fact. (We treat 
the case Po> 0.) We can choose UCR3 so that the express­
ions in (3.18) and (3.19) generate a generalized infinitesimal 
action on U. By Theorem 3.1 this action is the algebra of 
generalized Lie derivatives for a (unique) local multiplier 

representation Tv of SOo(4,1) and by Definition 3.3 this lo­
cal multiplier representation is the one described by Eq . 
(3.16). {Using (3. 16) and themapping/l [Eq. (3.13)] compute 
(Dxf)(x) to obtain (3.18) and (3.19).} However, for the rea­
sons stated above it cannot be extended to a global multiplier 
representation on R3, with an action on T 3+ given by Eq. 
(3.17) for arbitrary U's. Likewise for the case Po < ° we can 
show there exists no unitary representation of SOo(4,1) on 
.,2"2(T 3-) with the generators given by expressions (3.18) and 
(3.19), and an action given by (3.17). 

From this result we know there cannot exist a ~ with 
~~ C~ C.,2"2(T 3+) [or a ~ with ~~ C~C.,2"2(T 3-)] 
with the property that an extension of the Nelson operator 
on~~ (or~~), 

JY' = _l_B ±2 + _1_ ~ B,±2 
A 2 0 A 2 i':-I I 

1 3 3 

+- I AlijAlij + I AloiAloj , 
2 jj=1 i=1 

is essentially self-adjoint on ~. This follows from a theorem 
of Nelson. 26 Otherwise we would have a group representa­

tion of SOo(4,1) on .,2"2(T 3+) or .,2"2(T 3-)' 

From Theorem 3.2 we expect that it might be possible 

to obtain a global action of SOo(4,1) on some compactifica­
tion of T 3+ and T 3- • To this end we define a global multi­

plier representation of SOo(4, 1) on a compact manifold T 3' , 
which contains T 3+ and T 3-' This T 3' is obtained from 
T3 = T 3+ uT 3- by the adjunction of a surface at infinity of 
codimension one such that the map 

r:T3'-+S3:r(P) = [mpo- \( - mp;!po)] (p~ET3') 

(3.23) 

establishes a homeomorphism of T 3' onto S3' Its inverse is 
given by 

r-I(u) = [m 2uo-
I
,( - mu;!uo)] (U~ES3)' (3.24) 

A neighborhood of a point of infinity of T 3' is chosen so that 
r is to be a homeomorphism. Equation (3.15) then deter­
mines a global action ofSOo(4, 1) on T 3'. For the measure on 
T3 we take the measure on T 3+ and T 3- given by Eqs. (3.8) 
and (3.9). The Hilbert space is the completion of the set of all 
fT3-+C such that 

if,f) = 13+ J(p)f(pJdp,+ + 13_J(p)f(P)dP,- < 00. 

(3.25) 
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(Since anf:Tj-C differs from anf:T3-C by a set of mea­
sure zero it suffices to consider functions on T3') With these 
definitions we have 

Theorem 3.4: A multiplier representation 1(m2/A 2)112 of 
-=S~0-;0(4',""'I) on the compact manifold Tj is provided by the 

operators 1(m2/A2)II2(A) for eachAE SOo(4,1) with 

[1(m2/A2)II2(A }f](p) 

(3.26) 

Furthermore, 1(m2/A2)112 is a unitary irreducible representa­

tion of SOo(4, 1) on .to"2( T3)' The proof is presented in Ap­
pendix B. Note that the multiplier is undefined for certain 
A'sandp's. 

Using Definition 3.7 we may compute the generalized 
Lie derivatives of an analytic functionjed(T3) with respect 
to the one-parameter subgroups ofSOo(4,1) rotations along 
the coordinate planes in the projective space of Fig. 1. In 
order to explicitly compute the generalized derivatives we 
use the coordinate systems defined by the projections tr ± ) of 
Fig. 2, along with Eq. (3.26). The results are27 

(DJij(/Otr ±) - 1))(Pi) 

= -i(Pi a~j-pj ;i)l/Otr±)-I)(Pi) 

=Mij(/otr±)-I)(Pi), (3.27a) 
I 

Viewing/10tr + ) - 1 and.t;Otr - ) - 1 as functions in iP ~ and 
iP ~ , respectively, we obtain the following theorem whose 
proof follows from Theorem 3.4. 

Theorem 3.5: The following expressions are the genera­
tors for a unitary representation of the Lie algebra of 

SOo(4, 1) by symmetric operators on t/J = iP ~ $ iP ~ : 

o ) ((lIA)B Il+ a) 
MIL" and a (lIA)B Il-

(3.31) 
with 

J... B: = J... (PIL + ~{P P ,MPIl})' 
A A 2m 

Thus on t/J we have a symmetric representation of the Lie 

algebra of SOo(4,1) with 

(M;" :,,) and ellA ~ B Il+ (11 A ~ B Il- ) 

being the generators of the representation. Furthermore, this 
is a representation on t/J of the algebra of the generalized Lie 

derivatives of the global SOo(4, 1) multiplier representation 
1(m2/A 2)112 on the compact manifold T j . 
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(DJok(/Otr ±) - 1))(Pi) 

= -i(Po a~k)(/Otr±)-I)(Pi) 
= Mok(/otr±)-I)(p;) (i,j,k = 1,2,3), 

(DJ,,, (/Otr ±) - I))(p;) 

= (lIA )(PIL + (A 12m){P P ,MPIL })(/Otr ±) - I)(p/), 

(3.27b) 
where we have introduced the notation tr ± ) to stand for the 
two maps tr + ) and tr - ), so that Eqs. (3.27a) and (3.27b) are 
two sets of equations, one set for the chart on T 3+ and the 
other for the chart on T 3-' [We could also compute deriva­
tives at points at infinity using the mapping (3.23) followed 
by a stereographic projection of S 3 onto R3

, but this result is 
of no importance for us.] 

Next we cast (3.27a) and (3.27b) into more useful forms. 
Consider the Hilbert space direct sum 

K = y2(T 3+) $ y2(T 3-) = y2(T3)' 

Also consider the decompositions 

d(T3) = d(T 3+) $ d(T 3- )CK 

(3.28) 

(3.29) 

(3.30) 

These decompositions are obvious since any function / in 
y2(T3) is equivalent to the pair (/10/2) with/IEy2(T 3+) and 
/2Ey2(T 3-)' Using the decomposition (3.29) we can com­
bine the two sets of equations of (3.27a) and (3.27b) into a 
convenient matrix form: 

(3.27a') 

(3.27b') 

With this we have shown that there exists a unitary 

representation 1(m2/A2)112 of SOo(4,1) on y2(T3) with the 
property that 

. (MIL" =1 a (3.32a) 

= i ((lIAa)B Il+ ) (J'J ) 
(lIA)B; h' (3.32b) 

for any / = (/1'/2)' with/IEiP ~ and.t;EiP ~ differentiable 
vectors of the positive and negative mass unitary representa­
tions K(m,a; + ) and K(m,a; - ) of fjJ • 

Now we show that the Nelson operator constructed out 
of the 

a ) ((lIA)B Il+ 
L and 

Il" a 
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which is a symmetric operator defined on ¢, has an essential­
ly self-adjoint extension to a larger domain (.@ 00)' namely 

the Nelson operator for the SOo(4, 1) multiplier representa­
tion, 1(m2/,t21'12 defined on the space .@oo of differentiable 

vectors for this SOo(4, 1) group representation. First observe 
that ¢ = .@ ~ EIl.@ ~ satisfies conditions (i) and (ii) of 
Theorem 2.2 for the representation of the Lie algebra of 
SOo(4,1) considered in Theorem 3.5. [Clearly 

0) (Mp.v and 
(l/A)B; 

and 

(
Mop.v 0) 

Mp.v ve,2"2(T3) 

so that Jab ve,2"2(T3) for all a,b = 0,1,2,3,4 by the above ex­
pressions for Jab'] Therefore, ¢ = .@ ~ EIl.@ ~ satisfies 
conditions (i) and (ii) of Theorem 2.2, so ¢C.@oo. We can 
define extensions of the operators (3.31) to be the Jp.v's of 
(3.32a) and theJsp.'s of(3.32b) defined on their maximal com­
mon invariant domain, .@ 00. They are all symmetric on .@ 00, 
since, according to 3.4, 1(m2/A21'12 is unitary (Theorem 2.3) so 
they are symmetric extensions of the expressions (3.32a) and 
(3.32b). 

Now we claim JV has an essentially self-adjoint exten­
sion JY"xt to .@ 00. We take the extension of the Nelson opera­
tor JV on ¢ to be the Nelson operator constructed out of the 
infinitesimal generators (3.32a) and (3.32b) of the SOo(4,1) 
multiplier representation 1(m2/,t 21'''' Here JY"xt agrees with 
JV on ¢. We claim it is essentially self-adjoint (e.s.a.) on.@ 00. 

To show this we prove the following result. 
Theorem 3.6: Let A be a symmetric operator with do­

main DcK. Let DI CD be a dense linear subset of K and 
suppose that A restricted toD I (A IDtl is e.s.a. then A is e.s.a. 
Although the theorem is well known, its proof is not so 
straightforward, so we present it in Appendix C. 

Now the Nelson operator for a unitary group represen­
tation is e.s.a. on the space of analytic vectors A (see Ref. 28) 
and A C.@oo (U(G)) (see Ref. 29) so by Theorem 3.6 

JY'"xt = JosJos + JiSJ iS + JoiJOi +! JikJ ik 

on.@oo = .@00(1(m2/,t21'12) is e.s.a. 
Now let us carry the representation 1(m2/,t21'12 of 

SOo(4,1) over into ,2"2(T 3+) EIl,2"2(T 3+) and obtain analo­
gous results about integrability of the Lie algebra representa­
tion on a dense subspace of this space. For this purpose we 
define the unitary operator 
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by 

,2"2(T 3+) EIl,2"2(T 3-) 

3v(p~(Ov)(p) 

= (v+(p),v_( - p))e,2"2(T 3+) EIl,2"2(T 3+)' 

(3.33) 

[v+(p)and v_(p) are the components ofv(pj in ,2"2(T 3+ ) and 
,2"2( T 3- ), respectively.] It is readily shown to be unitary, and 

we define "abstractly" a representation of SOo(4, 1) on 
£,2(T 3+) EIl,2"2(T 3+) by 1;m2/,t21~ = 01(m2/,t 21'12 0 -I. Here, 
1(m2/,t2)112 is constructed so that T(m2/,t2)'/2 and 1(m2/,t21,/2 are 
unitarily equivalent. Because of this unitary equivalence, we 
have also an extension of a similar Lie algebra representation 
defined on the direct sum of the spaces of differentiable vec­
tors of two positive energy spin-zero (positive mass) UIR's of 
?J. This proves (for the case s = 0) the result conjectured in 
Ref. 2. 

Finally we remark that the multiplier representations of 
=-=~~ 

SOo(4,1) on ,2"2(T3)' which we have constructed, areequiva-

lent to certain multiplier representations of SOo(4,1) on 
,2"2(S3)' The unitary equivalence is established through the 
use of the mapping 'T defined in (3.23). (See Refs. 3 and 4.) 

IV. THE INTEGRABILITY OF THE LIE ALGEBRA 
REPRESENTATION OF SOo(4,1) ON 
4J = <p(m,s; + ) Ell <p(m,si - ) C cW'(m,si + ) Ell cW'(m,s; - ) 

In this section we consider an arbitrary spin unitary 
irreducible representation of ?J -K(m,s; ± I-and state re­
sults analogous to those which we proved for the spin-zero 
case. First we note that there exists a generalization of 
Theorem 3.4 to arbitrary spin: There exists a continuous, 

unitary irreducible representation of SOo(4, 1) on the Hilbert 
space direct sum 

K(m,s; + ) Ell K(m,s; - ). 

This generalization to arbitrary spin, which is described in 
Ref. 4, involves replacing complex-valued functions on T3 
with complex vector-valued functions on T3, and a suitable 
modification of the multiplier Il(A,P) together with an inter­

nal SOo(4, 1) rotation of the finite-dimensional spaces in 
which the functions take their values30

; so in principle, the 
analysis of the last section should carry over with little differ­
ence, except for modifications that come about from dealing 
with vector-valued functions on T3• 

The analog of Theorem 3.5 for arbitrary spin involves 
only the addition of a term Sp.v (Ref. 31) to the orbital angular 
momentum tensor Mp.v. TheSp.v's generate various Lorentz 
transformations in the internal space of the vector-valued 
functions. Using this remark we may state the following ana-
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log of Theorem 3.5 for arbitrary spin. 
Theorem 4.1: The following expressions are the genera­

tors for a unitary representation of the Lie algebra of 

SOo(4, 1) by symmetric operators on eP (m,s) = eP (m,s; + ) 
ED eP (m,s; - ) 

(4.1) 

with 

~B ± =~(pp, +~{PP,Lpp,}) 
A I' A 2m 

and L = M + S . Therefore, on eP we have a symmet-
p..v Jtv J.&V 

ric representation ofthe Lie algebra of SOo(4,1) in which 

o ) and 
Lp,v 

are the generators of the representation. 
In order to prove this theorem we must first determine 

the form of the generators of the Poincare group representa­
tion acting on K(m,s; ± ). These expressions are well known 
and are given by31 generators of translations PI' and genera­
tors of Lorentz transformations Lp,v = Mp,v + Sp,v' where 
PI' andMp,v are given by (3.14). Thus the (l/A ) B p,± andLp,v 
ofEq. (4.1) are, as in Sec. III, bases for representations of the 

SOo(4,1) Lie algebra of ff(.9) in eP(m,s; + ) and eP (m,s; - ). 
Furthermore, they generate symmetric representations of 

SOo(4,1) ineP (m,s; + )andeP(m,s; - ) (byTheorem2.3),and 
therefore the matrix expressions in Eq. (4.1) generate a sym-

metric representation of SOo(4, 1) in eP (m,s). Finally we 
claim that the expressions in (4.1) are the generators of a 

unitary irreducible representation of SOo(4, 1) on 
K(m,s; + ) ED K(m,s; - ). To prove this we must know the 
explicit form of the generalization of the multiplier represen­
tation of Theorem 3.4 and then, using this form, we must 
calculate the infinitesimal generators of the representation. 
The calculation, which is basically the same as the calcula­
tion ofEqs. (3.27a) and (3.27b) (except the functions now are 
vector-valued functions), is given in Ref. 4. We obtain for the 
infinitesimal generators exactly those matrix expressions in 
(4.1), and for the same reasons as in Sec. III, they can be 
applied to any VEeP (m,s). These remarks complete the proof. 

The proof that the Nelson operator on eP (m,s) con­
structed out of the (l/A)B p,± and Lp,v in (4.1) has an e.s.a. 
extension to the space of differentiable vectors for an 

SOo(4,1) representation is essentially identical to the proof 
for the spin-zero case. [We use the fact that there exists a 

unitary irreducible representation of SOo(4,1) on 
K(m,s; + ) ED K(m,s; - ); and the infinitesimal generators 
ofthe representation when restricted to eP (m,s) are given by 
the matrix expressions ofEq. (4.1).] 

Finally we note that it is possible to obtain realizations 

of the principal series representations of SOo(4,1) on the 
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Hilbert space direct sum of two identical irreducible unitary 
representations of .9 

K(m,s; + ) ED K(m,s; + ). 
The proof of this fact involves an obvious generalization of 
the isometric isomorphism () defined in Sec. III to vector­
valued functions on T3 (see Ref. 4). Using this fact we can 
establish that there exists an essentially self-adjoint exten­
sion of the operator which is the image under () of the above 
Nelson operator on eP (m,s), i.e., an extension ofthe Nelson 
operator on eP (m,s; + ) ED eP (m,s; - ) constructed out of only 
(l/A)Bp,+ and Lp,v. 
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APPENDIX A: PROOF OF THEOREM 2.2 

Proof: First we show ~ '" satisfies properties (i) and (ii). 
(ii) is true by Theorem 2.1. If VE~ '" then the map fit 
__ U(et1a)v is C'" for all the generators fa of Y. But this 
implies Jav exists since iJav is the derivative of I at t = O. 
Hence, 

n 

Now suppose there exists a linear subspace ~' of K 
which satisfies conditions (i) and (ii) of the theorem and 
~ '" C ~'. Let VE~' then by (ii)Ja VE~' and so by induction, 
for each a,J ::VE~' for m = 1,2, .... Butthen, by Lemma 2.1 
VE~"'. Consequently~' = ~"'. Q. E. D. 

APPENDIX B: PROOF OF THEOREM 3.4 

To show that 1(m'/J. ')112 is a multiplier representation of 

SOo(4, 1) we must show 1(m'/J. ')"' (A ) is bounded and contin­
uous and that 

Jl(A,p) = (A -I)! + (A -1)~(pp,lm) 

is a continuously differentiable function of A and pI', which 
satisfies 

(i) Jl(e,p) = 1, V pETf', 
(ii) Jl(AIA 2,p) = Jl(AI ,p}Jl(A2:A1p), pETf'. 

When we prove that 1(m'/J.')112 is unitary, the boundedness 
requirement will follow immediately. Continuity means if 
the sequence An EG converges to A, then U (A n )tP-+U (A )r/J 
for every J/.rE,.?2(T3). This is clear since the multiplier is an 
a.e. continuously differentiable function of A and p I' and if 
An--A, then l(mA "-1 plm)--/(mA -I plm). Condition (i) 
for Jl(A, p) is easily seen to be valid. Condition (ii) can be 
shown by a direct calculation.4 Thus T(m'/J. ')112 is a mUltiplier 
representation of SOo(4,1) on ,.?2(T3). 

To prove 1(m'/J. ')112 is unitary we first observe that tht 
measure on T3, [see Eq. (3.25)], which we denote by dll, 
transforms in the following way under AE SOo(4,1) (Refs. 3 
and 4): 
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dfJ'= [la!(A-)) +Ia!(A-))(pv/mW]-) dfJ. (Bl) 

Consequently we have for f, ge,2"2(T3) 

(1(m2/A 2)'/2 (A )f,1(m2/A 2)'/2 (A )g) = (f ,g), 

where we have used Eqs. (3.25), (3.26), and the above equa­
tion for the transformation property of the measure. Irredu­
cibility of this representation is proved in Ref. 3 (Bander and 
Itzykson) and also Ref. 4 by demonstrating the unitary 

equivalence between 1(m2/A2)'/2 SOo(4,1) and another repre­

sentation of SOo(4, 1) on ,2"2(S3)' In the quoted reference, 

irreducibility for the SOo(4, 1) representation on ,2"2(S3) is 
explicitly demonstrated.32 

APPENDIX C: PROOF OF THEOREM 3.6 

Proof: We have (1) A symm:::}A •• = A (L symm:::}L 
CL *:::}D (L *)dense:::}A .. = A (Ref. 33)). 

Also (2) A symmetriC:::}A symmetric [Proof: A CA • 
:::}A •• CA * (take *j:::}A •• C (A •• ). (take .). But A = A .. 
and A * = (A •• )* . ... A CA •. ] Further (3) A e.s.a. :::}A • s.a. 
[Proof:A· = (A **). = (A) =A,sincetheclosureofane.s.a. 
operator is self-adjoint and also we have used the fact that 
A symm:::}A •• = A.] 

Now let A be the operator in the hypothesis of the 
theorem; then 

A)CA so A*CAT=AT'" [sinceATiss.a.by(3)]. 

Also 

A; =AT ...... CA·· =A (Ref. 33) 

".ATcA. 

But A T is s.a., and A is symmetric by (2). So we will be 
finished provided we show for any two operatorsL), L2 with 
L) s.a., L2 symmetric andL) CL2 thatL2 is s.a. (which means 
L\ = L\). To see this: L) C L 2:::}L TCL T butLz symmetric 
and L) s.a., so L 2 CL fCLT = L\ . ... L 2 CL):::}L2 = L). 
(Thus A = AT = A\, so A is s.a. so A is e.s.a.) Q. E. D. 
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A variation of the lemma of Jacobson-Morozov on the imbedding of a nonzero nilpotent element 
of the real symplectic algebra into the split simple three-dimensional Lie algebra is proved. The 
proof is algorithmic and relies on our earlier work on the theory of normal forms for the real 
symplectic algebra. 

I. INTRODUCTION 

Let (H2n ,w) be the 2n-dimensionalreal vectorspacewith a 
symplectic form w. Consider a real analytic Hamiltonian 
function H: H2n ---+oR with power series H = $ t= 2 Hi' where 
Hi is a degree i real homogeneous polynomial. When investi­
gating the local behavior of the corresponding Hamiltonian 
vector field X H' one of the most powerful techniques is to 
eliminate or to simplify the terms of H through successive 
applications of canonical transformations, also known as the 
(nonlinear) normal form theory. 

ThelinearvectorfieldXHz viewedasafirst-orderdifferen­
tial operator maps the space of n-degree homogenous poly­
nomials into itself. Putting H into a normal form, then, re­
duces to the problem of finding suitable generators for the 
complement ofthe image of this map. The linear Hamilton­
ian vector field X Hz belongs to the real symplectic algebra 
sp(2n, H) and, in principle, the normal form problem can be 
solved using representation theory ofsp(2n, H) on the graded 
algebra of real homogenous polynomials. 

Recently,Cushmanandhiscollaboratorslcarriedoutthis 
program successfully for systems with two degrees of free­
dom using representation theory of sp(4, H). Following the 
customary first step in representation theory of Lie alge­
bras,2 they first imbed the nilpotent part of X Hz ' in a certain 
way, into the split simple three-dimensional Lie algebra 
sl(2, R). 

The purpose of this paperis to prove a variant of the classi­
cal Jacobson-Morozov lemma3

,4 by generalizing their im­
bedding for any element of sp(2n, H) with nonzero nilpotent 
part. A similar lemma can be proved for other classical Lie 
algebras by using the results in Refs. 5 and 6. 

II. A JACOBSON-MOROZOV LEMMA 

Lemma: LetA be an element ofsp(2n,H) and A =N + S 
be its Jordan-Chevalley decomposition, that is, N is nilpo­
tent, Sis semisimple with NS = SN. Suppose that N #0. 
Then there exist two elements X and Yin sp(2n, H) contained 
in the centralizer of S satisfying the commutation relations 

[X, Y] = 2Y, [X, N] = - 2N, [Y, N] = X. 
Proof: V sing symplectic change ofbases, that is, elements 

of the real symplectic group Sp(2n, lIt) we can first put A into 
a (linear) normal form. For our purpose a particularly suit­
able complete set of all possible normal forms of A is given in 
List II of Ref. 6, which is also reproduced as List I in Ref. 7. 
The notation used below refers to this list. 

It suffices to prove the lemma only for the elements of 
sp(2n, R) which are in normal form and indecomposable. 
Notice, first, that in the list the nilpotent parts N are in the 
classical Jordan normal form. Therefore, it follows from the 
proof of the Morozov lemma for gl(n, q given by Jacobson3 

that the elements N, X, and Y described below satisfy the 
desired commutation relations. It remains to show, then, 
that in the special basis chosen in the list, X and similarly Y 
satisfy the following matrix equations: 

wX = -.xr w, (1) 
u=n ~ 

To solve (1), letw = (wa,fJ) and X = (XU..B) be their block 
divisions according to the sizes of the diagonal blocks of w. It 
is evident from the list that 

",~"~ .. p[ - 1 
-1 1 with .. "~ ± I. .. ' 

wa fJ = 0, if a #f3. 
Suppose that XU,fJ is of size k X I. Then X satisfies (1) if and 
only if 

( _ l)i + I X a..B . . = ( _ 1 y' + IX fJ,a 
k - I + I" /- i + I,i (3) 

with i = 1, ... , k andj = 1, ... , I. 
V sing (3) it is easy to verify that X and Y described below 

are infinitesimally symplectic. 
Case l' Suppose that A = N is as given in (1) of the list. 

Then 

and 

Xi,i = m - 2(i - 1), 

Xi,i =0, 

Yi,i + I = - im + i(i - 1), 

Yi,i =0, 

i= 1 .... ,m + 1, 

otherwise, 

i = 1, ... , m, 

otherwise. 

Case II' Suppose that A = Nis as given in (2) of the list. 

Then 

and 

Xi+n(m+ I),i+n(m+ I) = m - 2(i - 1), 

i = 1, ... , m + 1 and n = 0, 1, 

Xi,i = 0, otherwise, 
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Y;+n(m+I),;+I+n(m+11 = -im+i(i-l), 

i = 1, ... , m and n = 0,1, 

1';,1 = 0, otherwise. 

In the remaining cases semisimple parts of the indecom­
posable types in the list are no longer zero. Therefore, one 
needs to verify that X and Y given below commute with S. 
This is immediate, however, since the semisimple parts are 
piecewise multiples of the identity. 

CaseIIL'SupposethatA = N + Sis as given in (3), (4), or 
(5) of the list. Then X and Yare the same as in Case II above. 

Case IV,' Suppose that A =N + Sis as given in (6) of the 
list. Then 

and 

XI + n(m + II,; + n(m + I) = m - 2(i - 1), 

i = 1, ... , m + 1, n = 0, 1, 2, 3, 

XI,J = 0, otherwise, 

Y;+n(m+ 1),;+ I +n(m+ I) = - im + i(i - 1), 

i = 1, ... , m and n = 0, 1, 2, 3, 

Yi,1 = 0, otherwise. 

This concludes the proof of the lemma. 
The imbedding above is algorithmic in the sense that fol­

lowing Burgoyne and Cushman8 one can first put any ele-
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ment A of sp(2n, R) into the normal form as a direct sum of 
the entries of the list and then use the infinitesimally sym­
plectic matrices X and Y given in the proof above. 

Notice that the bases in the list are not the standard one. 
Using the information in the two lists given in Ref. 6, how­
ever, the elements N, X, and Y can easily be written in the 
standard symplectic basis. 
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Representations of a Kac-Moody algebra g associated to a semisimple Lie algebra g, which 
decompose to a direct sum of finite-dimensional representations of the subalgebra g, are 
constructed using a step algebra method. The cases 9 = {lu(2), {lu(3) are considered in detail. 

I. INTRODUCTION AND NOTATION 

Kac-Moody algebras appear in several places in classi­
cal and quantum physics. It is known that certain classical 
field equations in 1 + 1 space-time dimensions admit infi­
nite-dimensional symmetry groups which have a Kac­
Moody type of Lie algebra. I In 2 + 1 dimensions the current 
algebra of a Yang-Mills theory with an anomalous term (to­
pological mass) is a full Kac-Moody algebra (including the 
central term) provided that certain nontrivial boundary con­
ditions for the gauge fields are satisfied.2 In four space-time 
dimensions the self-duality equations for the gauge poten­
tials possess a Kac-Moody symmetry. 3 There are also sever­
al models in (1 + 1 )-dimensional quantum field theory 
which lead to Kac-Moody algebras.4 I have given here only 
a few references to the fastly growing literature; more can be 
found for example in the review article by Dolan.5 

Let 9 be a finite-dimensional Lie algebra with the Kill­
ing form (x,y):=tradx·ady,x,yeg and adx:g~g, 
ad x(y): = [x, y]. Let g be the linear space of Laurent polyno­

mials p(z, Z-I) with values in g. There is a natural grading by 
degree and we can write 

(1.1) 

If x e 9 denote x ln ): = X • in) e gin). The Lie algebra structure 
on g is defined by 

[xln),ylm)]:= [x,y](n+m) +ia.n8n. _m(x,y), (1.2) 

where a is a constant. If G is a simply connected and con­
nected real Lie group with the Lie algebra g, then g is the Lie 
algebra of a one-dimensional central extension G of the 
group of G-valued C<so -functions on the unit circle S I (with 
point-wise mUltiplication), 

if, a)(g, b): = lfg, abeiOJif,g)), (1.3) 

with lfg) (,p): =J(,p )g(,p) and wif, g) is a two-cocycle. Ifwe 
consider the group consisting of maps D---+G instead of 
S I~G, whereDis the unit disk with S I as the boundary, then 
w can be defined by 

wif, g): = a 1(1-1 df, g-I dg). (1.4) 

If 
J(z) = etx(z), g(z) = f!YIz), zeD, (1.5) 

where x andy are g-valued functions and t, s real parameters, 
then 

d
dd

2 

w({, g)lt=s=o = a r (dx, dy) = a r (x, dy). 
t s JD JSI 

(1.6) 

Inserting the Fourier componentsx(n)(q:J) = x exp inq:J,y(m)(q:J) 
= y exp imq:J in (1.6), one gets the central term in (1.2). 

There are two ways to construct representations of g. 
First one can try to construct representations of G by global 
methods and then differentiate these to give representations 
of g. Global methods have been used for example in Ref. 6. I 
shall follow a second route, namely I shall construct directly 
representations of g by algebraic methods. I am not going to 
solve the (very difficult) problem which of the representa­
tions of g correspond to unitary representations of G. 

Step algebra ( = algebra of raising and lowering opera­
tors) methods have been applied earlier to a wide variety of 
problems. In the beginning, step algebras were used for con­
structing irreducible finite-dimensional representations of 
classical Lie algebras in canonical chains of subalgebras.7 It 
was later realized that step algebras could be constructed 
also for noncanonical chains.8 In the next phase it was shown 
how to use these methods to classify irreducible infinite-di­
mensional f-finite representations of Lie algebras containing 
a semisimple subalgebra f(f-finite means that the representa­
tion is a direct sum of finite-dimensional representations of 
f ; irreducibility refers to the larger Lie algebra).9 In this pa­
per I want to show that step algebras are useful also in the 
representation theory of Kac-Moody algebras. The algebra 
g contains the subalgebra glO) which can be identified with g. I 
shall discuss the g-finite representations of g for the semisim­
pIe Lie algebras g. The case 9 = AI ~{lu(2) is worked out in 
detail in Sec. II. Section III contains first some general re­
sults, valid for all semisimple g, which are then applied to the 
case 9 =A2• 

The representations which will be constructed are 
called the discrete series because of a certain parallelism with 
the theory of discrete series of semisimple Lie algebras; the 
term "discrete" has to be understood in a somewhat general­
ized sense since, in addition to a set of discrete parameters 
(dominant integral weight of g), the representations will be 
parametrized by a representation of an infinite-dimensional 
Heisenberg algebra. The same kind of Heisenberg algebras 
appear also in the theory of maximal weight representations 
of g.IO.11 

Let f) C 9 be a Cartan subalgebra, 1[/ the system of roots 
for (g, f)) and..:i = {al, ... ,ar} C '" a system of simple roots. 
Let f)* be the dual of f) and (., .); f)* X f)*~C the dual of the 
Killing form of 9 restricted to f). Put 

(a, /3 ): = 2((a, /3 )/({3, /3)). (1.7) 

Then the set of dominant integral weights is 
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A + = {Aelj*I(A,a) eZ+ Vae.::1]. (1.S) 

Z+ is the set of non-negative integers. If the g-module Vis g­
finite, then 

V= E9 VA' 
..lEA + 

(1.9) 

where VA is a direct sum of irreducible finite-dimensional g­
modules with the highest weight A. The g-submodule VA 
C V is the minimal components of V, if VI' = 0 for fL <A 
(here "<" refers to a certain lexicographical ordering on 
A +) and VA #0. My aim is to show that if the minimal A­
value is not "too small" then all the irreducible g-finite g­
modules with the minimal component VA can be parame­
trized by representations of a certain infinite-dimensional 
Heisenberg algebra which is acting on the subspace 
V A+ C VA of highest weight vectors. This claim will be prov­
en for the cases g = A I' A2 but, using the results of Sec. III, it 
should be rather straightforward work to prove similar theo­
rems for other semisimple algebras g. 

For different approaches to the representation theory of 
9 see for example Refs. 11. The results in Ref. 11 seem to have 
little in common with the present paper. Except for the high­
est weight modules, people have earlier been interested 
mainly in modules which correspond to unitary representa­
tions of groups. Here the representations are (for the most 
part) nonunitary. 

II. THE CASE g = ~u(2) 

Let {x, h,y] be a basis of the (complex) Lie algebra 
g =AI ~~u(2) such that 

[x,y] =2h, [h,x] =x, [h,y] = -yo (2.1) 

The element h spans the Cartan subalgebra lj C g. A basis of 
9 is given by the elements x(nl, h (n!, y(nl (n e Z) with the com­
mutators 

[x(nl, y1ml] = 2h (m + nl + 4anon. _ m' 

[h(nl,x(ml] =x(n+ml, [h(nl,y(ml] = _y1n+ml, (2.2) 

[h (nl, h (ml ] = 2anon• _ m' 

Forbrevity,letuswritex(OI = x,y(O) = y,andh (0) = h. Define 
the following set of elements in the enveloping algebra U (9) 
ofg: 

s<~ = x(n), S<o"l = x(n~ + 2h (nih, (2.3) 

s(~ = x(n~2 + h (n~(4h - 2) - y1nlh (4h - 2), 

where n = ± 1, ± 2, .... All these elements s have the prop­
erty 

xs=O mod U (9)x. (2.4) 

In addition, 

[ h, s(~ ] = s<~, [ h, S<o"l] = 0, [ h, S<~ ] = - s(~ • 
(2.5) 

S~: = {seSolhs=sh] CSo. (2.7) 
The set of dominant integral weights A + C lj* is character­
ized by A (h ) e !Z, A (h »0 (by agreeing that x corresponds to 
the positive root). For brevity, let us write A for the value 
A (h ). If V is g-finite, then 

V= E9 VA' 
A=O.!.I •... 

(2.S) 

Set 

V/ = {ve VAlxv=O], V+ = {ve Vlxv=O]. (2.9) 

Clearly So V + C V + and S ~ V / C V / . The annihilator in 
U(g) ofa vector O#v e V/ is denoted byJA , 

JA = U(g)x + U(g). (h - A) + U(g). y2-<+ I. (2.10) 

Let 

DA = S~/S~ n U(g)JA' (2.11) 

Each V / C V has a natural D A -module structure. In fact, 
from Ref. 12, Proposition 1.3, it follows that the map 
V t---+ V / gives a 1-1 correspondence between (equivalence 
classes of) irreducible g-finite g-modules and irreducible D A -

modules. In Ref. 12 the Lie algebras were assumed to be 
finite dimensional, but the proof does not really depend on 
this assumption; the only thing which matters is that the 
adjoint action of the semisimple subalgebra g C 9 on 9 splits 
into a direct sum of finite-dimensional representations of g. 
(In our case here, each summand is equivalent to the vector 
representation A = 1.) 

We call VA the minimal component of Vif VA #0 and 
VI' = 0 for fL <A. It is clear that s(~ V / = 0 for all n. Let 
T C So be the subspace spanned by the elements s(~ , and let 

D1 =S~/S~ n(U(g)JA + SoT). (2.12) 

Since SoT annihilates V / , the subspace V / C V carries in 
a natural way a representation of the algebra D ~ . According 
to Ref. 12, Theorem 1.4, the mapping V t---+ V A+ gives a 1-1 
correspondence between irreducible g-finite representations 
of g, with the minimal component VA and the irreducible 
nonzero representations of D ~. All we have to do is to com­
puteD1· 

Lemma 2.1: The following equations hold mod U (g)x. 

s(~ s(~) h 2(h - !) 

= - !(h + 1)s<~ s(~1 + h (h + l)(h + !)s<~1 S<~ 
- 2(h - !)(h + !)s<onISbml + 4( 1 - on. _ m) 

X (h + l)(h - !)(h + !)hS<o" + ml 

+ Sh 2(h - !)(h + !)(h + l)(h + 2am + l}On. _ m' 

(2.13a) 

X h (h - 1)( 1 - On. _ m ), (2.13b) 

Let Vbeany g-moduleand v e Vsuch that xv = O. From (2.4) (S<o"lS<oml - S<omlS<o"l - 16anon. _mh 2)(h -!) 
follows that = -!sI~ s(~) + !sI~1 S<~ . (2.14) 

xp(S<~ ,Sbnl)V = 0 (2.6) 

for any polynomialp of the elements (2.3). Let So = So(g, g) 
be the algebra generated by (2.3) and h, 
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(n,l (nplh (m,l h (m.l (I,l (I,lh s x ···x ... y ... y (2.15) 

(nj , mj> Ii #0), 

with n l <.n2<.···<.np and a similar ordering for the m;'s and 
Ij's. Then 

(2.16) 

Let Q be the projection on the first summand. One can show 
(Ref. 13, Theorem 1, Ref. 14, pp. 46 and 47) that if s I> S2 E So 
then 

(2.17) 

Theorem 2.2: If A = 1, p, ... then D ~ is the infinite-
dimensional Heisenberg algebra generated by 

so"l(n = ± 1, ± 2, ... ), 

(2.18) 

Proof: Using the commutation relations (2.13a) and 
(2.13b), in any product containing s ± 's and so's the elements 
L can be commuted step by step to the right modulo J). ; on 
the other hand elements in SoT represent the class zero in the 
factor algebra D ~. The commutation relations of the ele­
ments slo"l (more precisely, the corresponding classes in D ~) 
follow now from (2.14). Thus sg'l, So - nl satisfy for each 0 < n 
the commutation relations of a Heisenberg algebra and these 
algebras commute for different values of n EN. Using the 
map Q it is easy to show that 0# 1 mod(J). + T). From the 
standard properties of a Heisenberg algebra follows that 
there cannot be any other polynomial relations in D ~, in 
addition to those obtained from the commutation relations 
(2.18), without the algebra being zero. D 

By the theorem above, all the irreducible g-finite g-mo­
dules with the minimal component V)., .1,= 1,~, 2, ... , are 
parametrized by irreducible representations of a Heisenberg 
algebra. If A = 0, !, the structure of D ~ is much more com­
plicated and I have no results about representations of 9 with 
a minimal component, Vo or V I / 2• 

If the g-module V corresponds to a unitary representa­
tion of the group ofSU(2)-valued functions on the unit circle, 
then there should be an inner product in V such that the 
following Hermiticity conditions hold: 

x(nlt =y(-nl, y'nlt =x(-nl, h(nlt =h(-nl. (2.19) 

From (2.19) it follows that 

(VI' sI~t h (4h + 2)V2) = (VI' - s(~ nlV2 ), 

(VI' sI~tV2) = (VI' - h (4h + 2)l; nlV2 ), 

for VI' V2 EV+. 

(2.20a) 

(2.20b) 

(2.20c) 

In particular, the minimal component V / (A;;d) of V 
carries a representation of the algebraD ~ satisfying the Her­
miticity conditions (2.20c). Suppose for example that a> O. 
then s~l, 0 < n, plays the role of an annihilation operator and 
slo - nl is the corresponding creation operator. A reasonable 
first guess would be that V is a Hermitian g-module if V / is 
a Hermitian D ~ -module [in the sense of (2.2Oc)]. However, 
things are not so simple as the following example shows. 
Take the Fock representation of D ~, which is characterized 
by 
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V/ =D~vo, slo"lvo=O for n>O, (2.21) 

and by sg'lt = slo - nl. Now the square of the norm of the vector 

s~ Vo is 
(s(~ vo, s(~ vol = (vo, s(~ts(~ vol 

= (v sI - nls(nl V ) • - 1 
0' - + 0 (A + 1)(4.1, + 6) 

A +! - 2 (v s( - nls!nlv ) 
- .1,2(.1, + 1)(4.1, + 6) 0' 0 0 0 

_ 8. (A + !)(A + 2an + 1) 

4.1,+6 

_ 8. {It + !)(It + 2an + 1) if 0 
, n>, 

4.1,+6 
(2.22) 

where the Eq. (2.13a) has been used. Therefore, IIs'~ vol1 2 < 0 
for n>O. 

III. DISCRETE SERIES OF 9 FOR SEMISIMPLE 9 

Let 9 be a semisimple Lie algebra. I shall use the nota­
tion of Sec. I. Let us define a lexicographical ordering in the 
set of weights 

A = 1.1, E lj*I(A, a j ) EZ, l<.i<./J. 

When A, A ' E A then A > A ' if A #.1, ' and the first nonzero 
integer in the set (A -A', al),(A -A', a2 ), ••• , (A -A', al) 
is positive. Let It~nl, ... ,t~lJ be a basis of g(nl C 9 such that 
each t \nl is a weight vector, 

(3.1) 

It is clear that each J-lj is a root for (g, lj), J-lj E '/I. Fix the 
indexing so that 

(3.2) 

Of course, only the rootJ-lj = 0 can have a multiplicity bigger 
than one. The set It\nlIO#nEZ, l<.i<.NJ is a basis of the 
ad g-invariant complement l> of 9 in g. Define an ordering in 
this basis by t \nl < t r l if i <j or-! = j and n < m. Let UI C U(9) 

be the subspace spanned by the ordered monomials t ~> .. t ~:kl 
multiplied by arbitrary elements of U(lj). One can write 

9 = g+ EIllj Ell g_, (3.3) 

where g+ (respectively, g_) corresponds to the positive (re­
spectively, negative) roots; here "positive" refers to the stan­
dard ordering determined by the set of simple roots.J. Now 

U(9) = UI Ell U(9)g+ Ell UIU(g_)g_. (3.4) 

Let Q ' be the projection on the first summand and let Q: U (9)/ 
U(9)g+-UI, 

Q(u + U(9)g+): = Q'(u). (3.5) 

Define 

S '(g, g) = 1 u E U(9)lg+u C U(9)g+ J 

and the step algebra 

S(g, g) =S'(g, g)/U(9)g+. 

It is known that the mapping 

Q:S (g, gj-UI 
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is injective (Ref. 13, Theorem 1; Ref. 14, pp. 46 and 47). Let 
SoHi,g) be the subalgebra of S (g, g) generated by the elementss 
such that Q (s) E ~U(lj). It is known that if Q (s) = dnlp(h), 
where p(h ) E U (h ), then 

s = t \nlp(h ) + Lt 5"lqj, 
j 

where qj E U(g_ + lj) and qj:;;60 only ifJ.Lj - J.Li is a positive 
root (Ref. 14, Proposition 1). For A EA + I denote by J ... 
C U (g) the annihilator of the vector of highest weight in a 

finite-dimensional g-module with highest weight A. Let S ~ 
be the subalgebra of So = So(9,g) generated by the elements 
SI,s2' wheresl,s2 E Soands2 isa weight vector (with respect to 
the adjoint action oflj) with a negative weight in the lexico­
graphical ordering. Finally, 

D~: =S&/S& n(U(g)J ... +S~), (3.9) 

where S& = [s E Sol [h, s] = 0 Vh E ljJ. If Vis a g-finite g­
module, then V ... C Vis the minimal component if 0:;;6 V ... is 
minimal with respect to the lexicographical ordering. As in 
the case 9 = AI' the g-finite irreducible representations of 9 
with a minimal component V ... will be described by the action 
of D ~ on V / (Ref. 12, Theorem 1.4). 

Letf ... =U(9).[h-A(h)lhEljJ(AElj*)and let1T ... : 
U(g)--.U(g)/f ... be the canonical projection, Q ... : = 1T ... 0 Q. 

Lemma 3.1: Let s E S (g, g). Then Q ... (s) = 0 
iff s E U(g)J ... /U(9)g+. 

Proof: (Ref. 15, Lemma 4.4 or Ref. 16, Proposition II. 
2.12). 0 

Let v E A + and let m(A ® B;v) denote the multiplicity of 
the irreducible representation with highest weight v, in the 
tensor product of representations A and B of g. If T C U (9) is 
an ad lj-invariant subspace, denote by T (A ) the weight space 
corresponding to the weight A E lj*. 

Lemma 3.2: Let T C UI be an ad g-invariant finite-di­
mensional subspace, A E A + and v EA. Then the dimension 
n(A, v) of the subspace Q,d[s ES(g, g)IQ ... (s) E T(v)J) C T(v) 
is equal to m(T®A, A + v). 

Proof Let v+: = 1 +~U(9)J ... E U(g)/U(9)J .... Then 
U(9)/U(9)J ... is a g-finite (left) g-moduleand U(g)v+ is in fact 
the g-moduleA. Let W: = T . v+; this is a finite-dimensional 
g-submodule of U (9)/ U (9)J .... By Ref. 16, Theorem II. 2.20 
there existssl, ... ,sp E S (9, g) such that [SIV+ , ... ,sp v+ J is a ba­
sis of W /+v' By Lemma 3.1, dim W"'++v = n(A, v). On the 
other hand, clearly dim W"'++v = m (T®A; A + v). 0 

LetS~(n, m) C So(9, g) be the subspace spanned by vec­
tors of the type s\n1sr + sl;m1sj"l, where 
Q WI) E tlklU(lj)(k = n, m) with J.Li >J.Lj and J.Li + J.Lj = v. 
Let S~(n, m) C So be the space spanned by the antisymme­
tric combinations s\n1sr1 - sl;m1sj"l. Denote by R _ (respective­
ly, R+) the set of negative (respectively, positive) roots with 
respect to the lexicographical ordering; set 
R ± = R ± U [ 0 J. Let (J) be the adjoint representation of g. 
Remember that 9 ~ glnl for each n, as ad g-modules. Denote 
by (J); the symmetric part of the tensor product (J) ® (J) and let 
(J)~ be the antisymmetric part. 

Theorem 3:3: Let A 0+ C A be a subset such that 
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andifn:;;6m, 

dim Q ... (S~(n, m))>m({J)~ ® A; A + v), 

VvER_ +R+, 

(ii) if A E A 0+ , J.Li E R + and A + J.Li E A +, 

then A + J.Li EA 0+ . 

Then D ~ is generated by the weight zero elements 
s E SO, Q ... (s) E ~(O). 

Proof: Consider a typical monomial s = sls2",sf in 

So(9, g), Q (s k ) E t ~:kl U (lj). I want to show by an induction on 

the length! that s is equal, mod (U (g)J ... + S ~), to a polyno­
mial containing only elementssk ofweightJ.L ER+. If in par­
ticular s E S &, then each s k has to be of weight zero. Clearly 
the assertion holds if! = 1. Consider now the induction from 
! - 1 to f By the induction assumption we can assume that 

J.Li
k 
>0 for k = 2,3, ... / Suppose that J.Li, < O. Denote 

A ' = A + J.Li2 + J.LiJ + ... + J.L~, v = J.Li, + J.Li2 ' 

V = s¥4"'sf . (1 + U (9)J ... ) E U (9)/ U (g)J .... 

Using the g-module isomorphism (provided by the symme­
trization mapping) between the symmetric algebra A (9) on 9 
and the enveloping algebra U (9), the vector s IS2V can be con­

sidered as a vector in the g-module glO,1 ® gln21 ®A " modulo 
lower-order terms in ~ arising from the commutators 
[glnd, gln2)]. Dividing this vector into a symmetric and an 
antisymmetric part in the upper indices, it follows that 
SlS2V = WaV + WsV, mod lower-order terms, where 
Ws ES~(nl' n2) and Wa ES~(nl' nz) by (i); A' EA 0+ by the 
assumption (ii). Now both Ws and Wa are linear combinations 
of terms of the types;s; wheres;, s; are of first order in~, of 
weight YI' Y2 (in this order) with YI>Y2' YI + Y2 = v. Again 
by the induction assumption S;S3S4,,,sf can be written as a 
polynomial mod (U (9)J ... + S ~) of degree <f - I, contain­
ing only elements of non-negative weight. Since YI >J.Li" we 
can show by a second induction on the weight of the first 
factor that s is equal to polynomial, mod ( U (9)J ... + S ~), 
where all the elements (including the first) are of non-nega­
tive weight. 0 

As an example I shall show how the general results 
above can be applied to the case 9 = A 2• Let [a I' a2 J be a set 
of simple roots for g. Then the set of nonzero roots is 
f/!= [aI' a 2 , a l +a2, -aI' -az, -al-a2J·lnthelexi­
cographical ordering "<" with respect to the coordinates 
(A, a I)' (A, a 2 ) of a weight A. E A we have 

R+ = [aI, a l + a2, - a 2J, 

R_ = [-aI' -al -a2,a2 J. (3.10) 

Let 

Ao+:= [AEA +1(A,a l »2J. 
Clearly A 0+ satisfies the condition (ii) in Theorem 3.4. The 
adjoint representation is now (J) = ({J)I' (J)2) = (1, 1). Using 
the standard Young tableaux rules for tensor products one 
gets 

(J); = (2, 2) 6) (1, 1) 6) (0, 0), (J)~ = (3, 0) 6) (0,3) 6) (1, 1). 
(3.11) 

Jouko Mickelsson 380 



                                                                                                                                    

A®W = (A, + I,A2 + 1) Ell (A, -1,A2 + 2) 

Ell (A, - 2, A2 + 1) Ell (2 - 8 0..t2) • A 

Ell (1 - 8 0..t2) • (A, + 2, A2 - 1) Ell (1 - 8 0..t,l 

. (A, - 1, A2 - 1) 

Ell (1 - 80..t28U2) • (A, + 1, A2 - 1). (3.12) 

All the multiplicities are .;;;;; 1 except the multiplicity of A, 
which is 1 or 2. By a straightforward computation of the 
relevant multiplicities one can show that the condition (i) of 
Theorem 3.3 is satisifed. As an example, let us consider the 
case v=O. 

A.A2>1 

In this case m(w; ® A; A ) = 6 and m(w; ® A; A ) = 4. Ei­
ther using the explicit formulas in the Appendix or Lemma 
3.2 and the following multiplicities 

m(w ®A; A - a,) = m(w ®A; A + a2) 

= m(w ®A; A - a, - a2) = 1, (3.13) 

m(w ®A; A) = 2, 

m(w ®A;A + JL) = m(w ® (A + JL);A), 

it is seen that for each O#n e N there exists elements s\n), s~n) 
and for each root JL#O elements sn)Vt) in So such that 
0# Q..t (s\n)) e g(n)(o) (i = 1,2), O#Q..tW)Vt)) e g(n)Vt) and such 
that the following symmetrized and (when n#m) antisym­
metrized combinations are linearly independent: 

sn)Vt)Sm)( - JL) + sm)Vt)Sn)( - JL), JL e R +' 

sln)sjm) + slm)sjn), i>j, 

sn)Vt )Sm)( - JL) - s(m)Vt jSn)( - JL), JL e R +' 

st)s~m) - st)s~n). (3.14) 

There are six symmetric and four antisymmetric combina­
tions and so the condition (i) is satisfied. 

B.A2=O 

Nowm(w; ®A; A) = 3 andm(w; ®A; A) = 2. Using the 
fact that m(w ® A; A - a!l = m(w ® A; A + a2) 
= m(w ®A; A) and m(w ®A; A + JL) = m(w ® (A + JL); A) 
one can see that the following combinations are linearly in­
dependent, mod U@'..t: 

sn)Vt)Sm)( - JL) + sm)Vt)s(n)( - JL), JL = a, or - a2, 

st)st) + st)st), (3.15) 

s(n)Vt )Sm)( - JL) - sm)Vt )s(n)( - JL), 

JL = a, or - a2, n#m. 

Thus there are three independent symmetric elements and 
two (when m#n) antisymmetric elements. 

The other cases (v#O) are handled in a similar way. 
Thus, 

Theorem 3.4: Let g = A2 and 
A 0+ = {A e A + I (A, a,) > 2}. Then for all A e A 0+ the alge­
bra D t is generated by the elements s e So with Q..t (s) e .»(0). 

Remark: If A2> 1, there are two independent sets of gen-
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erators, namely {s,n)IO:;6n e Z} and {s~n)IO#n e Z} as given 
in the Appendix; if A2 = 0, {s~n)} is the set of generators. 

Theorem 3.5: Let g = A2 and A €A 0+ • Then the algebra 
D t is an infinite-dimensional Heisenberg algebra with the 
commutation relations 

[ st), s~m)] = 0, 

[st), st)] = 16na8n, _mA i(A, +A2 + W, (3.16) 

[s~n), s~m)] = 16na8n, _ mA ~(A, + A2 + W, 

where O#n, m e Z. 

Proof By a simple computation, 

Q..t ( [ st), st)]) = (e\nd e~';') - e\~)e~~) 

XA,(A, + A2 + W + 9(eWe~';') - e\~Wll 

XA,(A, + l)(A, + A2 + 1) 

+ 16na8n, _mA i(A, + A2 + If 
(3.17) 

Looking at the formulas for the generators in the Appendix 
one can see that the sum of the two first terms is a linear 
combination of Q..t (sn)(a ,)Sm)( - a!l - sm)(a ,)s(n)( - a ,))and 
Q..t(sn)(a, + a2)Sm)( - a, - a2) - s(m)(a, + a2) 
Xsn)( -a,-a2l). Since sn)( -a!l,sn)( -a,-a2)eS6, 
the commutator in the algebra D t is equal to the last term in 
(3.17). Using the injectivity of Q..t and the Poincare-Birk­
hoff-Witt theorem one can show easily that there cannot be 
any other polynomial identities than those obtained from the 
commutation relations in Theorem 3.5. 0 

Combined with Ref. 12, Theorem 1.4, Theorem 3.5 
gives a complete characterization of all irreducible g-finite g­
modules with a minimal component V..t, A e A 0+ • 

APPENDIX COMPUTATION OF So(8', g) FOR g = A2 

Here we give a complete set of elements s e So(9, g) of 
first order in .» for the case g = A 2• These generate, together 
with U @, the algebra So. The generators have been obtained 
by a trial and error method. They could be computed also 
using the general formula (Lemma 8) in Ref. 17. Let us de­
note by ejj the generator of g which is represented in the 
fundamental 3 X 3-matrix respresentation by the matrix 

(e jj )kl = 8ik 8j1 

and set h, = ell - e22, h2 = e22 - e33. Then 

s\n) = (2h \n) + h ~))h,(h, + h2 + 1) 

+ 3e\nde2,(h, + h2 + 1) + 3e\nl e2 ,e32 

+ 3eWe3,(h, + 1), 

s~n) = (h \n) + 2h ~))h2(h, + h2 + 1) 

+ 3e~ledh, + h2 + 1) - 3eWe21e32 

+ 3e\nl e3 ,h2, 
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,yln)( _ a2) = e~ndh2(h2 - 1)(h l + h2 + 1) 

- h ~)edh2 - 1)(h l + h2 + 1) 

- e~le~2(hl + h2 + 1) + eWe32e21(h2 - 1) 

- JI~e31(h2 + 1)(h2 - 1) - e\~e3Ie32(h2 + 1) 

+ e\~~2e21> 
S(n)( - a l ) = e~n/hl(hl - 1)(h l + h2 + 1) 

- h \n)e21 (h l - 1)(h l + h2 + 1) 

- e\~e~1 (hi + h2 + 1) + e~nle21edhl - 1) 

+ J2~e31(hl - 1)(hl + 1) - e\~e3Ie21(hl + 1) 

,yln)( _ a l - a2) = eWh lh2(h l + h2)(hl + h2 + 1) 

+ e~~e2Ih2(hl + h2)(hl + h2 + 1) 

- e~n/e32hl(hl + h2)(hl + h2 + 1) 

- h ~n)(e32e21 + e3Ihl)h2(hl + h2) 

- h \n)(e3#21 - e31(h2 + 1))hI(h l + h2) 

+ J~d(e3~1 - e31e21(h2 + 2))(h l + h2) 

- e~~(e~2e21 + e3Ie32hl)(hl + h2) 

+ J~j(~2~1 + e3Ie3#21(h l - h2 - 2) 

- e~1 hl (h2 + 1)). 
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We consider the Laplace operator defined in the exterior of a resonator and we provide explicit 
estimates for the spectral concentration, in the sense of Kato, in terms of the width of the channel 
connecting the cavity with the exterior. 

I. INTRODUCTION 

In this paper we use Kato's notion of spectral concen­
tration 1.2 in a situation where the perturbed operators are 
defined in different Hilbert spaces. This case arises when one 
considers the negative Laplace operator H = - An, defined 
in an exterior region n, which has an almost opened cavity. 
We deal only with the Dirichlet boundary condition. Results 
involving other boundary conditions, which make the opera­
tor H self-adjoint, can be proven in a similar way. In Ref. 3 it 
is shown that H has resonances in the sense of Lavine,4 and 
explicit bounds for the sojourn times are provided in terms of 
the width of the channel connecting the cavity with the exte­
rior. We use this result to estimate the spectral concentration 
of H near the resonant energies. 

II. SPECTRAL CONCENTRATION 

Let Po be a positive real number and for each pE[O, Po), 
let Hp be a self-adjoint operator defined on a Hilbert space 
Kp. In order to state Kato's definition of spectral concen­
tration, we make the additional assumption that Ko is a 
closed subspace of Kp. Also, we denote by 1Tp the projection 
of Hp onto K o' and by Ep (A ) the spectral measure associat­
ed to the operator Hp. 

Definition 1: For 0 <p<.{Jo, let Sp and Tbe Borel subsets 
ofR. 

(a) We say that the part of the spectrum of Hp in T, with 
respect to K o, is asymptotically concentrated in Sp if 
s-lim Ep(T - Sp)1Tp = 0, i.e., ifEp(T - Sp)¢-o, asp-<), for 
all ¢EKo. In this case we write oi,Hp)nT£Sp. 

(b) Suppose that as p-<), the operator Ep(I)1Tp con­
verges strongly to Eo(I)1Tp [i.e., (Ep(I) - Eo(I))¢-o, for all 
¢EKo), for any interval ICR. Then, we say that the part of 
the spectrum of Hp in Sp, with respect to K o, is asymptoti­
cally the part of the spectrum of Ho in T if 
s-lim Ep(Sp)1Tp = Eo(T). In this case we write 
oi,Hp}rlSp -zoi,Ho)nT. 

Throughout the rest of this section we shall assume that 
the operators Hp converge to Ho in K o, in the sense that 
Ep(I)~Eo(I)¢, for all ¢EKo and all intervals ICR. The 
following result establishes the relationship between parts (a) 
and (b) of Definition 1. The proof is the same as in the case 
where all the operators Hp are defined on the same Hilbert 
space. 1.2 

Proposition 1: Suppose that T = (a,b), where a and b 
belong to the resolvent set of Ho and, for each p with 
o <p<.{Jo, let Sp CT. Then oi,Hp)nT£Sp if and only if 
oi,Hp}rlSp -zoi,Ho)nT. 

Closely related to the spectral concentration of a family 
{Hp J is the notion ofpseudoeigenvector. 

Definition 2: Let {Hp J be as above and suppose that 11.0 
is a simple, isolated eigenvalue of Ho with eigenvector 
t/JoEKo. Two families {t/JpEKpIO<P"PoJ and 
{Ap ER 10 <p<.{Jo J are called the pseudoeigenvector and 
pseudoeigenvalue of {Hp J, respectively, if 

and 

(i) limllt/Jp - t/Joll = 0, 
~ 

(ii) Ep = II(Hp -Ap)t/Jpll-o, asp-<). 

The rate of convergence of Ep to zero is called the order 
of the pseudoeigenpair { t/J p J , { A p J . 

The next result, which we prove in our more general 
context, was originally established by Kato. Its proof is a 
slight modification ofthe argument given in Ref. 1. 

Theorem 1: Let Hp and 11.0 be as in Definition 2 and let I 
be a closed interval such that Inoi,Ho) = {Ao J. Then, there 
exists a function g(p) such that g(P)-o as p-o and 
oi,Hp)n1£Ip = (Ap - g(P),A.p + g(p)) if and only if {Ap J is a 
pseudoeigenvalue of (Hp J of order Ep' where Ep = o(g(p)), as 
p-O. 

Proof: Suppose that oi,Hp)n1£Ip, and let ~o be an 
eigenvector of Ho with eigenvalue 11.0' By Proposition 1 it 
then follows that oi,Hp)n1p -zoi,Ho)n1, which means that 
lim~ Ep(Ip)¢ = Eo({AoJ)¢, for all ¢EKo. Therefore, 
t/Jp = Ep(Ip )t/J--+t/J and 

II(Hp - Ap )t/Jp 112 = i (A - Ap )2d (t/Jp' Ep(A )t/Jp) 
Ip 

';;;(g(P))211t/Jp 112. 

Hence, (Ap J is a pseudoeigenvalue of order Ep 
= 0(g(P)). 

In order to prove the converse, let {t/Jp J ,{Ap J be a pseu­
doeigenpairof{Hp J of order {Ep J and letg(p) be such thatEp 
= o(g(p)), as p-<). Then, 

~ = f(A - Ap)2(dt/Jp,Ep(A )t/Jp) 

>(g(p))2L_I d (t/Jp,Ep(A )t/Jp)' 
p 

and we have IIEp(I -Ip)t/Jpll.;;;IHI -E(Ip))t/Jpll';;;Eplg(p), 
which converges to zero. Since t/Jp--+t/J asp-<), we conclude 
that Ep(I - Ip)f/!-o, and therefore Ep(I - Ip)Eo{AoJ-o. 
On the other hand, 

Ep(I - Ip)(I - Eo({AoJ))';;;Ep(I)(I - Eo({AoJ)) 

--+Eo(I )(1 - Eo( {Ao J)) = O. 

We thus conclude that Ep (I - Ip) converges strongly to 
zero, with respect to K o, i.e., oi,Hp)n1£Ip. • 
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We remark that Theorem 1 can be extended to the case 
whereAo is an eigenvalue of Ho of multiplicity greater than 1. 
This extended result can be proved using the same argument 
given above (see Ref. 2). 

III. THE LAPLACE OPERATOR IN THE EXTERIOR OF A 
RESONATOR 

For p > 0, ilp = OJZpuE will denote an exterior do­
main in R 3 with smooth boundary, which consists of a 
bounded set C (the cavity), an exterior region E, and a chan­
nel Z connecting the cavity with the exterior. We assume 

p • 
that there exists Po> 0, such that for 0 <P<Po, Zp IS con-
tained in a cylinder of radius p and height h. The self-adjoint 
operatorsactingonKp = L 2(ilp)andKo = L 2(C)givenby 
the negative Laplacian with Dirichlet boundary condition 
will be denoted by Hp and Ho, respectively. 

It seems apparent that as the channel closes up, the part 
of Hp in L 2( C) converges, in some generalized sense, to the 
operator H o. On the other hand, all the operators Hp (for 
p > 0) have continuous spectra consisting of the interval [0, 
CX) ), while the spectrum of H o is formed by a countable set of 
isolated eigenvalues. In what follows, we shall construct a 
pseudoeigenvector of the family {Hp J. By the results of the 
previous section we then conclude that as the channel closes 
up, the spectrum of Hp concentrates, in the sense of Kato, 
around the eigenvalues of the cavity. First we show that as 
p-+O, Ep (I)~ - Eo(I )~, for all ~EJY'0. This follows as usual 
from the corresponding result for the resolvents of Hp and 
Ho, which we prove now. Given z in the resolvent set of Hp ' 

we write 8 = 8 (z) = dist(z, oiHp)), so that 
II(Hp -z)-III = 1/8. 

Lemma 1: As p converges to zero, the operator 
XZp(Hp - Z)-I converges to zero in norm. 

Proof Given ~EJY'p' set t/Jp = (Hp - Z)-I~, so that 
t/JpeD (Hp) and ( -..d - z)t/Jp =~. Then, by the Poincareine­
quality, 

Lp't/Jp I 2..;;:p2LplVt/Jp 12<p2(t/Jp, - ..dt/Jp) 

=p2(t/Jp'~) +zllt/Jpll2). 

But, since Iit/Jp II..;;: 1/8 II~ II, we obtain 

Ilxzp(Hp -z)-I~II2<p201t/Jpllll~II + Iz llit/Jp ll 2) 

<p2/8(1 + Izl/8)II~ 112. 

Hence IIt/Jz (Hp _z)-III2..;;:(P2/8)(1 + Izl/8), which 
p 

converges to zero. • 
Theorem 2: For any ~EJY'0, (Hp - Z)-I~ converges to 

(Ho - Z)-I~, asp converges to zero. 
Proof: As in the proof of Lemma 1 we set 

t/Jp = (Hp - Z)-I~ (where ~ is extended to be zero out~ide 
C). First, we show that X ZpuE t/Jp -0. Let a be a Coo function, 
such that a = 0 in C, a = 1 in E, and O..;;:a..;;: 1. Multiplying 
the equation ( -..d - z)t/Jp = ~ byaiip and integrating over 
il p' we obtain 

I alVt/Jp 12 + I iip Va.Vt/Jp - z I alt/Jp 12 = o. 

If we assume that v = 1m z =1= 0, then it follows that 
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IvlI alt/Jp 12,,;; II iip Va.Vt/Jp I..;;:c IIt/Jp IIzpllvt/Jp II· 

But, since IIVt/Jpll2 = (t/Jp'( -..d -z)t/Jp) + Zllt/Jp 112";;:(1/ 
8 + Izl/82)II~ 11 2, we conclude that 

LpUEalt/JP 12";;:C'IIt/Jpllzpll~ II· 

On the other hand, if v = 0, then k = Re z < 0 and (1) 
implies that 

Ik II alt/Jp 12,,;; - ReJ iip Va.Vt/Jp 

= ~ J ..da I t/Jp 12";;:C"IIt/JpII~p· 
By Lemma 1, it follows that X ZpuE t/Jp -0, as p converges 

to zero. 
Finally, since ( -..d - z)t/Jp =~, we have 

i 
Ivt/Jp 12 - zi It/Jp 12 = i iip~. 

np np np 

Therefore, {t/Jp J is bounded in KI(C) and by compact­
nessoftheinclusionKI(C ) __ L 2(C) we can assume that it has 
a subsequence { t/Jpo J which converges to t/JoEJY'I(C), weakly 
in KI(C) and strongly in L 2( C). A standard argument shows 
that ( -..d - z)t/Jo = ~ weakly in C, and that t/Jo = 0 on the 
boundary ofC, in theL 2 sense (see Ref. 3). We conclude that 
t/Jo = (Ho - z) -I~, as desired. • 

Finally, we construct a pseudoeigenpair for the family 
{Hp J. As in Ref. 3, let us consider the perturbed operator 
Ap =Hp + Vp,withD(Ap) =D(Hp),where Vp = (1/p2)XE· 
For each p > 0, Ap is a positive self-adjoint operator, whose 
discrete spectrum consists of a finite number of eigenvalues 
below 1/p2, and with essential spectrum [1/p2, CX»). More­
over, asp approaches zero, the eigenvalues and eigenvectors 
of Ap converge to the corresponding eigenvalues and eigen­
vectors of Ho = -..de (see Ref. 3). 

Theorem 3: Let ~pEJY'p and Ap >0 be such that 
Ap~p =Ap~p. Then {t/JPJ is a pseudoeigenvector of {Hpj 
with order 

Ep = II(Hp -Ap)~pll = (,fX;/cp)e- hC
/P, 

where c = (1 _ App2) 112. 
Proof: We have that II(Hp - Ap)~p II 

= IlVp~p II = 1/p211~p liE and, therefore, the theorem fol­
lows from 

II~p II~";;:(App2/c)e- 2hc/p, which is proven in Ref. 3. • 
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The standard Berezin method for integration over odd variables is combined in a new way with De 
Witt's contour method for integration over even Grassmann variables to give a new method of 
superspace integration. It is shown that this integral, unlike the standard superspace integral, is 
invariant under coordinate transformations in superspace. The relation between the new method 
and the standard method is discussed. 

I. INTRODUCTION 

In recent years integration over anticommuting varia­
bles has become an essential technique in many areas of 
quantum field theory. The integration is invariably carried 
out according to the Berezin prescription 1 

f () d() = 1, f 1 d() = O. (1.1) 

[Here, as usual, () denotes an odd Grassman variable, or "an­
ticommuting number" as it is often called. Because the 
square of () is zero, the two rules in (1.1) cover all the func­
tions usually considered. No "limits of integration" are in­
cluded.] In some cases, such as in supersymmetric theories, 
odd and even variables intermingle, and so Berezin integra­
tion must be fitted in with ordinary integration. However, 
the standard method for doing this, as developed by Berezin 
and Leites,2 Bernstein and Leites,3.4 and Berezin5 does not 
always give consistent results under change of coordi­
nates.3,6 In this paper some of the ideas ofBerezin, Bernstein, 
and Leites are combined in a new way with De Witt's idea 7 

that integration over even variables should be regarded as 
contour integration, to give a fully consistent method for 
integrating over odd and even variables. By "fully consis­
tent" it is meant that the rule for transforming the integrand 
and the "range of integration" under a suitably smooth 
change of coordinates (including mixture of odd and even 
coordinates) should be such that the value of the integral is 
unchanged; thus the definition is coordinate independent. 
Coordinate independence is obviously essential if one wishes 
to integrate on general supermanifolds (made by patching 
regions with local odd and even coordinates). But even when 
considering the rigid "super-Minkowski" space of global su­
persymmetry, where symmetry transformations are repre­
sented as translations, a (more restricted) coordinate inde­
pendence is required of integrals; even for this invariance the 
standard method of superspace integration is inadequate. 

Several examples are given below, showing how the 
consistency breaks down; these make it clear that, while the 
Berezin method takes care of the odd variables, no account 
has been taken of the fact that when one includes odd Grass­
mann variables the even variables are not merely real (or 
complex) variables, but also have a nilpotent part, and the 
theory of ordinary integration over real (or complex) 
numbers must be extended to integration over the full even 
algebra. Previously it has been assumed that these parts can 

be ignored (some reasons for this are given below); it is the 
purpose of this paper to show that the idea (due to De Wite) 
of regarding integrals over even Grassmann variables as con­
tour integrals can (if carefully combined with Berezin inte­
gration for the odd variables) give a consistent method of 
superspace integration. 

In Sec. II, after specifying some necessary notation and 
terminology, the standard method for superspace integra­
tion is described, and some examples given of where its con­
sistency under change of variable breaks down. In Sec. III 
contour integrals over one even Grassmann variable are de­
fined, and several useful properties proved. Section IV re­
peats the work of Sec. III for contour integrals over several 
even variables. Section V contains the main result of this 
paper: a method for combining the contour integrals with 
Berezin integration is described, and proved to give fully 
consistent results under change of variable. In Sec. VI the 
compatibility between the contour approach and the stan­
dard approach is discussed, with particular reference to su­
persymmetry and supergravity, while Sec. VII contains con­
clusions and discusses further possibilities. 

II. THE STANDARD METHOD AND EXAMPLES OF ITS 
BREAKDOWN 

Before describing the standard method, some notation 
and terminology is necessary. 

Definition 2.1: (a) For each positive integer L let BL 

denote the real Grassman algebra over L odd generators. 
(Here, and through the rest of this paper, attention is restrict­
ed to Grassmann algebras over the reals; the extension to 
complex Grassmann algebras is straightforward but not en­
tirely trivial, and will be dealt with in a separate paper.) 

(b) Let E: BL _R be the (unique) algebra homomor­
phism which sets all the odd generators to zero. 

(c) For each pair of positive integers m and n let B 'E.n 

denote the Cartesian product of m copies of the even part of 
BLand n copies of the odd part. (B z·n is often referred to as 
"super-Euclidean space" or simply "superspace". In appli­
cations to supersymmetry, superspace has additional trans­
formation properties under groups such as the Lorentz 
group, but these are not relevant here.) A typical element of 
B z·n is denoted (Xl, ... , xm; () 1, ... , () n) or (x;()). 

(d) Let Em.n : B z·n_Rm be defined by 

E(Xl, ... , xm;() 1, ... , ()n) = (E(Xl), ... , E(Xm)). (2.1) 
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Turning now to the standard method of superspace in­
tegration, suppose that U is an open set in Rm and let f 
E';;:~(U)-BL be sufficiently "analytic" for it to have a power 
series expansion in the (P. Such a series will necessarily ter­
minate. If its highest term is In (x)O no n - 1···0 1 then one de­
fines2- s 

L/(X,O )d mx d no: = Lin (x)dx, (2.2) 

where on the right-hand side x is simply treated as a real 
variable, and the integral is evaluated in the usual manner. 
Under a suitably smooth and invertible change of coordi­
nates 

h:E';;:~( U)---+B '!:,n, 
with 

h (x,O ) = (y(x,O );t,b (x,O )), (2.3) 

the "volume form" d mx d no is defined to transform accord­
ing to the rule 

d mx d no = Ber(J (h )( y,t,b ))d"'y d nt,b, (2.4) 

where Ber denotes the superdeterminant (named after F. A. 
Berezin who first discovered it in 1971) while J (h )( y,t,b ) is the 
(m,n)X(m,n) Jacobian matrix 

J(h) = (;;~ ~;:). (2.5) 
ax' ao' - -
at,bl at,bl 

(Derivatives of functions of Grassman variables are defined 
below, and in detail in Ref. 8. In this section an informal 
approach is sufficient.) The functionl transforms in the usu­
al manner, while Ubecomes Em,n 0 h 0 E';;:~(U). Thus the in­
tegral is invariant under the change of coordinates if 

Lldmx dnO = ± im.nohOE';;'~(U/J dmydnt,b (2.6) 

(where the sign is determined by the orientation of h). It is 
shown by Bernstein and Leites3 and by Pakhomov9 that this 
is true if I I u has compact support, and is Coo. A similar 
argument is used by Regge. \0 An alternative proof, due to 
Fu~g, is quoted by Van Nieuwenhuizen in Ref. 11; this gives 
an Incomplete proof for a wider class of functions. The proof 
is incomplete because it assumes (wrongly) that "ordinary" 
integration over even variables is consistently handled by 
ignoring the even nilpotent elements in the range of integra­
tion. In t~is paper we overcome this problem by introducing 
contour Integrals as suggested by De Wite and then Fung's 
proof can be adapted to give a complete proof (Sec. V). First 
we present some examples where the consistency breaks 
down, if one uses the rules described above. 

Example 2.2: Integration over B iO (one even Grass­
mann variable). Let a, bER. Consider 

i
b 1 x dx = - (b 2 _ 0 2). 

a 2 
(2.7) 

Now apply the change of variable h: EI-;-ol(a,b)-B iO, where 
h (x) = x + a, a being some fixed even nilpotent element in 
B iO. The transformed integral is then 
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i

b 
[X2]b 1 (x - a)dx = - - ax = -(b 2 - a2) - alb - a), 

a 2 a 2 
(2.8) 

and thus the rule for transforming the integral has led to a 
change in its value. 

Example 2.3: Integration on B 1;2. (This example is giv­
en in Ref. 3.) Consider 

ibXdxdO I d0 2 = O. (2.9) 

Now apply the change of variables h: B ?---+B i2, where 

h (x,O 1,( 2) = h (x + 0 10 2,0 1,( 2). (2.10) 

This is a bijective mapping; the Berezinian of the transforma­
t~on is 1 and the transformation leaves the range of integra­
tIOn unchanged. The transformed integral is 

i b 
(x - 0 1(2)dx dO I d0 2 = (b - a). (2.11) 

Again the value of the integral has changed, this time by a 
pure real number. 

Example 2.4: Integration over B il. Consider 

i
b 
xdxdO=O. (2.12) 

Now apply the change of variables h: B il---+B ii, where 

h (x,O) = (x + 110,0), (2.13) 

,,:it~ 11 some fixed odd Grassmann element. Again the Bere­
ZIDlan of the transformation is 1 and the transformation 
leaves the range of integration unchanged, and thus the 
transformed integral is 

i
b 

(x - 110 )dx dO = - l1(b - a). (2.14) 

Example 2.2 makes it glaringly obvious that the source 
of the problem is that the limits of integration are not 
changed, because the method pays no attention to the nilpo­
tent even parts. The contour integral approach of De Witt 7 

~as ~o such problems. There is also an example in the phys­
ICS lIterature, where shifts of the range of integration in the 
even nilpotent directions prove essential and are introduced 
by Hassoun et al. 12 The formula these authors give for con­
stant even shifts is precisely that which the contour integrals 
to be defined in this paper give. It is perhaps worth mention­
ing the historical reasons for the seemingly curious treat­
ment of the range of integration which the standard method 
uses. Initially odd variables were introduced at a more ab­
stract level than that at which they are used in the physicists' 
superspace. If U is an open set in Rm (or, more generally, a 
C 00 manifold) then the set of infinitely differentiable func­
tions on U is denoted C 00 ( U). This set naturally has the 
structure of an algebra (one can add and multiply functions 
in an obvious manner). Initially odd variables were intro­
duced by extending these function algebras without actually 
extending the underlying manifold2

•
3

; in this approach the 
idea of shifting the range of integration in even nilpotent 
directions has no meaning. Subsequently, largely motivated 
by supersymmetry, a more down-to-earth approach to odd 
variables was introduced with Rm extended to B '!:,n and then 
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functions on this extended space being considered. The two 
approaches, algebraic and geometric, can be linked8

•
14 and 

regarded as equivalent except that the algebras in the first 
approach must be extended by taking their tensor product 
with B L' In the geometric approach a topology was intro­
duced by De Witt 7 which takes an "all or nothing" approach 
to the nilpotent parts of the Grassmann algebra; a set V in 
B z·n is open if and only if there exists an open set U in Rm 

such that 

(2.15) 

so that while an open set may be bounded in the "real" direc­
tion, it contains the full range in all the nilpotent directions. 
In this topology the open set Vin B z·n may be unambiguous­
ly specified by the open set U = € m.n (V) in Rm; in the geomet­
ric approach this is how the region of integration Uin (2.2) is 
interpreted, and thus it is obvious that shifts in nilpotent 
directions will not affect the range of integration. 

In the rest of this paper a consistent theory of integra­
tion is used making use of the geometric approach to odd 
variables, and a finer (norm-induced) topology on B Z·". 

III. CONTOUR INTEGRALS IN ONE-DIMENSIONAL 
EVEN SUPERSPACE 

In the previous section we showed that the most com­
monly adopted approach to integration over even Grass­
mann variables was unsatisfactory, in that it did not lead to 
coordinate-independent (and thus well-defined) integrals. 
Now, for more than a century, there has existed a consistent 
theory of integration over one commuting algebra over the 
reals-the theory of integration of a complex variable. In 
this section, following the idea of De Witt,7 we take a similar 
approach to integration in even superspace and find that 
many useful, indeed vital, properties of complex contour in­
tegration apply here. The definition and results are similar to 
those of De Witt1; the difference is that the detailed super­
space formalism used here (developed in Ref. 8 and de­
scribed below) gives B L a Banach algebra structure and puts 
the analysis on a firmer footing, especially when considering 
an algebra with an infinite number of generators. Before pro­
ceeding to the fundamental definition of a contour integral, a 
few definitions relating to the detailed structure of B L will be 
given. 

Definition 3.1: (a) B L denotes the algebra over the reals 
with generators 1, 131' ... , 13L and relations 

(3.1) 

(b) Following Kostant,3 if L is a positive integer, ML 
denotes the set of sequences of integers /L = ( /L I' ... , /L k ), 
where 1</LI</L2<···</Lk<L. M LO and MLI denote se­
quences in M L with even and odd numbers of terms, respec­
tively. Also, ML includes the empty sequence, denoted t/J. 

(c) A typical element of BL may be expressed as 

(3.2) 

where each bft is a uniquely determined real number and 

13ft: = 13ft , 13ft , .. ·13ftk , 13", = 1. 
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(d) The set of even elements in B L is denoted B L o. 
(e) A norm on BL is defined by 

lib II = L Ibftl· 
fteML 

(3.3) 

It is proved in Ref. 8 that this norm gives B L the structure of 
a Banach algebra; throughout the rest of this paper the topol­
ogy used on B L will be the topology induced by this norm (it 
is also the usual topology on B L regarded as a finite dimen­
sional vector space). (An extension of these ideas to a "Grass­
mann algebra" with an infinite number of generators is de­
scribed in Ref. 8.) 

The definition of a contour integral on even superspace, 
which is fundamental to this paper, will now be given. Apart 
from some analytic details, it is essentially that due to De 
Witt.7 

Definition 3.2.' (a) Let [a,b] be a finite closed interval in 
R. The mapping y: [a,b ]-BLO is called a path inBLo ifit is a 
continuous and piecewise C I mapping of real Banach spaces. 
The path y is closed if r(a) = r(b ). 

(b) Suppose that y: [a,b ]-BLO is a path inBLo and that 
Uis open inBLo withr([a,b])C U. Also suppose/: U-BL is 
a continuous map of Banach spaces. Then the integral of/ 
along the path y is defined to be 

i/ dx: = f /(r(t lly'(t )dt. (3.4) 

This integration has several useful properties which are 
precise analogs of the properties of complex contour integra­
tion; they do not depend on the specific algebra, but only on 
the properties of maps between Banach spaces and on the 
fact that we are considering a commutative algebra. The first 
of these theorems gives a consistent method for transforming 
the integral under change of variable. This underpins the 
method for consistent integration in full (even and odd) su­
perspace developed in Sec. V. Before starting the theorem, a 
method for differentiating functions of even Grassmann var­
iables is required, together with some properties of this form 
of differentiation. 

Definition 3.3: Let Ube open in BLO and let/: U-BL. 
Then/is said to be G Ion U if there existS/I: U-BL and 71: 
BLO-BL such that given a, a + h in U, 

/(a + h ) = /(a) + h/I(a) + TJ(h )lIh II, 
with 

IITJ(h )11-0 as Ilh 11-0· 

(3.5) 

(3.6) 
[Also one may define G P inductively, by saying that/is G P if 
lis GP-I and the (p - 1)-th derivative of/is G I.] 

Further details of this "superdifferentiation" and its 
properties may be found in Ref. 8. In particular the following 
"chain rule" is proved in this paper [Proposition 2. 12(h)]. 

Proposition 3.4: Let y: [a,b ]-U, where Uis open inBLO 
be a C I map of Banach spaces and let h: U-BL be G I. Then 

d dy 
-(hoy) = (hloy)-
dt dt 

(3.7) 

(where, as in Definition 3.3, h I denotes the superderivative of 
h). 

Theorem 3.5: Let Ube open in BL.O and let h: U-BL.O 
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be an injective G I mapping. Also let y: [a,b ]-+Ube a path in 
U, andf: U-+BL be continuous. Then 

r fdx = r fO h -Il.dx (3.8) 
Jy Jhoy hi 

(where h I is the superderivative of h defined in Definition 
3.3). 

Proof: 

r foh-Il.dx 
Jhoy hI 

= [ (fo h -I)(h 0 y(t ))(h 0 y)'(t) dt 
b hl(y(t)) 

= i b 
f(y(t)) hl(y(t ))y'(t) dt 

a hl(y(t)) 
(3.9) 

(by Proposition 3.4). 
Hence 

(3.10) 

Another theorem for complex contour integrals which 
has its analog here is Cauchy's theorem which states that the 
integral of a suitably differentiable function around a closed 
path is zero; this allows one to integrate a G I function 
"between limits" without specifying the contour, and also to 
clarify the relationship between the contour approach and 
the standard approach to even superspace integration. 

Theorem 3,6 (Generalized Cauchy theorem): Let y: 
[a,b ]-+BLO be a closed path in BLO ' Let Sbe a smooth sur­
face in B L 0 bounded by y. Also, suppose that U is an open 
subsetofBLo withSC Uandletf: U-+BL. Then, iffis G I on 
U, andfl is continuous, 

ifdX=O. (3.11) 

Corollary 3.7: Let YI: [a,b ]-+BLO ' Y2: [e,d]-+BLO be 
paths in BLO with YI(a) = Y2(C) = P (say) and YI(b) = Y2(d) 
= q (say). Let S be a surface bounded by YI and Y2' Also 

suppose U is an open subset of B L ° with S C U, and let f: 
U-+BL. Then (a), iffis G Ion U, 

r- fdx = r fdx. (3.12) 
)YI )Y2 

(b) Iff: BLO-+BL is G I on all BLO one can write unambi­
guously 

[fdX = i fdX, (3.13) 

where y: [a',b ']-+BLO is any path in BLO with y(a') = p and 
y(b ') = q. Before proving Theorem 3.6, a lemma establishing 
the analog of the Cauchy-Riemann equations is required. A 
function from B L 0 into B L can be regarded simply as a func­
tion from R2L-l-+R2L. In the lemma are found conditions 
which the partial derivatives of the function must obey if the 
function is G 1 (superdifferentiable). 

Lemma 3.8: Letf: U-+BL where Uis an open subset of 
BLO ' Let L denote the natural identification of BLO and 

2L - 1 R , 
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L( L xl'" PI'): = (X~,x(1,2),x(1,3l' ... , X(L - I,Ll' ... ). 
l'eML.O 

(3.14) 

[The expression on the right-hand side of (3.14) will be de­
noted (xl').] Then, iffis G I with continuous derivativefl on 
U, (a)fo L -I: R2L -

1

-+BL is a C I function of Banach spaces, 
with continuous partial derivatives and (b) if2L - I functions 
fP: L(U)-+R are defined by 

(3.15) 

then 

L Pp al'fP=Pl'floL, (3.16) 
peMLO 

where al' denotes differentiation with respect to xl'. [These 
equations (3.16) will be referred to as the generalized 
Cauchy-Riemann equations.] 

Proof: [Note that an unconventional norm on R2L
-

1
, 

that is lI(xI'")lI: = ~l'eMLO Ixi'" I, must be used. This is because of 
the norm (3.3) used onBL , which givesBL a Banach algebra 
structure. Because the norm is equivalent to the usual one, 
the definition of derivative is unaffected. 15] Choose x, 
X+hEU. Then 

fIx + h) =f(x) + hfl(x) + IIh 1177(h), 

where 

1177(h liI-+O asllh 11-+0· 

Hence 

fO L-I(XI' + hI') 

=fOL-I(xI'")+ L hl'Pl'fl °L -1(xI'") 
l'eMLO 

+ IIh II 77 0 L -I(h 1'). 

The result follows immediately. 
Proof of Theorem 3.6: 

i fdX = f f(y(t))y'(t)dt 

= L i b 

fl'o L (y(t )) PI' y'(t )dt 
l'eML a 

Xdx P dxV, 

using Stokes' theorem. Thus by Lemma 3.8, 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

r fdx= L f(p"pp -PpP,,)fldxPdx" 
Jy P eML ",veML 0 

= 0, since each VEMLO ' (3.23) 

The proof of Corollary 3.7 requires a further lemma, this 
time on the reparametrization of paths. 

Lemma 3.9: (a) Let y: [a,b ]-+B Lobe a path in B L 0 and 
let c, dER. Also let a: [c,d ]-+[a,b] be C I with ale) = a, 
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a(d) = band a'it ) > 0 for all tin [c,d]. Then 

I fdx=l fdx (3.24) 
r yoa 

[and so the integral is independent of the parametrization of 
the path, apart from considerations of orientation, which is 
the content of part (c) ofthis lemma]. 

(b) LetYI: [a,b]-BLO andY2: [c,d]-BLO be two paths 
in BLO with YI(b) = Y2(C). Also define YI + Y2 to be the path 
YI + Y2: [a, b + d - C]-BL defined by 

{ 
YI(t), a<J<b, 

(YI + Y2)(t) = Y2(t _ b+ c), b<t<b + d - c. 

(3.25) 

Then, if U is open in BLO,f U-BL is continuous and 
YI([a,b ])C U, Y2([c,d])C U, 

(3.26) 

(c) Let y: [a,b ]-BLO bea path inBLO ' Define the curve 
- y: [a,b ]-B L by 

- y(t) = y(a + b - t ). (3.27) 

Then, if Uis open inBLo , with y([a,b ])C U, andf U-BL is 
continuous, 

f fdz= -lfdz. 
-y y 

(3.28) 

The proof of this lemma is omitted because it is essentially 
the same as the proof of the equivalent result in complex 
analysis. Corollary 3.7 follows from this lemma and 
Theorem 3.6, with the closed path Y of Theorem 3.6 chosen 
to be YI + ( - Y2)' 

IV. CONTOUR INTEGRATION IN MULTIDIMENSIONAL 
EVEN SUPERSPACE 

In this short section the definitions and results of the 
previous section are extended to multidimensional even su­
perspace B ,;,0. Proofs are omitted, since they differ from the 
one-dimensional proofs in length rather than in principle. 
One slight change is that the domain of "paths" is standard­
ized to the unit cube, as is customary when working in higher 
dimensions; in view of the "reparametrization" invariance of 
Lemma 3.9, this is a convenience rather than a loss of genera­
lity. 

Definition 4.1: (This extends Definition 3.2.) 
(a) LetI m denote the unit cube in Rm. The mapping y: 

1 m _B ,;,0 is called an m-path in B ,;,0 if Y is continuous and 
piecewise C I. A formal sum of such paths is called an m­
chain. If ay = 0 (where the boundary operator a is defined in 
the usual manner) then Y is said to be closed. 

(b) If Y is an m-path in B ';,0, U an open set in B ,;,0 with 
y(1 m) C U and f U-B L is a continuous map of Banach 
spaces, then 

I f dxI···dxm: = r f(y(tI, ... ,tm)) 
y JIm 

(4.1) 

where aj Yj denotes differentiation of the ith component of Y 
with respect to tj' 
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Definition 4.2~· (This extends Definition 3.3.) Let Ube 
open in B ,;,0 and letf U-B L' Thenfis said to be G 1 on U if 
there exist m functions GJ: U-BL (k = 1, ... , m)andafunc­
tion,.,: B ,;,O_BL such that, given a, a + h in U, 

m 

f(a + h ) = f(a) + L h kGk(a) + IIh 1I,.,(h ) (4.2) 
k=I 

and 1I,.,(h lIl-o as IIh 11-0· 
Proposition 4.3: (This extends Proposition 3.4.) Let y: 

Im_u, where U is open in B ,;,0, be a C I map of Banach 
spaces. Letf U-BL be G I. Then 

m 

aj(ho y) = L aj ykGkh. (4.3) 
k=I 

Theorem 4.4: (This extends Theorem 3.5.) Let U be 
open in B ,;,0 and let h: U-B ,;,0 be an injective G I mapping. 
Also let y: [a,b ]-U be an m-path in U andf U-BL be 
continuous. Then 

I fdxI ... dxm = r fO h -I 1 . dxI ... dxm, (4.4) 
y Jh 0 y det(Gkh1) 

where the m functions h j: U_B L are defined by 

h (x\ ... ,xm) = (h l(x\ ... ,xm), ... ,h m(x\ ... ,xm)). (4.5) 
Theorem 4.5: (This extends Theorem 3.6.) Let y: 1 m 

_B';'o be a closed path in BLO ' Letp be an m + 1 chain in 
B ,;,0 whose boundary is y. Also suppose U is an open set in 
B';'o which containsp(l m + I). Then iff U-BL is G Ion U, 

if dxl···dxm = O. (4.6) 

Lemma 4.6: (This extends Lemma 3.8.) Letf U-BL 
where U is open in B ,;,0 and let t denote the natural identifi­
cation of B ,;,0 and Rm (2

L 
- 'l, that is, 

t(x\ ... ,xm): = (x11t, ... ,xmlt ), (4.7) 

if Xk = l:ItEMo xkp. Pit for k = 1, ... , m. Then 

akp.(fo t) = PIt(Gk fO t). (4.8) 

V. CONSISTENT INTEGRATION IN ODD AND EVEN 
SUPERSPACE 

In this section it is shown how the definition of contour 
integrals in even superspace may be combined with the usual 
Berezin definition for integration over odd variables to give a 
method of integration over the full odd and even superspace, 
together with a fully consistent rule for change of variable. In 
order to integrate over the (m,n)-dimensional superspace 
B ,;,n, we first require a definition of an (m,n) path. 

Definition 5.1: An (m,n) path in B ,;,n is a map y: 
]mXB~n_B,;,n such that (a) letting y[O] denote the map­
ping of ]m_B ,;,0, defined by 

y[O](t)=Pr(m,O) y(tl, ... ,tm;OI, ... ,on) (5.1) 

[where (t I, ... , t m)eI m and (0 I, ... , 0 n)eE ~n], y[O] is an m­
path in B ,;,0 (Definition 4.1) for each 0 in B ~n; and (b) letting 
y[t] denote the mapping of B ~n into B ~n, defined by 

y[t](O) = Pr(O,n) y(t I, ... ,tm;o 1, ... ,0 n) (5.2) 

(where Pr(O,n) denotes projection of B ,;,n onto B ~n), y[ t ] is 
bijective and G n with continuous nth derivatives for each tin 
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1m. Also r is piecewise C 1 with respect to the t i, and G n with 
respect to the (P. (The definition of differentiation with re­
spect to odd variables is similar to Definition 4.2 and given in 
Ref. 8.) 

This definition now gives one something to integrate 
over which, being a mapping into B 'E.n, has a natural way of 
transforming under change of coordinate in B 'E,n. 

The key definition of this paper is the definition of inte­
gration over an (m,n) path. This definition will now be given, 
and then it will be shown that integrals are invariant under 
the appropriate transformation rule for change of variable. 
In the next section we show how the "quasicontour" ap­
proach described here (which is essential for consistency) 
relates to the standard approach. 

Definition 5.2: Let U be open in B 'E,n and let F: U-+B L 

be G n, so that the Taylor expansion offin powers of 0 exists, 
and suppose that the coefficients in this expansion are con­
tinuous. Also let r be an (m,n) path in Pr(m,O) (U) X B ~n. Then 
the integral off over r is defined as 

r fdmx d"O = 1 f(r(t,O))B(r)(t,O)dmtd"O, (5.3) Jr 1 m 

where the integral with respect to t is a standard Riemannian 
integral while the 0 integration is done in the usual manner; 
B (r) is the superdeterminant of the (m + n)X(m + n)matrix 
(Mij) with 

ay 
M .. =-, 1 <i,j'<m, 

IJ at j 

(5.4) 

-G +i Mm+i,m+j - m+j ym , 1 <i,j<n 

(where G m + j is the super derivative with respect to OJ). 
It is of course necessary to prove that this definition has 

the correct behavior under change of variable. This requires 
two theorems: first, Theorem 5.3, which proves the transfor­
mation rule under change of coordinates in superspace (this 
is a very straightforward consequence of Definition 5.2) and, 
second, Theorem 5.4, which establishes the reparametriza­
tion invariance of the integrals. 

Theorem 5.3: Let Ube open in B 'E'" and let h: U-+B 'E'" 
be injective and G" (with continuous nth derivatives). Also 
let r andfbe as in Definition 5.2. Then 

r fdmxd"O= r foh-1J(h)dmxdno, (5.5) 
Jr Jhor 

where, if h (x,O) = (h I(X,O ), ... ,h m(x,O ); h m + 1 (x,O), ... , 
h m + "(x,O )), J (h ) is the superdeterminant of the inverse of the 
matrix (Gkh i). 

Proof The following "chain rules" may easily be estab­
lished: 

a(h 0 rV = min (Gkh i) 0 rxaY<" 
at j k= 1 at' 

i = 1, ... , m + n, j = 1, ... m, (5.6) 

m+" 
Gm+j(h or)i = L (Gkh i)o rXGm+jyk. (5.7) 

k=1 
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Thus 

r foh -IJ(h)d mx d"O 
Jh or 

= 1m f(r(t,O )).1 (h )(r(t,O))B (h 0 r)(t,O)d mt d"O 

= 1 f(r(t,O))B (r)(t,O )d mt d"O 
1 m 

[using the chain rules (5.5) and (5.6)], 
and the result is proved. 

(5.8) 

The second theorem in this section contains the real 
substance, because it is the reparametrization invariance 
which allows one to think of an integral as being over a spe­
cific subset of superspace-the image of the path r-rather 
than over the path. 

Theorem 5.4: Let Ube open in B 'E,n and let A be a com­
pact set in R m. Also let r: A X B ~"-+Pr(m,O) (U) X B ~n be an 
(m,n) path. [Note that this is a slight generalization of the 
(m,n) path of Definition 5.2. In general it is simpler to stan­
dardize the domain of r; the present theorem shows this 
involves no loss of generality.] Now suppose! U-+B L is as in 
Definition 5.2, and that B is a compact subset ofRm and that 
a: B XB ~"-+A XB~" satisfies the following conditions: a is 
C 1 with respect to the real variables, and G n with respect to 
the odd variables (with continuous nth derivatives). Also the 
Berezin determinantB (a) [defined as in Eq. (5.4), except that 
in this case Gm+jai must be zero for l<j<n, l<i<M] must 
be positive. Then 

(5.9) 

Proof' Following the idea ofFung (quoted in Ref. 11) we 
may decompose a into a = a 1 0 a 2, where 

(5.10) 

and 

al(t;O) = (t I, ... ,t m;am + l(a2- l(t;O )), ... ,am + "(a2- l(t;O))). 

(5.11) 

Then Eq. (5.9) is easily seen to hold for both types ofrepara­
metrization. For a 2, it is simply the m-dimensional version 
of Lemma 3. 9(a) while for a 1 it is a standard result of Berezin 
integration.6,9 

As well as giving a definition of an integral on a subset 
of superspace, this reparametrization invariance also allows 
one to patch together integrals to give integrals on super­
manifolds; there are restrictions on the type of supermani­
fold, because the domain and range of r must include all of 
B~". The author is investigating the possibility of reducing 
these restrictions, and also improving on the somewhat hy­
brid nature of an (m,n) path. 

VI. APPLICATION TO SUPERSYMMETRY 

Superspace techniques are frequently used in super­
symmetric quantum field theories 16; superspace extends real 
space-time (Minkowski space or a more general manifold) by 
adding odd dimensions, and making the space-time dimen­
sion even Grassmann rather than simply real. Supersym-
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metry transformations are represented by translations or 
general coordinate transformations in superspace; the usual 
techniques of differential geometry are applied; in particu­
lar, supersymmetric invariants are constructed as integrals 
over supers pace. Obviously, if an integral really is to lead to a 
supersymmetry invariant, the integral must be invariant un­
der change of coordinates, and it has been shown in this 
paper that this is true for the "quasicontour" method of Sec. 
V, but not for the standard approach described in Sec. 1. The 
space-time theory is recovered from the supers pace version 
by using the augmentation map € m,n (Definition 2.1) to pro­
ject our space-time; it is easy to combine the standard meth­
od of superspace integration with this projection to obtain 
from a superspace integral an integral over space-time; one 
simply carries out the 0 integration. Because the standard 
method does not have full coordinate invariance, the space­
time integrals obtained by carrying out the 0 integration are 
not guaranteed to be fully invariant under supersymmetry 
transformations; when explicit calculations are made of the 
variations of such "invariants" under infinitesimal super­
symmetry transformations, the variation is found to be equal 
to a surface integral which becomes zero if the usual sort of 
"dying away at large distances" conditions are put on the 
fields. In fact, one can use the quasicontour approach togeth­
er with the generalized Cauchy theorem (Theorem 4.5), to 
work out the possible departure from true supersymmetry 
invariance of any space-time integral derived from a super­
space integral, and thus to work out what boundary condi­
tions must be placed on the fields if the integral is to be 
invariant under both infinitesimal and finite supersymmetry 
transformations. To begin with, one must define a method 
for obtaining a space-time integral from a quasicontour inte­
gral. To make contact with the standard approach one natu­
rally derives from an (m,n) path r and a function! B ,!:,n _B L 

the space-time integral 

1m .. 0 yftm .. 0 '-m .. 0 y(J m) d mt, (6,1) 

wherer is the coefficient of 0 1 
... 0 n in the 0 expansion off 

and the integration is carried out in the usual (Riemannian) 
way, and j m,n denotes the natural injection of Rm into B ,!:,n; if 
r satisfies 

r = jm,n 0 €m,n 0 r, (6.2) 

then 

(6.3) 

However if h gives a coordinate transformation of B ,!:,n (that 
is, h: B ,!:,n_B ,!:,n is bijective and G n) then the path h 0 r will 
not necessarily satisfy (6.2) even if r does, and so the invar­
iance of a quasicontour integral under transformations of 
superspace cannot, of course, guarantee the invariance of the 
associated space-time integral (6.1). The possible discrepan­
cy is 

ifdmx dnO - Lfdmx dnO, 

where /3 is any m, n path, which satisfies 

€m,n 0/3= €m,n 0 r. 
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(6.4) 

(6.5) 

Now suppose uis an (m, n) chaininB '!:,n such that r[O]­
/3 [0 ]-0'[0] is closed for each 0 in B ~n. Then, by Theorem 4. 5, 
iffis sufficiently well-behaved, 

ifdmx dnO - Lfdmx dnO = Ifdmx dnO, (6.6) 

and so the maximum breakdown in supersymmetry invar­
iance of the space-time integral (6.1) is SaId mx d no. To see 
the nature of this quantity, we consider the simple case 
m = 1; then, ifr,/3satisfy (6.5) a possible choice of(l,n) path 
u such that r[ 0 ]-{3 [0 ]-0'[0] is closed is 

U=Uo+U1, 

where 

Uo(t,O) = r(O,O ) + t (/3 (0,0) - r(O,O)), 

U.(t,O) =/3(1,0) + t(r(l,O) -/3(1,0)). 

Thus 

Ifdmxdno 

= J ( f f(r(O,O ) + t (/3 (0,0) - r(O,O))) 

X (/3 (0,0) - r(O,O)) - f( /3 (1,0) + t (r(l,O) 

(6.7) 

-/3(l,O)))(r(l,O) -/3(l,O))dt )dnO. (6.8) 

Now, if g is a G 00 function of U C B '!:,n into BL , 

g(x,O) = L gI'(x)OJl' 
JlEM. 

and 
m 

gI'(x) = gI'(E(x)) + L (Xi - €(Xi))a;gI'(€(x)) + ... (6.9) 
;=1 

(cf. Ref. 8, Corollary 2.9, which includes a form for the re­
mainder). Thus one sees that a sufficient condition on the 
fieldf for the space-time integral (6.1) to be invariant under 
supersymmetry transformations is that f and all its deriva­
tives vanish on the boundary of r. This is a slightly weaker 
condition than requiringf to be of compact support; it also 
extends the result for infinitesimal transformations (familiar 
to anyone who has worked with supersymmetry transforma­
tions in component form, where supersymmetric invariants 
are always invariant only up to a surface integral) to finite 
transformations. Moreover, in any given situation one can 
calculate precisely the extent to which using the standard 
approach as opposed to the "quasicontour" approach affects 
the invariance of a superspace integral under coordinate 
transformations. 

Although it might seem that by making quite reasona­
ble assumptions on fields, the standard approach (relating 
easily to space-time integrals) can be used instead of the qua­
sicontour approach, one must remember that quantization 
may involve very singular field configurations; a simple ex­
ample (such as those in Sec. II) shows that for a discontin­
uous function the invariance may break down in a serious 
manner. However, although this might lead to some ques­
tioning of the status of the space-time Lagrangian, the quan-
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tization can be carried out in'superspacel7 where the ap­
proach developed in this paper does lead to full supersym­
metry invariance. 

VII. CONCLUSION AND FURTHER POSSIBILITIES 

In this paper there has been presented for the first time a 
fully consistent method of integration in superspace, pulling 
together several ideas in a new way. The method relies on the 
geometric approach to superspace, and the use of the finer of 
the two topologies which can be used on superspace. In 
many cases it gives the same result as the standard method; it 
also makes clear the cases where the standard method breaks 
down, and is of much wider applicability-for instance, it 
can be applied to a superspace with a boundary. A consistent 
integration method is clearly essential for putting the various 
applications of superspace integration in quantum field the­
ory on sound foundations. It is also important for the exten­
sion to superspace of many standard techniques in differen­
tial geometry. One development which immediately springs 
to mind is a method for integration on supermanifolds; su­
permanifolds are made by patching together bits of B 't,n 
much as conventional manifolds are made by patching to­
gether Rm or em. Bernstein and Leites3.4 and Berezins have 
described how, using "superforms" and superspace integra­
tion one can define integrals on supermanifolds; this ap­
proach becomes fully consistent when combined with the 
method of integration on B't,n defined in this paper. Bere­
zin's method applies only to a certain class of supermani­
fold-basically, those where there is no patching in the (J 

directions. It is an open question whether or not a good de­
finition of integration can be given for the wider class of 
supermanifolds that has been considered.8 

One area of conventional differential geometry which 
has found wide application in theoretical physics is the the-
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ory of characteristic classes and their integral representa­
tions; a start on developing a similar theory for supermani­
folds was made by Berezins; it should be possible to make 
further progress using the fully consistent method of integra­
tion developed in this paper. 

It should finally be added that the author feels that the 
hybrid theory presented here is a step on the way to a more 
complete understanding of odd and even integration. 

ACKNOWLEDGMENT 

This research was supported by the Science and Engi­
neering Research Council of Great Britain (S. E. R. C.). 

IF. A. Berezin, The Method of Second Quantisation (Academic, New York, 
1966). 

2F. A. Berezin and D. A. Leites, Sov. Math. Dok!. 16, 1218 (1975). 
31. N. Bernstein and D. A. Leites, Func. Anal. Appl. 11,45 (1977). 
41. N. Bernstein and D. A. Leites, Func. Anal. Appl.ll, 219 (1977). 
~F. A. Berezin, SOy. J. Nucl. Phys. 30, 605 (1979). 
6D. A. Leites, Russ. Math. Surveys 35:1, 1 (1980). 
1B. S. De Witt, Supermanifolds (Cambridge U. P., Cambridge, 1984). 
8A. Rogers, J. Math. Phys. 21, 1352 (1980). 
9y. F. Pakhomov, Mat. Zametki 16, 65 (1974). 
I"T. Regge, "Relativity, Groups and Topology," lectures given at the 1983 

Les Houches Summer School. 
liP. Van Nieuwenhuizen, Phys. Rep. 68, 189 (1981). 
12J. Hassoun, A. Restuccia, and J. G. Taylor, "Superfield Actions for N = 2 

degenerate central charges," King's College London Preprint, June 1983. 
I3B. Kostant, "Graded Manifolds, Graded Lie Theory and Prequantisa­

tion," in Lecture Notes in Mathematics, Vol. 570 (Springer, Berlin, 1977). 
14M. Batchelor, Trans. Am. Math. Soc. 258, 257 (1980). 
I~J. Dieudonne, Foundations of Modern Analysis (Academic, New York, 

1969). 
16D. V. Volkov and V. P. Akulov, Phys. Lett. B 46, 109 (1973); Abdus Salam 

and J. Strathdee, Nuc\. Phys. B 76, 477 (1974); J. Wess and B. Zumino, 
Phys. Lett. B 66,361 (1977). 

17Superfield quantization techniques are described in S. J. Gates, M. T. Gri­
saru, M. Rocek, and W. Siegel, Supers pace or One Thousand and One Les­
sons in Supersymmetry (Benjamin, New York, 1983). 

Alice Rogers 392 



                                                                                                                                    

Application of linked Backlund transformations to nonlinear boundary value 
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A class of nonlinear boundary value problems is reduced to linear canonical form by a 
combination of Backlund transformations. 

I. INTRODUCTION 

The application of Backlund transformations to the so­
lution of nonlinear boundary value problems is less well­
developed than their role in the solution of privileged initial 
value problems via the inverse scattering transform. How­
ever, in a recent paper by Fokas and Yortsos,l application 
was made of coupled Backlund transformations to solve a 
nonlinear boundary value problem involving two-phase flow 
in an unbounded porous medium. Further developments in 
the solution of nonlinear boundary value problems via Back­
lund transformations are given in Refs. 2-4. Here, a class of 
nonlinear boundary value problems on a slab is linearized by 
combination of a reciprocal Backlund transformation and a 
version of the Cole-Hopf transformation applied to a 
Burgers' hierarchy. 

II. A CLASS OF RECIPROCAL TRANSFORMATIONS 

Conservation laws of the form 

!...{T(~;!...; u)} + ~{F(~;!...; u) = 0 
at ax at ax ax at 

(1) 

are considered where 

T(~'!...' u) 
ax' at' 

: = T(u, ux' uxx ' ... ; U" Utt ' ... ), (2) 

F(~'!...'U) ax' at' 

: =F(u, ux' u"'" ... ; U" UtI' ... ). (3) 

The transformation R is introduced according to 

dx* = [aT + b ]dx - [aF + C]dt,} 
t * = et + h(u), R 
u* = l/u, 

(4) 

where a, b, c, e E R and a, e are nonzero. 
It will be required that R be involutory so that R 2 = I, 

whence 

dx** =dx, 

t** = t, 
u** =U. 

Thus, 

dx** = [aT* + b ]dx* - [aF* + c]dt * 

= [aT*+b]{[aT+b]dx- [aF+c]dt} 

(5) 

(6) 

(7) 

- [aF* +c]{edt+h 'ux dx +h 'ut dt} 

= [(aT*+b)(aT+b)-(aF*+c)h'ux]dx 

- [(aT* + b )(aF + c) + (aF* + c) 

X(e + h 'ut)]dt = dx 
requires that 

(aT* + b )(aT + b) - (aF* + c)h 'ux = 1, 

(aT* + b )(aF + c) + (aF* + c)(e + h 'utI = O. 

Hence, T * and F * are given by 

aT* + b = (e + h 'ut)/.d, 

aF* + c = - (aF + c)/.d, 

where 

(8) 

(9) 

.d: = J(x*, t *; x, t) = (aT + b)(e + h 'utI + (oF + c)h 'ux' 
(10) 

Condition (6) shows that 

t ** = et * + h (u*) = e2t + eh (u) + h (u- 1
) = t, 

whence 

e2 = 1, 

eh (u) + h (u- 1
) = O. 

Accordingly, either 

e = + 1, h (u) = W(lnlul), Wodd, 

or 

e= -1, h(u) = 8 (lnlul), 8 even. 

Furthermore, it is noted that 

u** = l/u* = u, 

so that the last reciprocal condition (7) is met. 
Thus, we obtain the following result. 
Theorem: The conservation law 

aT + aF =0 
at ax 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

is transformed to the reciprocally associated conservation 
law 

aT* + aF* = 0 (17) 
at* ax* 

under the reciprocal transformation given by (4), where h (u) 
is subject to conditions (13) and (14) and T*, F* are given by 
(8HIO)· 

The above result is an extension of the reciprocal result 
recently presented by Kingston and Rogers. S This has been 
applied to inverse scattering schemes by Rogers and Wong.6 

Here, reciprocal Backlund transformations are used in con-
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junction with a Cole-Hopf-type transfonnation to reduce a 
class of nonlinear boundary value problems to linear canoni­
cal fonn. 

III. THE NONLINEAR BOUNDARY VALUE PROBLEMS: 
APPLICATION OF A RECIPROCAL TRANSFORMATION 

The class of nonlinear boundary value problems to be 
considered is given by 

au +~ [u fal(t)cP;] =0. 
at ax 1=1 

O<x<L. t>O. (18) 
N 

U Lal(t)cPl = If/I(t) atx = O. t>O. (19) 
1= I 

N 

U Lal(t)cPl = If/2(t) atx=L. t>O. (20) 
1=1 

u = u(x) at t = O. O<x<L. (21) 

where the cP; are defined recursively according to 

acP;_1 
ucPl = cPl _ I + ----a;-' i = 1.2 •.•.• N. (22) 

cPo = 1. 

It is noted that nonlinear boundary conditions (19) and (20) 
correspond to prescribed flux at x = 0 and x = L. respec­
tively. 

Under the reciprocal transfonnation; 
N 

dx' = u dx - u La;(t)cP; dt. t' = t. 
;=1 

u' = l/u. (23) 

Eq. (18) becomes 

au' a [ N ] -, --, Lal(t')cP; =0. 
at ax ;=1 

where the cP ; are given recursively by 

acP ~ 
Ao' 'Ao, I-I. 1 2 N .... ; = u .... 1- I + ax' • I = . . .... . 

cPo = 1. 
Furthennore, (23) shows that 

ax' 
-=u 
ax • 
ax' N 
-= -ULal(t)cPl 
at 1=1 

= - r"~[u fa;(t)cPl]dX -If/I(t) Jo ax 1=1 

i"au = - dx - If/I(t). 
o at 

whence 

x'(x. t) = L" u dx + 8 1(0) - Ol(t). 

where 0 1: = If/I' and we have taken x'(O. 0) = o. 

394 

Thus. the boundary condition (19) becomes 
N 

L alIt ')cP i = U'lf/I(t') 
1=1 

at x' = 8 1(0) - 8 1(t '). t ' > O. 
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(24) 

(25) 

(26) 

(27) 

under the reciprocal transformation (23). 
The flux conditions at x = 0 and x = L show that 

[u Itla;(t )cPl J: 
= rL~[u fal(t)cPl]dX Jo ax 1=1 

iLau aiL = - -dx = - - u dx = If/2(t) - If/I(t), 
oat ato 

whence. on use of the initial condition (21). 

LL u dx = 8 1(t) - 8 2(t) + 8 2(0) - 0 1(0) + LL u dx. 

(28) 

where O2: = If/2. 
Accordingly. the boundary condition (20) becomes. by 

virtue of (26) and (28). 
N 

L al(t ')cP; = u'lf/i (t') (29) 
1= I 

at x' = 8 2(0) - 8 2(t') + LL u dx. t'>O. 

Thus. to summarize. the reciprocal boundary value 
problem is 

au' a [ N ] -, --, Lal(t')cP; =0, 
at ax 1=1 
N 

L alIt ')cP; = U'lf/I(t') 
1=1 

at x' = 8 1(0) - 8 1(t '). t' > O. 
N ~ 
L alIt ')cP; = U'lf/2(t') 
;=1 

at x' = 8 2(0) - 8 2(t ') + LL u(u)du. t' > O. 

u' = U'(x') at t' = O. 

where 

x'lt=o = L"U(U)dU: = U(x). (31) 

U'(x') = l/U(U-I(X')). (32) 

and the cP; are given by (25) and generate a Burgers' hierar­
chy. 

IV. REDUCTION OF THE BURGERS' HIERARCHY 

We now introduce the Backlund transformation 

u!'. = u'u·. 

u~. = CtlalcP;)U.. (33) 

x· = x', t· = t'. 

Under this transfonnation it is readily shown that 

cP' =_1_ du· 
I u. ax·l • 

and the nonlinear evolution equation 

au' a [ N ] -, --, Lal(t')cPi =0. 
at ax 1=1 

c. Rogers 

(34) 

(35) 
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becomes 

au* = ~ al(t*)a'u* + T(t*)u*, (36) 
at * Iftl ax·1 

where T (t *) is arbitrary. Introduction of u(x*, t *) according 
to 

u = exp{ - f· T(U)dU}U*, (37) 

reduces (36) to 
au N alu 
at * = L al(t *r::-=;;-a. .1' (38) 

I-I :x 
and (33) together with (37) reduce the nonlinear boundary 
value problem to the linear canonical form 

au N a'u 
at

* = Lal(t*~a. .1' t*>O, 
1= I :x 

au au 
-- - !PI(t *l-:?::- = 0 
at* ax* 

atx*=81(0)-81(t*), t*>O, (39) 

au _ 1/1: (t *) au = 0 
at* 2 ax* 

at x* = 8 2(0) - 8 2(t *) + SaL u(u)du, 

u = exp{f;· U'(T)dT} at t * = o. 
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Thus, it is seen that the class of nonlinear boundary 
value problems defined by (18H22) may be reduced to linear 
canonical form by combination of a reciprocal transforma­
tion and a Bicklund transformation appropriate to the re­
duction of a Burgers' hierarchy. The result obtained in Ref. 1 
may be retrieved as a special case of the above when reduc­
tion is to a linear boundary value problem for the classical 
1 + 1 heat equation. Application was made in that case to 
two-phase flow in a porous medium. 
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A general formula is given for the canonical decomposition of a homogeneous polynomial of 
order A. in m variables into a sum of harmonic polynomials. This formula, which involves 
successive applications of the generalized Laplace operator, is proved in the Appendix. It is shown 
that the group-theoretical method for constructing irreducible Cartesian tensors follows from the 
general formula for canonical decomposition. The relationship between harmonic polynomials 
and hyperspherical harmonics is discussed, and an addition theorem for hyperspherical 
harmonics is derived. An expansion ofa many-dimensional plane wave in terms ofGegenbauer 
polynomials and Bessel functions is derived and used to construct bicenter expansions of arbitrary 
functions in many-dimensional spaces. Finally, a formula is derived for the 3A. coefficients of 
hyperspherical harmonics. These coefficients give the values ofintegrals involving the products of 
three harmonics. 

I. INTRODUCTION 

During the last few years, the application of the hyper­
spherical expansion method to the quantum mechanical 
many-body problem has attracted a great deal of attention. 
In nuclear physics, the method has been developed to a high 
degree, mainly by Soviet authors. I.2 In atomic physics hy­
perspherical analysis of two- or three-electron atoms has led 
to a new insight into electron correlation.3

-
13 For more com­

plex atoms, some impressive qualitative conclusions can be 
drawn from the hyperspherical coordinate method. 14 The 
calculations involved are extremely complicated, IS but an 
interesting suggestion for simplifying them has been pro­
posed.16 Hyperspherical analysis has also been applied to 
molecular problems, such as the treatment of large-ampli­
tude vibrations and reaction coordinates. 17.18 

The increasing interest in hyperspherical harmonics in 
theoretical physics and chemistry makes it worthwhile to 
undertake a mathematical investigation of some of their 
properties. Although many books and papers on this subject 
are available,I9-21 we believe that some"results still require 
clarification. The aim of this paper is to clarify some of the 
concepts underlying the theory ofhyperspherical harmonics 
and to explore relations among them. Many of the questions 
discussed in this paper are well known, but others are per­
haps new. 

II. HARMONIC POLYNOMIALS AND HYPERSPHERICAL 
HARMONICS 

Let us begin by recalling that a homogeneous polyno­
mial which satisfies the generalized Laplace equation is 
called an harmonic polynomial. If we consider an m-dimen­
sional space with Cartesian coordinates x 1,x2, ... ,xm , then the 
generalized Laplace operator in this space is 

m if2 
~=L-' (I) 

j=1 ax] 

a) Pennanent address: Mining Institute of Xi'an, Xi'an, Shaanxi, The Peo­
ple's Republic of China. 

The following general formula allows us to express a 
homogeneous polynomial in terms of harmonic polynomials 
(this is called a canonical decomposition of the homogeneous 
polynomial): LetlA (x) be a homogeneous polynomial of or­
der A. in the coordinates x l ,x2, ... ,xm' Then 

[A 121 

/;.(x} = L r2k hA_ 2k (X}, 
k=O 

(2) 

where 

h (x)= (m+U-4k-2) 
A-2k 2kk!(m + U - 2k - 2}!! 

X [(A-f)l21 (- 1)'(m + U - 4k - 21 - 4)" 

t=O 2~! 

xr2t ~ k+tIA(x}. (3) 

In Eq. (3), ~k + t is the generalized Laplace operator [Eq. (1)] 
applied k + t times, and r is the hyperradius defined by 

r2=~+~+~+~. ~ 
A special case ofEq. (3) (k = O) appears in Vilenkin's book.20 
A proof of the general formula is given in the Appendix. As a 
simple example of the canonical decomposition of a homo­
geneous polynomial by means ofEqs. (2) and (3), we might 
consider the case where A. = 3 and 

IA (x) = h(x} = xi x2· (5) 

Then Eq. (2) becomes 

xix2 = h3(X} + r2h l (x}, (6) 

where, from Eq. (3), 

h3(X} = xi X2 - r2x2/(m + 2} (7) 

and 

hl(x} =x2/(m + 2}. (8) 

A number of harmonic polynomials are listed in Ref. 22, in 
which the polynomials are called A.-projections and derived 
by angular integration. If an harmonic polynomial is consid­
ered to be a component of a tensor, the tensor will be irredu­
cible with respect to the m-dimensional rotation group 
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8o(m). Just as we do in three-dimensional Space,23 we may 
call the hyperspherical polynomial of the highest order 
[hA (x)] an irreducible Cartesian tensor. It is a symmetrical 
and traceless tensor of order A. There is a general method in 
Hamermesh's book24 for constructing such a tensor. Let I 
be an operator which symmetrizes the indices i1,i2, ... ,iA 
keeping only distinct permutations of the indices. Then if 
A = 2t, the symmetrical traceless tensor can be written as 

m(m + 2) .•. (m + 4t - 4)(xj,xj,'''xj2.l 
- m(m + 2).··(m + 4t - 6)rI(I) .. x· ···x· ) '.'2') 'u 

+ ... + (- 1),-lm(m + 2) ... (m + 2t _2)r,-2 

xI(I)/ .••. 1). . X· X.) 
1'2 '2, - 3'2'-:1 '2,- 1 '21 

+ ( - 1)'m(m + 2) .•• (m + 2t - 4)r' 

XI (I) . . ..• 1). .). (9a) 
'.', '21-1'2, 

If A = 2t + 1, the symmetrical traceless tensor of order A 
becomes 

m(m + 2) •• ·(m + 4t - 2)(x j , ",x j2t + 1) 

- m(m + 2)···(m + 4t - 4)rI(I)./ x· ··,x· ) 
'.2'3 '21+ t 

+ ... + (- 1)'-lm(m + 2) ... (m + 2t)r,-2 

xI (I) . . ... 1). . x· x· ) 
'.'2 '21 - 2'21 - 1 '2' '2, + 1 

+ ( - l)'m(m + 2) ... (m + 2t - 2)r' 

XI (I) . . ... 1). . x· ). '.'2 '2, - 1'2, 'U + I (9b) 

As a simple example of Eq. (9b), let us consider the case 
where A = 3, il = 1, i2 = 1, and i3 = 2. Then the symmetri­
cal traceless tensor of (9b) becomes 

m(m + 2)xf X2 - mrI (1)1.1 x 2) 

= m(m + 2)(xfx2 - rX2/(m + 2)), (10) 

which should be compared with Eq. (7). 
We will now show that Eqs. (9a) and (9b) can be ob­

tained from Eq. (3), although they seem very different at first 
glance! From the definition of the generalized Laplace oper­
ator, it follows that 

,.:1 (xj,x/""xj,J 

where the factor 2! comes from the symmetrization of the 
indices of the two I)-symbols. Since there are t ! different pro­
ducts for t I)-symbols when the indices are symmetrized, we 
have, in general, 

,.:1 '(x. · .. x· ) = 2't !l (I) . . I) ..... 1). . x· · .. x/ ). ','A. '.'2 '3'4 '2'-1'2t '2.+1 A. 

(l3) 
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Ifwe substitute Eq. (l3) into Eq. (3), and letA = 2t forevenA 
or A = 2t + 1 for odd A, we obtain Eqs. (9a) and (9b). 

We can ask how many linearly independent harmonic 
polynomials of order A it is possible to construct in an m­
dimensional space. The number of linearly independent 
functions of the form x/,x j , ",x jA that it is possible to con­
struct is 

(14) 

Since the harmonic polynomials are required to be traceless, 
there will be 

N(A _ 2) = (A + m - 3) 
A-2 

relations of the form 

(15) 

h A;n, + 2.n, ..... nm + h A;n,.n, + 2 ..... nm + .. , + h A;n,.n, ....• nm + 2 = 0, 
(16) 

with 

n 1 + n2 + ... + nm =A - 2, (17) 

where the nJ 's are the powers of the Xj 'So Therefore the num­
ber of linearly independent harmonic polynomials of order A 
in m-dimensional space is 

N(A) - N(A - 2) = C +; - 1) -C ~: ~ 3) 
= (U + m - 2)(A + m - 3) 

A !(m - 2)! 
(18) 

A set of harmonic polynomials of order A in an m-di­
mensional space is related to a set ofhyperspherical harmon­
ics of order A by 

YA;p(!J) = l1r-A hA;p(x), (19) 

whereJL = (JLI,JL2, ... ,JLm _ 2) is a set of indices which label the 
different linearly independent harmonic polynomials, and 
hence also the different hyperspherical harmonics. In Eq. 
(19), 11 is a normalization constant and !J stands for a set of 
m - 1 angles in the space. Since the harmonic polynomials 
satisfy the generalized Laplace equation, we have 

(20) 

One can express the m-dimensional Laplace operator in the 
form 

,.:1- 1 a~_la A!. 
-~-Iar ar-T' (21) 

where A !. is the generalized angular momentum operator 
m 

A!. = - LA;j (22) 
I<j 

and 

a a A/.=x.--x.-. 
J I ax) J aX

j 

(23) 

From Eqs. (20) and (21) it follows that 

A!. YA;p(!J) =A (A + m - 2)YA;p(!J). (24) 

Equation (24) can be regarded as a definition of hyper­
spherical harmonics. They are eigenfunctions of the general­
ized angular momentum operator A !.. Usually they are cho-
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sen in such a way that they also fulfill an orthonormality 
relation of the form 

J dlJm Y,t ';p.(1J )Y,t;p(IJ) = .5,t.,t .51"1" 

where dfJm is defined by 

(25) 

dX I dx2.··dxm = 7"'-1 drdlJm. (26) 

Now suppose that we have found a set ofhyperspherical 
harmonics Y,t;p (fJ ) which satisfy Eqs. (24) and (25) for a par­
ticular value of A.. Then any other set of functions '?Y ,t;". (fJ ) 
which are related to the set Y,t;p (fJ ) by a unitary transforma­
tion 

'?Y ,t;T(fJ ) = L Y,t;p (fJ )Up". (27) 
I' 

will also satisfy (24) and (25). Obviously, there are infinitely 
many ways of carrying out such a transformation, since the 
only restriction on Up". is that it should be unitary. Hence 
there are infinitely many possible ways of constructing sets 
of hyperspherical harmonics, and further specification of 
Y,t;p (fJ ) will depend on the organization of the indices Il and 
on the definition of the hyperspherical angles. 

As an example of a particular way of specifying a set of 
hyperspherical harmonics let us consider the case where the 
angles are defined by the equation25 

XI = r sin (JI sin (J2 .. ·sin (Jm _ 3 sin (Jm _ 2 sin ¢>, 

x2 = r sin (JI sin (J2· .. sin (Jm _ 3 sin (Jm _ 2 cos ¢>, 

In the above formulas the functions C~~,I:-;./-1)I2 (cos (Jj) 
are Gegenbauer polynomials defined by 

c~m-2)l2(x) = Ir' (- l)t(m + 2n - 2t - 4)!! (2xt- 2t, 

t=O t!2,,-t(m - 4)!!(n - 2t)!! 
(34) 

while the functions Ypm _ ,,JJ.m _ 2 ((J m _ 2'¢» are the familiar 
three-dimensional spherical harmonics. The set of indices 
satisfies 

A. =1l0>IlI>"·>llm-2>0. (35) 
For example, we can find the four-dimensional spherical 
harmonics by means of the formula 

Y,t;p,,p.. ((J1,(J2'¢> ) 

= 21', r( III + 1)[ 2( Ilo + 1)( Ilo - Ild!] 1/2 
11'( Ilo + III + I)! 

X (sin (JIY" C~:!, (cos 01)Yp,.p,((J2'¢» 

= i- P [2(IlO + 1)/1TP/2 HJJo/2,JJ.J!COS (JI)Yp,,JJ.,((J2,¢», 
(36) 

where H pol2•p, (cos °1) is the function which is discussed in 
some detail by Bander and Itzykson26 and Talman. 27 

The hyperspherical harmonics Y,t;p, ....• pm _ 2 (IJ ) defined 
by Eqs. (32) and (33) obey the orthonormality relation 
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X3 = r sin (JI sin (J2'''Sin (Jm _ 3 cos (Jm _ 2' 

X4 = r sin (JI sin (J2"'COS (Jm _ 3' 

Xm _I = r sin (JI cos (J2' 

Xm = rcos (JI' 

(28) 

In terms of the angles (JI, ... ,(Jm _ 2'¢> the element of the solid 
angle becomes 

dlJm = (sin (Jlt - 2(sin (J2t - 3".(sin (Jm _ 3)2 

X sin (Jm_2 d(J1 d(J2· .. d(Jm_2 d¢>. (29) 

Integrating over the ranges O<(Jj <1Tand 0<¢><21T, we obtain 

J 2~/2 Nm 

dfJm = r(m/2) = (m _ 2)!! ' (30) 

where 

ifm is even, 

ifm is odd. 
(31) 

(Notice that (30) does not depend on the particular choice of 
angle (28), since dfJm can be defined by (26).] In terms ofthe 
angles defined by (28), a particular set ofhyperspherical har­
monics can be written in the form20 

(32) 

(33) 

I 

J dfJm Yl';p' .... pm - 2 (fJ )Y,t;p; .... ,JJ.:., _ 2 (fJ ) 

m-2 
= II.5 " (37) j = 0 1'1'1') 

and they are simultaneous eigenfunctions of the set of com­
muting Casimir operators A ;',A;' _I , ... ,A; anda 2/a¢> 2, so 
that they obey 

A ;'_j Y,t;p(IJ) =llj(llj + m - j - 2)Y,t;p' 

j= O,I, ... ,m - 3 (38) 

and 

~ Y,t ± I' (fJ ) = ± illm - 2 Y,t;p (fJ ). (39) 
a¢> 

Some authors define hyperspherical coordinates in 
ways which are different from Eq. (28). For example, in the 
papers of Delves28 and Knirkl4 the hyperspherical coordi­
nates are defined by a clustering approach in which the polar 
angles of individual particles are preserved, and thus their 
hyperangular functions contain indices representing the an­
gular momenta of individual particles. From the standpoint 
of group theory both the hyperspherical harmonics defined 
by Eqs. (32) and (33) and those defined by Knirk and Delves 
can be seen to be basis functions of the same irreducible re­
presentations of SO(m). They differ, however, in their sub-
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group symmetry. The hyperspherical harmonics of Knirk 
and Delves are adapted to the subgroup chain 

So(m) :J SO(m - 3) ED SO(3) :J ... :J [ED SO(3)]m/3, 
(40) 

while the harmonics ofEqs. (32) and (33) are adapted to the 
canonical subgroup chain 

SO(m) :J SO(m - 1) :J ... :J SO(2). (41) 

III. THE ADDITION THEOREM FOR HYPERSPHERICAL 
HARMONICsztH1 

In Refs. 30 and 31 it is shown that in three- and four­
dimensional spaces the multiplication rule for matrix repre­
sentations of the rotation group leads to an addition 
theorem. Now let us try to carry through an analogous proof 
for m-dimensional hyPerspherical harmonics. Since the 
functions YA.;p (n ) form the basis of an irreducible unitary 
representation ofSO(m), it follows that if R is an element of 
SO(m) we can write 

R Y,,;p (n ) = R Y,,;p (u)= YA.;p (R -IU) 

= L YA.;p,(u)D!,,,.(R), (42) 
1" 

where 

u = (XI, x2, ... ,Xm
) 

r r r 
(43) 

and where D !'''' (R ) is the matrix representing R in the irre­
ducible representation A.. 

Now suppose that the unit vector u points in the direc­
tion of the X m axis so that 

u = Um =(0,0, ... ,0, I). 

Then from Eqs. (32) and (33) we have 

Y,,;I'(um) = 0, ifW¥:O, 
and 

Y,,;p(um) 

= o (A.,0,0){f 

(44) 

(45) 

X mlf[ 2m 
-j- 3 r2[(m - j - 1)12](m - j - 1)] 1/2 

j=2 1T{m - j - 2)! 

= [ (m - 2)l!r(A. + m - 2)(U + m - 2) ] 1/2. (46) 
NmA. trim - 1) 

Settingu = Urn inEq. (42) and making use of(45) and (46), we 

Y,,;p(R -Ium ) 

= [(m -I)!IF(A. + m - 2)(U + m - 2) ]112 
NmA. IF(m - 1) 

XD~'I'(R ). (47) 

Because of the unitarity of D!,,,. we can rewrite Eq. (47) in 
the form 

D" (R)* 1',0 

[ 
NmA.IF(m -1) ]112 

= (m - 2)!IF(m - 2)(U + m _ 2) Y";p(Rum)· 
(48) 

As a special case of (48) we have 
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D" (R) = A.lr(m + 2) c(m-2)12 (cos 8) (49) 
0,0 rIA. + m _ 2) " I' 

where 81 is the first angular coordinate of the vector RUm, 

i.e., the angle between RUm and Um • 

From the definition of a representation, we have 

D;"..(R2RI) = 2; D;,I" (R2)D!·,I',(RI). 
I' 

Combining Eq. (50) with Eqs. (47H49), we obtain 

2; Y!;p' (Rlum)Y,,;p. (R 2- lum) 
I' 

_ (m - 4)!!(U + m - 2) c(m-2)/2 ( 0-') 
- A. cos I' Nm 

(50) 

(51) 

Here 81 is the angle between R~IUm and Um , or the angle 
between the vectors R I um and R 2 IUm (see Fig. 1). If we let 
nand n ' be the angular coordinates related, respectively, to 
U and u', then Eq. (51) becomes 

L Y!;p(fl}YA.;p(fl'} 
I' 

_ (U + m - 2)(m - 4)!! c(m-2)12( ') 
- A. U'U , 

Nm 

(52) 

where Nm is defined by Eq. (31). This is the form of the 
addition theorem given by us in Ref. 22. It should be noted 
that although we have used explicit expressions for the hy­
perspherical harmonics to derive Eq. (52), the formula is cor­
rect in general, since it can be derived using only the unitar­
ity of the representations and Eq. (24) (see Ref. 22). 

From Eq. (52) it follows that if/In ) is an arbitrary func­
tion of the hyperangular coordinates fl and if 0 ~m) is a pro­
jection operator which projects out the component of/(fl ), 
which is an eigenfunction of A;' with the eigenvalue 
A. (A. + m - 2), then 

o~m)[/(fl)] = (m-4)Il(U+m-2) 
Nm 

X f dfl:" C(T- 2)12(u·u')/(fl'). (53) 

For example, if/(fl) = 1, 

o~m)[l] = (m - 4)!!(U + m - 2) 
Nm 

X f dn:.. C(T - 2)12(U'U'), 

FIG. 1. Angles in Eq. (51). 
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while iff(n ) = e ~m - 2)/2(U" .u), 

o ~m)[ e(A' - 2)12(U".U)] 

= (m - 4)II(~ + m - 2) f dl1;" e(A' - 2)/2(U.U') 
m 

x e(A' - 2)12(U" ·u') 

=8,u' e(A'-2)/2(u"·u). (55) 

IV. BICENTER EXPANSIONS OF FUNCTIONS BY 
MEANS OF GEGENBAUER POLYNOMIALS 

The formalism which we have been discussing can be 
used to construct bicenter expansions of functions in an m­
dimensional space. In order to do this, we begin by expand­
ing an m-dimensional plane wave in terms of Gegenbauer 
polynomials: 

= i: ;-l.(m + U - 2)(m - 4)!!jA'(kr) 
A=O 

x e ~m - 2)/2(Uk ·u), (56) 

where Uk = klk, u = xir, and where the functionsjA'(kr) are 
to be determined [the factor (m + U - 2)(m - 4)!! is intro­
duced for the sake of convenience]. Applying the operator 
(.::S, + k 2) to both sides of Eq. (56), we obtain 

(..:i, + k 2)e,lt." = (.::S, + k 2) i: t (m + U - 2)(m - 4)!! 
A=O 

XjA'(kr) e~m-2)/2(Uk'U) = O. (57) 

Combining Eqs. (57), (21), (24), and (52) we obtain an equa­
tion satisfied by jA'( pI: 

.m"( ) + (m - 1 ) .m'( ) + [ A. (A. + m - 2)] '"'( ) _ 0 hP -r- hP - r hP-, 

(58) 

wherep = kr. We now let 

)"A(p) =P-" F(p) with V= (m - 2)/2. (59) 

Then Eq. (58) becomes 

p2 F"(p) +pF'(p) + [p2 - (A. + v)2]F(p) = 0, 

which is the equation satisfied by the Bessel function of order 
A. + v. Thus we obtain 

)"A (p) = F(p) = JA+v(p). (60) 
p" p" 

The many-dimensional plane wave of Eq. (58) is related to 
the 8-function in the m-dimensional space by 

8 (x) =_I_Jd m ke,lt." 
(217r 

1 '" =-- L t(m+U-2)(m-4)!! 
(217r A=O 

X f d m k jT(kr) e r -2)12(Uk ·u). 

An arbitrary functionf(x' - x) can be expressed as 

fIx' - x) = f d m x" f(x")8(x" - x + x). 
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(61) 

(62) 

In the special case of an angle-independent function, 
f(lx' - xil, (62) becomes 

f(lx' - xi) = l'" dr" r"m- Y(r") J dl1m 8(x" - x' + x). 

(63) 

Ifwereplace8(x" - x' + x) by (61) and make use of (54) and 
(55) we obtain 

f(lx' - xi) = ~ aA(r',r) e~m-2)12(u'·u), 

where 

(r' 
N~(m + U - 2)(m - 4)11 

a r) - -----::-:-:;:-----
A , - (217f 

X lao dr" r"m- Y(r")Jou(r",r',r) 

and 

JOM = l'" dk km-I)"'(;(kr")jA'(kr')J;(kr). 

(64) 

(65) 

(66) 

The function aA (r',r) can be expressed in a differential form 
by the following procedure. We rewrite aA (r',r) as 

aA (r',r) = N~ (m + U - 2)(m - 4)!! 

X l'" dk k m - I F(k )jT(kr'))"A(kr), (67) 

where 

F(k) = _1_ ('" dr" rOm - Y(r")j;;'(kr"). (68) 
(21T)m Jo 

Substituting the explicit series for jT(kr) into (69), we obtain 

aA(r',r) = N~(m + U - 2)(m - 4)!! 

'" (_l)"rn+A 

X ,,~o (2n)!!(2n + U + m - 2)11 

xi'" dk k2m+A+m-1 F(k)jT(kr'). 

It is not difficult to prove by reduction that 

)"A(kr') = (_ J..)A r'A (1. ~)A )"'(;(kr'). 
k r' ar' 

Then the formula (69) becomes 

aA(r',r) = N~(m + U - 2)(m - 4)!! 

(- !tr"+A 

X ,,~o (2n)!!(2n + U + m - 2)!! 

X( - It r'A (J..~)A ('" dk k 2,,+m-1 
r' ar' Jo 

XF(k ).ro'(kr'). 

From formulas (58) and (56) it can be verified that 

N m i'" dk k m - 1 F(k ))"'(;(kr') 

= J d mke- Ik"1['F(k)=f(r'), 
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Applying V; to both sides of the previous equation, we ob­
tain 

V~f(r') = - f d m k k 2 e - /kox' F (k ) 

= -Nm 100 

dkk 2 + m
-

l ro(kr)F(k). 

Successive applications of V; n leads to 

V;" f(r) = ( - 1)" N m lao dk k 2" + m - I J"';(kr')F (k ). 

(72) 
By combining (71) and (72), we finally obtain 

a,dr,r) = f f".dr') r2n+)., 
,,=0 

where 

( - 1)(m + U - 2)(m - 4)!!Nm 

f",dr) = (2n)!!(2n + U + m - 2)!! 

X r')' (~ :,,)). V;" fIr'). 

(73) 

(74) 

Formulas (64), (73), and (74) are the m-dimensional general­
izations of the three-dimensional expressions obtained by 
one ofus.32 

V.3A. COEFFICIENTS FOR THE HYPERSPHERICAL 
HARMONICS 

The Wigner coefficient and the 3j coefficient related to 
it for SO(3) and their great utility are well known. Wigner 
coefficients for some higher rotation groups, such as SO(4) 
and SO(6) (see Ref. 33), have been worked out and used in 
calculations. We now consider in general the 3A coefficients 
ofthe hyperspherical harmonics for SO(m). We define sym­
metrized "3A " symbols as follows: 

f dn Y).,;p' (n ) Y).,;p' (n ) Y).,;p' (n ) 

=[AI A2 A3] (75) 
- p.1 p.2 p.3 ' 

where the superscripts have been attached to the sets of p.'s, 
thusp.i means ( p.~ ,J..tL ... ,JL:" _ 2)' If we substitute Eq. (32) into 
(75) and introduce the notation 

I (v .p.] - I p.J - 1 p.J - I) 
j,p.] p.J p.J 

= [ dOJj O(p.]-I,J..t];Oj)O(p.J_I,J..tJ;Oj) 

X 0 (p.J _ 1 ,JLJ;O ), 

dOJj = dOj(sin Ojr -j-I, j = 1,2, ... ,m - 3, 

then the "3A " can be written as 

A2 A3] = mn-2 I (v.f] - 1 
112 11.3 . }'II.! 
r- r- }=I r-) 

where the integral withj = m - 2 is defined by 
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(76) 

= [(2p.:"-3 + 1)(2p.!'~; + l)(2p.~_3 + lT/2 

X(~:"-3 ~!.-3 ~~-3) 

(
p.:,. - 3 tt!' - 3 tt~ - 3) 

X 1 2 3' 
ttm - 2 ttm - 2 ttm - 2 

(78) 

and where ( ) are the 3j symbols for SO(3). In order to evalu­
ate integral (55) we introduce the explicit expression (33) of 0 
functions, i.e., we write 

where 

~ =tt] +ttJ +ttJ, Vj = (m - j - 1)/2, 

and 

C ; = (22pj+2Vj-2 r2( 11.1 + v) 
).;,Pj r'j j 

XF(tt;_1 - tt] + l)(2p.]_1 + 2vj) 

X [17T(ttJ_I +ttJ+2Vj )]-lJ
l /2. 

Gegenbauer34 stated that 
[.12J 

C~(x) = L C,(s,a,.8) C~_2'(X), 
,=0 

where 

(79) 

(80) 

(81) 

C (s,a,.8 ) = (s - 2t + {3 )r (t + a - {3)r (a + s - t )F 1ft) . 
, F(l + t )F(a - {3 )F(s - t + {3 + 1)F(a) 

(82) 

See Hua3S for a simple proof. 
We have 

X[ dOj(SinOj)Mj+2VJill Ppj_l_pJ_2'(COSOj ). (83) 

In obtaining the above equation we have used the well­
known relation between Gegenbauer functions and Le­
gendre functions 

(84) 

It is not difficult to evaluate the remaining integral in Eqs. 
(83) if we make use of the following relations: 

P", (x)P", (x) 

n )2 
0

3 
P",(x) (85) 
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JI dx(l - X2)P-1 P (x) = 1T[rY,W 
_I v rip + v/2 + 1I2)F(p _ v/2)F(v/2 + 1)F( _ v/2 + 112)' 4 Rep>O. 

(86) 

Integrating (83) out we obtain 

(87) 

where 

(88) 

and 

P( 
II. )_ r2[(~ +2vj + 1)l2]r[(I-7'2)12]sin[(1 +7'2)1T/2] 

2 Vj""~J,7'2 -
r [(~ + 2Vj + 2 + 7'2)/2]r [(~ + 2Vj + I - 7'2)/2]r [(2 + 7'2)/2] 

(89) 

Here, 7'1 and 7'2 take on all the values allowed by the 3j sym­
bols. For SO(4), it follows that 

[
AI A2 A3] 
p.l p.2 p.3 

-I(l'P.~ p.~ P.~)'I(J.f: p.~ p.~) (90) - 'p.: p.~ p.~ 2 'p.~ p.~ p.i . 

The previous formulas produce the same values as those giv­
en by Shibura and Wulfman31 within a common factor (11 
2~)I/2. 
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APPENDIX: PROOF OF EQ. (3) 

Suppose thatft (x) is a homogeneous polynomial of de­
greeA in an m-dimensional space. Then we have the canoni­
cal decomposition 14 

[M2) 

ft(x) = L r2k h-t_lk(X), 
k_O 

(AI) 

where h-t _ 2k (x) is a homogeneous harmonic polynomial of 
degree A - 2k. It can be verified by direct calculation that 
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, 
.,Ii (r2kf-t_2k') = 2k(m + U + 2k - 4k' - 2)r2k-%_2k' 

+ r2k.,lif-t_2k" (A2) 
where ft _ 2k' is a homogeneous polynomial of degree 
A - 2k I. Thus we can prove from the induction of (A2) that 
.,Ii k'(r2%_2k) 

= L 2k'-, kl(n+U-2k-2t-2)II k' (kl) 
,=0 t (k-kl+t)l(n+U-2k-2k'-2)II 

Xr2k - 2k '+2,.,Ii 'ft-2k for k '<.k. (A3) 

Applying the operator.,li to both sides ofEq. (AI) k times and 
using Eq. (A3), we obtain 

.,Ii k ~ (x) = 2kk! (n + U - 2k - 2)11 h (x) 
n (n + U _ 4k _ 2)11 -t - 2k 

[-t/2) 

~ 
k -2k' + .,Ii (r h-t-2k')' 

k'= +1 

(A4) 

It is obvious that .,Ii k f)" (x) is a homogeneous polynomial of 
degree A - 2k. Thus the harmonic polynomial of degree 
A-2kis 

= (n + U - 4k - 2)11 
2kk I(n + U - 2k - 2)11 

x[(),,-f J/2) (-1)'(n+U-4k-2t-4)U 

, _ 0 2't I(n + U - 4k - 4)11 

xr2'.,Ii k+'f),,(x) 

= 
(n+U-4k-2) 

2kkl(n + U - 2k - 2)11 

X [()"Y)/2) (-1)'(n+U-4k-2t-4)II 

,=0 2'tl 

xr2'.,Ii k+ 'f-t(x). 
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The hyperbolic complex linear groups and the isomorphic relation between these groups and real 
linear groups are discussed. A local hyperbolic complex gauge symmetry of the hyperbolic 
complex sesquilinear field is equivalent to some local real gauge symmetry of the real bilinear 
field. 

I. INTRODUCTION 

Although the ring H of hyperbolic complex (or "dou­
ble") numbers has been studied extensively by mathemati­
cians, 1.2 it has been scarcely applied directly in physics. Kun­
statter, Moffat, and Malzan3 first applied this ring in the 
theory of gravitation. They have suggested that the metric of 
the space-time manifold takes their values in H, and have 
proved that this metric has internal GL(4,R ) gauge symme­
try. However, this symmetry, in fact, is a HCLG (i.e., hyper­
bolic complex linear group) gauge symmetry. (See Ref. 4, 
and Sec. III.) In this paper we generally discuss the HCLG's 
and some related problems. In Sec. II, we give briefly defini­
tions of principal HCLG's. These definitions are very similar 
to the case of CLG's (i.e., complex linear groups). Section III 
and Sec. IV are the principal parts of this paper. In Sec. III, 
we prove every principal HCLG to be isomorphic to some 
RLG (i.e., real linear group) or a direct product of two 
RLG's. This is an essential distinction between the HCLG's 
and the CLG's. In Sec. IV, we prove a local HCLG gauge 
symmetry of the hyperbolic complex sesquilinear fields to be 
equivalent to some local RLG gauge symmetry of the real 
bilinear fields. The case concerning the internal symmetry of 
a hyperbolic complex metric3 in nonsymmetric gravitational 
theory is such an example. Finally, Sec. V is conclusions. 

II. GROUP GL(n,H) AND ITS PRINCIPAL SUBGROUPS 

Let E denote the purely hyperbolic imaginary unit of H, 
~ = + 1. The conjugation number of z = a + Eb (a and b 
are real) is z = a - Eb, and the square of the norm of z is 
IIzll2 = zZ = a2 

- b 2. Although z does not vanish in H, IIzll2 
may vanish (e.g.,z = 1 + E). Numberz- 1 exists, ifand only if 
IlzIl2¥O, where 

(1) 

The above are different from the case in the fields of complex 
or real numbers. 

According to the multiplication of matrices, the set of 
all n X n hyperbolic complex matrices obviously forms into a 
ringonH. If A is a hyperbolic complex matrix and IIdet(A )11 2 

does not vanish, then we call matrix A "nonsingular." On the 
contrary, we callA "singular." By Eq. (1) we have the follow­
ing. 

Theorem 1: The converse A -1 ofa hyperbolic complex 
matrix A exists if and only if A is nonsingular. A -I is calcu­
lated in the same way as an ordinary converse matrix. 

A hyperbolic complex vector is an n X 1 hyperbolic 
complex matrix V = (V i). According to the ordinary way, 
the set of all V's forms into a linear space II". We cannot 
copy the concept about ordinary linear independence for 
II" . However, the following theorem can be easily proved (in 
the following, every Latin index takes values 1,2, ... ,n). 

Theorem 2: I Vi j is a basis of H (i.e., any vector W of H 
can be expressed as W ~ a i V i,ai e H) ifand only if the hy­
perbolic complex matrix (V{) is nonsingular. 

Now, we consider a hyperbolic complex linear mapping 
f II" _II". I can obviously be expressed in a hyperbolic 
complex matrix (/{), and the product of mappings corre­
sponds to the product of matrices. If (/{) is nonsingular, we 
call I nonsingular. Such I has the converse I -I, 

(I-I) = (f)-I. A basis is mapped into another basis under 
the action of a nonsingular mapping. Thus, the set of all 
nonsingular mappings (or matrices) forms a group GL(n,H), 
i.e., hyperbolic complex general linear group of degree n. 
The group GL(n,H) has some principal subgroups, the first, 
of course, is just the group GL(n,R ). Since the definitions of 
other principal subgroups are similar to the case of the ordi­
nary complex linear group GL(n,C), we spread them out di­
rectly as follows. 

The hyperbolic complex orthogonal group of degree n 
relative to signature "I is defined by 

0(7J,H) = (/l/e GL(n,H),(f)7J(ff7J- I = I j, (2) 

where "I is some signature, A T is the transpose of A, and I is 
the n X n unit matrix. When "I = I, O(n,H )==0(7J,H). Obvi­
ously, for any V the quadratic form u = 7Jij JIi Vi is invariant 
under the action of an element of O(7J,H). The hyperbolic 
complex unitary group of degree n relative to signature "I is 
defined by 

U(7J,H) = 1/I/e GL(n,H),(/)7J(j)T7J-I =I}. (3) 

When "I = I, U(n,H)=U(7J,H). For any V the square of the 
norm II VII 2 = 7Jij JIi Vi is invariant under the action of an 
element of U(7J,H). Obviously, the ordinary Lorentz group 
0(3,1) is a real subgroup ofU(3,I,H). The hyperbolic com­
plex symplectic group of degree m is defined by 

Sp(m,H) = {/l/eGL(2m,H),(/)TH(/)=JJ, (4) 

J= ( 0 I) 
-I O' 

According to the ordinary way, all the above HCLG's are 
Lie groups, and have respective Lie algebras. 
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The transformation groups, whch can be applied exten­
sively in physics, are the local linear Lie groups. For this 
kind of group, the Lie group construction exists only in some 
neighborhood of the unit element, and an "isomorphism," in 
fact, is a local isomorphism only. In the following, we only 
consider the local linear group and the word "isomorphism" 
only means a local isomorphism. According to the Lie group 
theory, such two groups are isomorphic if and only if their 
Lie algebras are isomorphic. 

III. ISOMORPHIC RELATION BETWEEN HCLG'S AND 
RLG'S 

There are two special elements in H, i.e., y = !(1 + E) 
andy = !(1- E), 

y2 =y, r =y, IlYII2 = O. (5) 

Therefore, y and y play the role of 1 and 0 in a hyperbolic 
complex matrix, respectively. This is particularly useful in 
this section. 

Lemma: Let n X n matrices A and B be two elements of 
some real Lie algebra a, and a mapping p be defined by 

p(A,B) =!(A + B) + !E(A - B), (6) 
then p is a Lie algebra homomorphic mapping. 

Proof: (A,B) is an element of the direct sum a +0. Obvi­
ously, p is linear. Next, 

p[(A,B ),(C,D)] = p([A,C ],[B,D]) 

= p(AC - CA,BD - DB) 

= !(AC- CA +BD-DB) 

+!(AC- CA -BD+DB)E 

= [p(A,B),p(C,D)]. Q.E.D. 

Let If ij be an n X n real matrix, and its k th line 1 th col­
umn element be B1k{)j/' Then all If's form into a basis of 
gl(n,R ) [i.e., the Lie algebra of GL(n,R )]. 

Theorem 3: GL(n,R) X GL(n,R) is isomorphic to 
GL(n,H). 

Proof: akl = (If kl>0) and au = (O,lf kl) form a basis of 
gl(n,R )+ gl(n,R ), where Ie = k + n, 7 = 1 + n. Akl = If kl 
and Akl = Elf k/ form the basis of gl(n,H). 

Obviously, p(akl ) and plaid) form another basis of 
gl(n,H). According to the above Lemma, this theorem is 
proved. 

Q.E.D. 
Theorem 4: 0(1J,R )XO(1J,R) is isomorphic to 0(1J,H). 
Proof: Any element of A of o(1J,R ) satisfies 

A 1J + 1JA T = 0, (7) 

p(A,B)1J + 1J(p(A,B})T = O. (8) 

Therefore,p maps o(1J,R )+o(1J,R) into 0(1J,H). In addition, 

akl = (If kl -1Jkk1Jlllf lk ,O), 

aid = (O,lf kl - 1Jkk 1Jlllf Ik) 

form a basis of o(1J,R )+o(1J,R). Now, p(akl) 
=!(1 + E)(lf kl -1Jkk1Jlllf lk ) and pIau) = !(l- E)(lf kl 
-1Jkk 1Jlllfld form just a basis of 0(1J,H). 

Q.E.D. 

Theorem 5: Sp(2m,R) X Sp(2m,R) is isomorphic to 
Sp(2m,H). The proof is similar to Theorem 4. 
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Theorem 6: For an arbitrary signature 1J, U(1J,H) is iso­
morphic to GL(n,R ). 

Proof: A is an element ofu(1J,H) if and only if 

A1J + 1JA T = O. (9) 

Let 

(10) 

Akk = Elf kk' 

then n2 elementsAkl,A id , andA kk forma basisofu(1J,H). Let 

p(lf kl) = ! 1Jkk 1J1l(A1k - Aid (k < I), 

p(lf kk) = Akk · 

For any k,l Eq. (11), in fact, can be unified by 

(11) 

p(lf kl) = !(1 + E)lf kl - !(1 - E)1Jkk 1Jlllf kl' (12) 

We can directly examine that p is an isomorphic mapping 
and all elementsp(lf k/) form just a basis ofu(1J,H). 

Q.E.D. 

According to Theorems 3 and 6, we can naturally con­
trast the interal gauge symmetry of the hyperbolic complex 
metric3 with the Lorentz symmetry in general relativity. In 
the following, let symbol "-" denote some imbedding and a 
line denote a (local) isomorphism in a graph. Then we obtain 

GL(4,R )XGL(4,R )-GL(4,H)-GL(4,R) 

t t t (13) 
GL(4,R) U(3,1,H)-SO(3,1). 

We see that the local GL(4,R ) gauge symmetry of an expres­
sion by real frame corresponds to the local U(1J,H) gauge 
symmetry of an expression by hyperbolic complex frame,4 
where 1J is some signature of degree 4. Corresponding to this, 
in general relativity the Riemann metric has the SO(3,1) 
gauge symmetry, and SO(3,1) is a subgroup ofGL(4,R). 

In GL(n,C), O(n,C )nU(n,C) = O(n,R ). Corresponding 
to this, we also have the following theorem. 

Theorem 7: U(1J,H)rO(1J,H) = 0(1J,R). 
Proof: Since any element ofu(1J,H )no(1J,H) must satisfy 

simultaneously Eq. (7) and Eq. (9), the !n(n - 1) elementsAkl 
(k>l)ofEq.(lO)formabasisofu(1J,H)no(1J,H). (Akll isalso 
a basis of o(1J,R ), this means that U(1J,H )nO(1J,H) is locally 
isomorphic to 0(1J,R). In addition, any element a + Eb 
E U(1J,H)nO(1J,H) must satisfy 

(a + Eb )(aT + Eb T) = I, 
(14) 

(a + Eb )(aT - Eb T) = I, 

and (a + Eb )-1 should exist. Therefore, aT + Eb T = aT 
- Eb T, i.e., b = O. Q.E.D. 

We can clearly sum up the above discussions by the 
following graph, which expresses the close relations among 
every principal HCLG and RLG. These relations do not 
exist for CLG's. 
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Sp(2m,H} ------- Sp(2m,R }XSp(2m,R } 

J ~(1/,H) O(1/,R }X~} l 
GL(n,H}. O(1/,R} • GL(n,R }XGL(n,R} 

I '--U(1/,H} GL(n,R}/ I (15) 

IV. ON LOCAL GAUGE TRANSFORMATION ACTION OF 
A HCLG 

According to Sec. III, the local HCLG gauge symmetry 
of a hyperbolic complex field, in fact, is a local RLG gauge 
symmetry. Now, we generaly prove the local HCLG gauge 
symmetry of a hyperbolic complex sesquilinear form K to be 
equivalent to the local RLG gauge symmetry of a real bilin­
ear form K '. Let Tx (H) and Tx denote the hyperbolic com­
plex and real tangent spaces at a point x of M, respectively. A 
vector A ' of T ~ = Tx X Tx can be written as follows: 

(16) 

where we use the notation of Ref. 3, {eA. J = (e~ ,e{z J is a basis 
of T' in which a hyperbolic complex structure E takes the 
form as 

E= ~ ~. 
A mapping H: T' -+T(H) is defined by 

H(A'} = (A a + EA "1i")ea , 

(17) 

(18) 

where (ea J spans Tx. LetP: GL(n,R ) X GL(n,R l-GL(1/,H} 
be an induced mapping ofp of Theorem 3, which is defined in 
a neighborhood U of the unit element. Then P is a local 
isomorphism. For an element (g,h ) E U, a transformation 
L (g,h ):T'-+T' is defined by L (g,h) = H -lp(g,h)H, i.e., 

HL (g,h )(A') = P(g,h)H(A '), VA' E T~, (g,h) E U. 
(19) 

Let K ' be a real bilinear form on T'. According to Kunstat­
ter, Moffat, and Malzan,3 we define a hyperbolic complex 
sesquilinear form K on T (H) by 

K (A,B ) = K '(A',B ') + EK '(EA ',B '), (20) 

where A =H(A '),B=H(B'). 
Theorem 8: K is invariant under the action of P (g,h ) if 

and only if K' is invariant under the action of L (g,h ). 
Proot From Eq. (19) we have 

K(P (g,h }(A ),P (g,h )(B )) 
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= K (P (g,h )H (A '),P (g,h )H (A ')) 

= K (HL (g,h )(A '),HL (g,h )(B ')) 

= K '(L (g,h )(A '),L (g,h }(B ')) 

+ EK '(EL (g,h )(A '),L (g,h )(A ')). 
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Since 

EL (g,h ) = L (g,h )E, 

we obtain 

K (P (g,h )(A ),P (g,h )(B )) 

= K '(L (g,h )(A '),L (g,h )(B ')) 

+ EK '(L (g,h )E (A '),L (g,h )(B ')). 

(21) 

(22) 

This means that the above theorem is true. Q.E.D. 
The following Theorems 9, 10, and 11 are direct corol­

laries of Theorems 6, 4, and 5, respectively. 
Theorem 9: Let ( Va J be an U(1/,H) frame4 on M, then 

the hyperbolic complex metric,3 which is defined by 

gafJ = 1/ij V~ V /J, (23) 

has a local GL(n,R ) gauge symmetry. 
When n = 4 and 1/ = diag(l, - 1, - 1, - 1), we obtain 

the case in the nonsymmetric gravitational theory.3,4 
Theorem 10: Let ( Va J be an O(1/,H) frame on M, then a 

hyperbolic complex bilinear form 

KafJ = TJij V~ V /J (24) 

has a local O(1J,R )XO(TJ,R) gauge symmetry. 
However, KafJ =l=K{3a' K cannot be explained as a met-

ric. 
Theorem 11: A hyperbolic complex bilinear form 

KafJ =8ab(V~Vp+b- v;;+aB~B~) (25) 

has a local Sp(2m,R ) X Sp(2m,R ) gauge symmetry. 

V. CONCLUSION 

Every principal HCLG is (locally) isomorphic to some 
RLG (or a direct product of two PLG's). Therefore, a hyper­
bolic complex field usually has the local RLG gauge symme­
try. An ordinary complex field generally does not have this 
property, e.g., the complex metric of EinsteinS has the local 
U(3,1) gauge symmetry, however, it is not locally GL(4,R ) 
gauge symmetric. In short, a discussion about the hyperbolic 
complex fields may usually be changed into a discussion 
about the real fields. 

'I. M. Yaglom, Complex Numbers in Geometry (Academic, London, 1968). 
2I. M. Yaglom, A Simple Non-euclidean Geometry and Its Physical Basis 
(Springer-Verlag, New York, 1979), Supplement B. 

30. Kunstatter,J. W. Moffat, and R. Malzan,J. Math. Phys. 24, 886 (1983). 
'Zai-Zhe Zhong, J. Math. Phys. 25, 3538 (1984). 
sA. Einstein, The Meaning 0/ Relativity (Princeton U.P., Princeton, NJ, 
1955), Appendix II. 
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The concept of infinitesimal null isotropy is defined for a Lorentz manifold, in terms of null 
sectional curvature (as defined by Harris). It is shown that infinitesimal null isotropy is equivalent 
to infinitesimal spatial isotropy (as defined by Karcher), and that a null-isotropic space for which 
null sectional curvature is infinitesimally spatially constant must have a Robertson-Walker 
metric. 

I. INTRODUCTION 

Astronomical observation has shown that the various 
sorts of extragalactic objects are distributed about us (ap­
proximately) isotropically. This situation is generally inter­
preted as saying that, for an observer with a certain four­
velocity U, every direction in his infinitesimal rest space U 1 

is equivalent. Moreover, it seems natural to assume that we 
do not occupy a special position in the universe; that is, 
space-time is isotropic at every point, as seen by the members 
of an appropriate family of observers. Karcher l has given the 
following definition. 

Let Ube a timelike unit vector field on a Lorentz mani­
fold M. Then M is infinitesimally spatially isotropic relative 
to Uif 

R (X,Y)Z = k [(Y,Z)X - (X,Z)Y], ,<;/X,Y,ZeU 1
, (Kl) 

R(X,U)U=p'x, ,<;/XeU\ (K2) 

where R is the Riemann curvature tensor of M, and k and,u 
are real-valued functions on M. 

There are a number of theorems which assert that spa­
tial isotropy at each point, together with some assumptions 
about the matter content of the universe, implies that space­
time has a Robertson-Walker metric. For example, see 
Karcher, 1 Frankel,2 and Robertson. 3 

Let us reexamine this interpretation of isotropy. What 
our observers actually see to be isotropic is the light (and 
other radiation) which has come to them from distant ob­
jects. Since light travels along null geodesics, a more accu­
rate formulation of isotropy would be to say that, for our 
observers, every null direction is equivalent. As before, we 
require that this be the case for each observer in an appropri­
ate family of observers. In order to put this idea in math­
ematical terms, we shall use the concepts of null sectional 
curvature and null congruence as defined by Harris.4 

Given a nonzero null vector N and a null plane P con­
taining N, the null sectional curvature with respect to N of 
the plane P is defined by 

KN(P) = (R (V,N)N,V)/(V,V), 

where Vis any non-null (and therefore spacelike) vector in P. 
Here, K N(P) is independent of the choice of Vin P, but it does 
depend quadratically on N. Therefore, it is best to restrict 
attention to a set of "normalized" null vectors which con­
tains exactly one representative for each null direction. 

Given a timelike unit vector field U on M, the null con­
gruence associated with U is the set of null vectors defined by 

ff(U) = {NeTMI(N,N) =0 and (N,U) = Ij, 

where TM is the tangent bundle of M. This set has the prop­
erty that, for each nonzero null vector N, there is a unique 
AeR such that ANeff( U). 

We shall call M infinitesimally null-isotropic relative to 
U if null sectional curvature, restricted to ff( U), is a point 
function; that is, if for each point peM, V(P): = K N(P) is the 
same for all null vectorsN atp which lie inff(U) and all null 
planes P containing N. 

We shall prove that infinitesimal null isotropy relative 
to U is equivalent to infinitesimal spatial isotropy relative to 
U, as defined by Karcher. Then we shall prove that if Mis 
null-isotropic relative to U and if, in addition, null sectional 
curvature is infinitesimally spatially constant [i.e., X (v) = 0 
for all XIU), then M must be a Robertson-Walker space. 

The proof of this second assertion follows closely the 
proof of the main theorem in Karcher. 1 Karcher's theorem 
states that Mis Robertson-Walker if (i) the matter content of 
M is a perfect fluid obeying an equation of state, and (ii) Mis 
infinitesimally spatially isotropic relative to U, where U is 
the flow vector field of the fluid. Our assumption that null 
sectional curvature be infinitesimally spatially constant cor­
responds to Karcher's assumption that the fluid obey an 
equation of state, or to the requirementl that the pressure of 
the fluid be spatially constant. Alternately, one could substi­
tute the slightly stronger assumption that U be geodesic 
(D u U = 0), as in Robertson.3 Harris4 shows that M is Rob­
ertson-Walker if M is null-isotropic and U is an infinitesimal 
conformal transformation (L ug = 2ag, where g is the metric 
on M and a:M-R). 

II. INFINITESIMAL NULL ISOTROPY 

Before showing that infinitesimal null isotropy is equi­
valent to infinitesimal spatial isotropy, we establish a lemma 
characterizing infinitesimal spatial isotropy in terms of the 
principal sectional curvatures of M. Recall that the sectional 
curvature of a non-null plane spanned by vectors X and Y is 
defined by 

K(X 1\ Y) = K(X,Y) 

= (R (X,y)y,x)/(X,x) (Y,Y) - (X,y)2). 

We shall use the letter U to denote both a fixed unit 
timelike vector field, and the value of that vector field at a 
point peM; the intent should be clear from context. 

Lemma: Let M be a Lorentz manifold of signature 
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( - , + , + , + ). M is infinitesimally spatially isotropic rela­
tive to U if and only if all planes containing U have sectional 
curvature - p., and all planes perpendicular to U have sec­
tional curvature k. 

Proof: First, assume that M is infinitesimally spatially 
isotropic relative to U. Then, for allX,Y,Z E U 1

, 

R (X,Y)Z = k [(Y,Z)X - (X,Z) Y], 

R (X, UjU = p.X, 

(Kl) 

(K2) 

where k andp. are real-valued functions on M. Letting Y = Z 
in (K 1) and taking the inner product with X on both sides 
gives 

(R(X,Y)Y,x) =k(Y,Y)(X,x) - (X,Y)2). 

Dividing both sides by IIX AYII 2 = (X,x)(y,Y) - (X,y)2 
gives 

K(X,Y) = k, for all X,YEU 1
• 

Similarly, taking inner products with X on both sides of (K2) 
and dividing by II U AX 112 gives 

K (U,x) = - p., for all X1U, 

as was to be shown. 
Conversely, assume for eachpEM thatK is constant on 

planes containing Up and that K is constant on planes per­
pendicular to Up. Define k:M--+R and p.:M--+R by 

kIP) =K(X,Y), (la) 

p.(P) = -K(Up,x), (lb) 

where X and Yare arbitrary linearly independent vectors in 
U~. We must prove that the conditions (Kl) and (K2) hold 
onM. 

Condition (Kl) follows from (la) by a standard argu­
ment.s To obtain (K2), let X and Ybe unit vectors perpend­
icular to UwithX1Y. We have 

(R (X + Y,UjU,x + Y) 

=K(U,x + Y)'II(X + Y)A UII2 

= (-p.)( - 2) 

=2p,. 

On the other hand, 

(R (X + Y,UjU,x + Y) = (R (X,UjU,x) 
+ 2(R (X,U)U,Y) 

+ (R (Y,UjU,Y) 

= 2p, + 2(R (X,U)U,Y). 

Combining these equations, we find that 

(R (X,UjU,Y) = 0, 

whenever X and Yare orthogonal vectors in U 1. In addition, 

(R (X,UjU,U) = ° 
and 

(R (X,U)(U,x) =p.. 

The last three equations together yield (K2). 
Theorem 1: Let U be a timelike unit vector field on M. 

Then M is infinitesimally null-isotropic relative to U if and 
only if M is infinitesimally spatially isotropic relative to U. 

Proof: Assume that M is null-isotropic relative to U. By 

408 J. Math. Phys., Vol. 26, No.3, March 1985 

the lemma, it suffices to show that, at each point, sectional 
curvature is constant on all planes containing U and on all 
planes perpendicular to U. 

Given orthogonal vectors X and Y perpendicular to U, 
let N = - U + X. N is a null vector with (N, U) = + 1, so 
NEJY(U). Since (N,Y) = O,Nand YspananullplaneP (see 
Fig. 1). By the definition of null sectional curvature, and 
since (Y,Y) = 1, 

KN(P) = (R (Y,N)N,Y). 

SinceN= - U+X, 

KN(P) = (R (Y,UjU,Y) 

- 2(R (Y,U)X,Y) + (R (Y,X)(X,Y). (2) 

On the other hand, letNl = - U -X. Then NIEJY(U) 
and (Nl,Y) = 0; thereforeNl and Yspan a null plane Pl. As 
above, 

KN,(Pl ) = (R (Y,UjU,Y) + 2(R (Y,U)X,Y) 

+ (R (Y,X)X,Y). 

Since M is null-isotropic relative to U, K N(P) = K N, (P d, it 
follows that (R (Y, U)X, Y) = 0, so 

KN(P) = (R (Y,U)U,Y) + (R (Y,X)X,Y). 

Since - (U,U) = (Y,Y) = (X,x) = 1, and (U,x) 
= (X, Y) = 0, we can rewrite this as 

KN(P) = -K(U,x) +K(X,Y); 

thatis,K (U,x) = K (X, Y) - v, where v:M--+R is the function 
defined by restricting KN(P) to NEJY(U) and null planes P 
containing N. Thus 

K(Q2) = K(Qd- v, 

whenever Ql and Q2 are planes with UEQl' U1Q2' and 
Ql A Q2 a line. 

Now suppose that U AXand U A Yare any two planes 
containing U, whereX,YEU 1 are independent, but not nec­
essarily orthogonal (see Fig. 2). Then the plane X A Y meets 
both U A X and U A Y in a line, and therefore 

K(U,x) =K(X,Y) - v=K(U,Y). 

Thus K is constant on all planes at p containing U; we denote 
this constant by - p.(p). We can conclude also that K has the 
constant value k = - p. + von planes at p perpendicular to 
U. Hence, by the lemma, M is infinitesimally spatially iso­
tropic relative to U. 

Conversely, assume that M is infinitesimally spatially 
isotropic relative to U, so that the conditions 

R(X,Y)Z=k(Y,Z)X- (X,Z)Y), 

R(X,UjU=p.X 

(Kl) 

(K2) 

hold for all X,Y,ZEU 1
, and let P be any null plane. Then 

u 

J-7r-f-+ y FIG. 1. The null plane p spanned by Nand Y, 
whereN= - U+X. 

x 
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u 

FIG. 2. The plane X 1\ Y meets 
both U 1\ X and X 1\ Y in a line. 

P= N AY,whereNEJY(U)and(Y,N) = (Y,U) =O.Asbe­
fore, N = - U + X for some unit vector X perpendicular to 
U, and (X, Y) = (N + U, Y) = O. Recall the expansion of 
KN(P) given in Eq. (2): 

KN(P) = (R (Y,U)U,Y) 
- 2(R (Y,U)X,Y) + (R (Y,X)X,Y). (2) 

From (KI) and the symmetries of the curvature tensor, it 
follows that (R (Y,U)X,Y) = 0, so 

KN(P) = (R (Y,U)U,Y) + (R (Y,X)X,Y) 

= -K(U,Y) +K(Y,x) 

=J1- + k, 

by (K2). Let v = J1- + k; then K N(P) = v for all NEJY( U), so 
M is null-isotropic relative to U. 

III. ROBERTSON-WALKER METRICS 

Karcher l has shown that a perfect fluid space-time is 
conformally flat if and only if it is infinitesimally spatially 
isotropic. We show in the proof of Theorem 2 that an infini­
tesimally spatially isotropic spacetime is necessarily a per­
fect fluid; this, together with the result of Theorem I, tells us 
that the null-isotropic space-times are exactly the confor­
mally flat perfect fluids. These space-times are called Ste­
phani universes6

; they are a natural generalization of the 
Robertson-Walker spaces. 7 

Theorem 2: Let Mbe a four-dimensional Lorentz mani­
fold, and let U be a timelike unit vector field on M. Suppose 
that M is infinitesimally null-isotropic relative to U, and that 
null sectional curvature is nonzero and infinitesimally spa­
tially constant. Then M has a Robertson-Walker metric. 

Proof (following Karcher l
): By Theorem I, we know 

that 

R (X,Y)Z= k [(Y,Z)X - (X,Z)Y], (KI) 

R (X,U)U =J1-X, (K2) 

whenever X,Y,ZeUl, where k andJ1- are functions on M. It 
follows that 

Ric(X,Y) = (2k - J1-)(X,Y), 

Ric(U,U) = 3J1-, 

Ric(U,x) = 0, 

whenever X,YeU!. Raising an index gives 
"'-J 
Ric(U) = - 3J1- U, 
r-v 
Ricl Ui = (2k -J1-)idlui' 

The Einstein tensor, defined by 
r""-.I "'-J 

G: = Ric - ~tr(Ric)id, 

has the property that (div G)( W) = 0 for all WeTM. From 
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"'-J 

the above, we calculate ~tr(Ric) = 3k - 3J1-, so 

G(U)= -3kU, 

G lUi = (2J1- - k)idl ui ' 

and G(W)=(2J1--k)W+2(J1-+k)(U,W)W, for all 
WeTM. (If the Einstein equations are assumed, this shows 
that the matter content of M is a perfect fluid.) Now 

0= 2 + dJ1-(W) - dk(W) + (U,W)div(2(.u + k)U) 

+ 21jL + k)(DuU,W), VWeTM. (3) 

Returning to (KI) and (K2), we calculate 

Du(R (X,Y)Z) =dk(U)(Y,Z)X - (X,Z)Y) 

+ k(Y,Z)DuX - (X,Z)DuY), 

R (X,Y)DuZ = 0, 

R(DuX,Y)Z= -J1-(Y,Z)DuX, 

R (X,DuY)Z =J1-(X,Z )DuY. 

Thus 

(DuR )(X,Y)Z = dk(U)[ (Y,Z)X - (X,Z)Y] 

+ (k + J1-)[ (Y,Z)DuX - (X,Z)DuY]. 

Similarly, 

(DxR)(U,Y)Z = -dJ1-(Y,Z)U 

- (k +J1-)[ (Y,Z)DxU - (X,Z )DyU]. 

From the Bianchi identity, 

(DuR )(X,Y) + (DxR )(Y,U) + (DyR )(U,x) = 0; 

it follows that 

[dJ1-(X)(Y,Z) -dJ1-(Y)(X,Z)]U (4) 

= (k + J1-)[ (Y,Z )DuX - (X,Z)DuY]' 

dk(U)[ - (Y,Z)X + (X,Z)Y] (5) 

= (k +J1-)[ (Y,Z)DxU - (X,Z)DyU 

- (DxU,Z)Y + (DyU,Z)X]. 

From (4) with Y = ZlX, it follows that 

dJ1-(X) = (k + JL)(DuX,U) = - (k + JL)(X,DuU). (6) 

On the other hand, from (3) with X = WIU, we have 

2 dJ1-(X) - dk (X) + 2(J1- + k )(X,DuU) = O. (7) 

Equations (6) and (7) together yield 

dk (X) = 0, for all XIU. (8) 

Now let S: = - !(DU + Du trans
) I u1 be the symmetric part 

of DUl ui' Setting Y = ZlXin (5) and taking theX-compo­
nent of both sides, we find 

(9) 

whenever X and Yare orthogonal vectors in U!. (k + JL'IO, 
since k + J1- = v is null sectional curvature.) So we see that 

S= ~. dk(U) idl 1. 

2 k+J1- u 

Then, letting X, Y, and Z be orthogonal in (5) gives 

0= (k + J1-)(DyU,Z), for YlZ. (10) 
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This tells us that (DU - DU trans
) I u1 = O. Moreover, from (6) 

and (7) we have 

(k + J.t)(DxU,x) = (k + J.t)(DuU,x). 

So (k + J.t)curl(U) = O. Now k + J.t = v where v¥O by as­
sumption, so curl( U) = O. Thus we see that U 1 is integrable, 
and S is the second fundamental form of the integral mani­
folds of U 1. From (8), we know that the integral manifolds of 
U 1 are also level sets of k. The Gauss equations now give 

R lu1(X,Y)Z 

=(k+ ! (~k~~ Y)!(y,Z)X+ (X,Z)Y), 

so the integral manifolds of U 1 have constant curvature. 
The condition Xlv) = 0 [i.e., dJ.t(X) = 0] for XIU 

implies that v is constant on the integral manifolds of U 1, so 
the gradient of v, grad(v), is proportional to U. Here, grad(k ) 
is proportional to Uby (8); and, since v = J.t + k, we see that 
grad( J.t) is proportional to U also. Putting this information in 
(3), we can conclude that DuU is proportional to U. This, 
together with curl( U) = 0, gives Du U = o. So we see that the 
integral curves of U are geodesics, whose perpendicular 
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spaces integrate to form three-spaces of constant curvature. 
Thus the metric of M can be written in the form 

tJr = - dt 2 + f(t)dO' 2
, 

where dO' 2 is a metric of constant curvature. This is a Rob­
ertson-Walker metric. 
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A generalization of the familiar mesh point technique for numerical approximation offunctions is 
presented. High accuracy and very rapid convergence may be obtained by thoughtful choice of 
the reference function chosen for interpolation between the mesh points. In particular, derivative 
operators are represented by highly nonlocal matrices; but this is no drawback when one has' 
computing machines to perform the algebraic manipulations. Some examples are given from 
familiar quantum mechanical problems. 

I. INTRODUCTION 

The most common approach to numerical approxima­
tion of continuous functions involves the representation of 
the functionf(x) by its values on a set of mesh (net, or lattice) 
points x". Familiar formulas for the derivative, in the simple 
case of a uniform mesh x" = Xo + nh, are 

f'(x,,) = [fIx,,) - f(x,,_ d]/h + O(h), 

or 

f'(x,,) = [/(x" + d - /(x,,_11]/2h + O(h 2), 

and for the integral [writing/Ix,,) =/,,] 

[
N /(x)dx = (xN -xo)~ fin + hlfo -/N) + O(h2). 

"0 N,,=I 2 

These are simple to derive and simple to use but they have a 
very low order of accuracy in general. This is due to the fact 
that only local information about the function / is used in 
building the approximation. 

The approach presented in this paper is based upon a 
global construction of an approximation for fIx), which is 
still flexible and easy to use and involves only the ValUes/II at 
the selected mesh points. The purpose is to achieve very 
high-accuracy approximations: with a total of N mesh points 
it is nice to get errors which are as small as A - N (or even 1/ 
N I), rather than the 1/N, 1/ N 2, etc., errors which are charac­
teristic of the usual methods. In this sense the present ap­
proach is somewhat reminiscent of Gaussian quadrature; 
but it is rather more general in its construction and its appli­
cation. The present method may also be described as a gener­
alization of Lagrange interpolation; and the method of "col­
location" is also related. 

The general method will be described, along with a for­
mal method for error analysis; then several examples will be 
given, mostly concerned with solving differential equations 
familiar in quantum mechanics. 

II. THE GENERAL METHOD 

To approximate a given function/Ix) we start by choos­
ing a reference function u(x) that has simple zeros at the (real) 
points x = x". The construction of an interpolating function 
fIx) to approximate/Ix) is 

- u~ 1 , 
/(x)_ai'L/ '" -, where a" = u (x,,). (1) 

'" x-x", a", 
Atthepointsx = x".l(x) takes on the values/" =/(x,,). We 
should choose the reference function u(x) to have analytic 

properties similar to those of the desired function/Ix); the 
error analysis and examples to follow will help show what 
this means. 

To approximate the derivatives of the function /, we 
take derivatives of the interpolating function ( 1), evaluated at 
themeshpointsx". The resulting formulas are [b" = u"(x,,) 
and c" = u'"'(x,,)] 

m=n: 

dfl =l:J~ 
dx ". "', 

(2) 

'" 
m¥=n: 

d'il = I-/ 1m 

=n: ;;" 
dx

2 
"'. '" m m¥=n: 1 b" _ 2 a" 

(x" -x",) a", (x" -X",)2 am 

(3) 

In case the function u(x) obeys an equation of the form 
u"(x) = W(x)u(x), then there is a simplification of the above 
formulas: b" = 0, c" = W"a,,; and the matrices representing 
the derivative operators can be put into a symmetric form. 

To approximate the integrals of/we get the formulas 

L"·f(X)dX = I- QI(n, mV'm' 
"0 '" 

(4) 

L
"· u(x)(x - x) 

where Q2(n, m) = dx " . 
"0 a", (x - x"') 

(5) 

In the case where u(x) is an orthogonal polynomial times a 
weight function and the integral is taken over the entire do­
main, then (4) yields the usual Gaussian quadrature results. 

The above general method is very flexible since one can 
choose any reference function u(x). The quantities that enter 
into the matrices for the derivative operators (D ) or integral 
operators (Q) may be determined by some computational 
procedure, ifnot readily expressed in closed form, depending 
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on this choice of u. A practical question is the following: 
Does one pay a heavy price by having the derivative operator 
so nonlocal, since one may be forced to invert or otherwise 
manipulate these matrices in order to solve differential equa­
tions? A computing machine can readily carry out such ma­
trix operations numerically for moderate-sized matrices. 
Furthermore, when one gets into partial differential equa­
tions the usual mesh point methods already require working 
with sizable matrices for the derivative operators. Since the 
whole point of the present method is to construct approxi­
mate but accurate functions]in terms of a small number of 
mesh points it is anticipated that the net result should be a 
general increase in efficiency of computation. 

Now we present a general approach for analyzing the 
error in approximating the functionfby], once u is chosen. 
Assume that bothf(x) and u(x) are analytic functions in some 
appreciable domain of the complex plane surrounding the 
set of mesh points x". Then, using the contour around z = x 
[see Fig. I(a)) we have the identity 

f(x) = i dz. f(z) u(x). (6) 
j 2m z - x u(z) 

One may take the point x to be slightly off the real axis to be 
assured that there is no difficulty in this integral representa­
tion when x approaches one of the mesh points x,,, where u 
vanishes. Now move the contour of integration to the large 
loop C and the small circles around each of the points z = x" 
[see Fig. I(b)). Calculating the residues at each x" we have 
the exact result 

f(x) = Lf(x,,) u(x) , I + E. 
" (x -x,,) u (x,,) 

(7) 

The first term on the right-hand side of (7) is just the approxi­
mation](x) defined in (I); the second term E is the error and is 
given by the integral over the contour C of the expression (6). 
A general argument about the smallness of this error is as 
follows: Since u(z) has many oscillations along the real axis, 
one expects it to grow rapidly along the imaginary directions 
in the z plane; and it is this factor in the denominator that 
should make the error E decrease rapidly as the mesh points 
become more closely spaced. A concrete example will be 
studied in the next section. 

z plane 

(oj 

z plane 

(bl 

FIG. 1. Integration contours for error analysis. The several crosses X rep­
resent the mesh points )c •• The solid dots. represent the point z = )C. 
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III. EXAMPLE I 

Consider the infinite line, - 00 < x < 00, and the choice 
of a uniform sequence of mesh points: 
x" = nh, n = 0, ± I, ± 2, ± 3, .... Then we take the refer­
ence function u(x) = sin 11'x/h; and the matrices for d /dx 
and d 2/ dx2 become 

I {n = m: 0, 
D (n, m) = - (8) 

1 h n#m: (-l)"-m/(n-m); 

__ I_{n = m: - ~/3, 9 
D2(n,m)- h 2 n#m: _2(_I),,-m/(n_m)2. () 

The matrices for the indefinite integrals become 

QI(n, m) = (h /11') [Si((n - m)11') + 11'/2], (10) 

Q2(n, m) = (h 2/~)[(n - m)1T(Si((n - m)11') 

+ 11'/2) + (- l),,-m), (11) 

where 

Lx sin t 
Si(X)= dt-. 

o t 
(12) 

The only familiar result contained here is for the infinite 
integral 

QI( - 00, (0) = h, f: oof(x)dx = ,,=~ 00 hf(nh) + E. 

(13) 

The high accuracy of the trapezoidal rule for the infinite 
integration of analytic functions has been explored else­
where. 1 This is the "Gaussian quadrature" formula for the 
infinite line. 

Obviously, if this approach is to be practical, we should 
be dealing with functionsf(x) which decrease very rapidly as 
x grows large, so that the infinite sums over the mesh points 
can be truncated effectively. Thus we have two sources of 
error to analyze: E,A from (7) due to the analytic approxima­
tion and E T due to the truncation. A good strategy will be to 
choose a relation between the mesh spacing h and the trunca­
tion at In I < N so that E,A and ET are approximately equal to 
each other. This will avoid wasting effort on too small a mesh 
(when truncation error dominates) or on too large a cutoff 
(when mesh error dominates). 

For illustration, consider that the function f(x) is 
known to be analytic everywhere in the finite complex plane 
and is dominated at large distances by the behavior 

e-axP. (14) 

Then we have 

(IS) 

For the mesh size error, we see that the error in (7) involves 
the integral over the large contour C in Fig. l(b); and with 
u(z) = sin m/h, we see that this error is given roughly by 

E,A::::: f dze±f1TZ/h e-azP. (16) 

This integral may be estimated by the stationary phase meth­
od (we are interested in the dependence of E,A on h forsmall h ) 
and we find 

E,A :::::e- bh -', where q = p/(P - 1), (17) 
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and 

b = (11")l/(P-ll(c.!.) sin[1r 1 ]. 
ap p 2(P - 1) 

Equating the results (15) and (17) we find the optimum 
choice of h, given N, 

h = (b laNP)((P-IVP\ (IS) 

and along with this is the error estimate 

(19) 

where 

C = b (alb )l/p. 

This result--exponential decrease of the error with increas­
ing number of mesh points-is most exciting. Rather than 
trying to make this rough error analysis more respectable I 
shall proceed to some numerical experiments. 

The one-dimensional Schrodinger equation 

- - - + - Xk tP(x) = EtP(x), ( 
1 d

2 
1 ) 

2 dx2 k 
(20) 

for k = 2,4, ... , is an eigenvalue problem in which the solution 
tP(x) has the characteristics described above: it is an analytic 
function for all finite x and has the asymptotic behavior for 
large x given by (14) with 

p=k;2, a= k!2(~rl2. (21) 

Thus we predict the optimum convergence strategy, (IS) and 
(19): 

h = (1rIN)I/2, E-;:::::,e-1. 57N, for k = 2, (22) 

and 

h = 1.7SN-2 / 3, E-;:::::,e-1.32N, for k = 4. (23) 
Taking account of the symmetry, tP(x) = ± tP( - x), and 
choosing the mesh points xn = (n - 1I2)h, 
for n = 1,2, ... ,N, and using (9) for the second derivative op­
erator, Eq. (20) was represented as an N X N matrix eigenval­
ue problem which the computer solved for the sequence 
N= 1,2,3, .... 

The values of h were chosen according to (22) and (23) 
with (N + 112) replacing N. The numerical results for the 
ground state eigenvalue showed very rapid convergence: 

k=2,E=0.5: 

N = 1 error 7x 10-2
, N = 2 error 3X 10-3

, 

N = 3 error 2x 10-4
, N = 4 error 1 X 10-5

, 

with a good fit to the formula E-;:::::, e - 2.9N; (24) 

k = 4, E = 0.420 S04 974 475: 

errors of - 7x 10-2, 6x 10-3, 2x 10-4, 

7x 10-6 for N = 1,2,3,4, 

with a good fit to the formula E -;:::::, e - 2.8N. (25) 

These are very gratifying results: high accuracy at low-order 
approximation with very rapid improvement as the order of 
approximation is increased. Indeed, these numerical results 
for the X4 potential converge even more rapidly than the 
results of a Rayleigh-Ritz variational calculation that used a 
harmonic oscillator basis.2 The predicted exponential form 
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of convergence (19) was well borne out by the numerical 
results; however, there is some discrepancy between the pre­
dicted and observed values of the decay constant C. The 
decay constants in (22) and (23) describe the error in the wave 
function and perhaps one ought to square these errors for the 
eigenvalue: the values 2C = 3.14 (k = 2) and 2C = 2.64 
(k = 4) are not so far from the observed results 2.9 and 2.S, 
respectively. 

In the computations described above the matrix eigen­
value was determined by a direct numerical method (which 
requires computing time proportional to the cube of the di­
mension of the matrix). For these one-dimensional problems 
the size of the matrix is so small that this is no problem. 
However, when one envisions going to multidimensional 
problems with a much larger dimension for the matrix of the 
partial differential operators involved then some alternative 
method of manipulating the matrix may be necessary. There 
are a variety of iterative techniques commonly used for large 
matrix manipulations (inversion, diagonalization, etc.) and 
the critical question is how fast such iterative methods con­
verge. As an experiment I tried solving the above-mentioned 
Schrodinger equation iteratively by a few different strategies 
and found convergence that varied from fair (about 112 deci­
mal accuracy gained per iteration) to very good (several deci­
mals gained per iteration.) As with all iterative schemes it is 
valuable to have a good starting guess for the solution; and 
the attempts I made worked best when I used the resulting 
eigenvector for the solved N - 1 problem to get a starting 
estimate for the N-problem eigenvector through use of the 
basic interpolation formula (1). 

IV. EXAMPLE II 

For a problem on the semi-infinite line O";;r < 00 consid­
er the Schrodinger equation for the hydrogen atom: 

[ _ ...!. .£.. +...!. 1 (I + 1) _ ...!.]t/J (r) = Et/J (r). (26) 
2 dr 2 r r 

At the origin t/J goes to zero as ,; + 1 and at infinity it goes 
exponentially to zero for bound states (E negative eigenval­
ues). 

To choose a good reference function u(r) we would like a 
function which has analytic properties similar to t/J for finite r 
and also has many zeroes. It is known that the solution of(26) 
for E = 0 is given in terms of a Bessel function: 

t/JE=O(r) = rl/2J21 + 1 ((Sr)I/2). (27) 

This leads to the choice 

u(r) = rl/2J21 + 1 [(~r/l (2S) 

with the mesh points 

rn = (h ISlfn, J21 + 1 (vn) = 0, n = 1,2,3,... . (29) 
With the change of variables 

t/Jm = XmJil+ 1 (vm), (30) 
we reduce the differential equation (26) to the algebraic form 

64 1 S [S/(/+l) 1] L -h 2 ~ _ Tn )2 Xm + 3h 2 4 + . .2 Xn 
m.,.n n m Yn Yn 

S 
- -::2 X" = Ex .. · (31) 

hYn 

Charles SChwartz 413 



                                                                                                                                    

Numerical computations of the ground state eigenvalue 
(/ = 0) were carried out for a sequence of mesh scales (h = 1, 
~, !, ~, -h) and a sequence of truncations 
(m, n = 1,2,3, ... ,N, for N = 1,2,3,4, ... ). At each h value the 
error would decrease rapidly with increasing N (about one 
decimal place improvement per unit step in N) until it 
reached a saturation value; then one would need to decrease 
h to gain further improvement. Taking the results from these 
saturation points one could deduce an overall convergence 
rate which went approximately as 

E;:::;lO-N. (32) 

This is an experimental result; I have not tried (as in the 
previous section) to carry out an analytical estimate of the 
expected error. This is a very rapid convergence rate, indi­
cating that this is an extremely powerful approximation 
technique for atomic wave functions. 

The major nuisance in this calculation was the need to 
generate zeroes of a Bessel function. As an alternative, I tried 
using the reference function 

u(r) = r' + 112 sin[ 1T{rlh )1/2], (33) 

with the mesh points given by 

r" = hn2
, n = 1,2, .... (34) 

I will not give details but merely state the results of this 
approach. The matrix turns out to be unsymmetrical but this 
poses no serious problem. The ground state eigenvalue com­
putation converges quite well, only slightly slower than the 
first approach: 

E;:::; 1O-(2/3)N. (35) 

v. EXAMPLE III 

For problems on a finite interval one usually works with 
either polynomials or Fourier series as a basis for approxi­
mations. I will give a couple of illustrations based upon the 
latter. 

Suppose we want to approximate the functionf(x) on 
the interval [0, 1] with the boundary conditions 
frO) = f(l) = O. One choice ofthe reference function is 

u (x) = sin(N + 1)1TX, (36) 

which satisfies the same boundary conditions asf(x) and has 
the interior mesh points 

x" = nl(N + 1), n = 1,2,3, ... ,N. (37) 

(Here life is simpler since we do not have to deal with two 
variables, hand N, but only one, N.) 

If we follow the original prescription for building the 
approximation (1), then we will have functions that are not 
simply a finite set of trigonometric functions. An alternative 
is to divide u(x) by something like sin a(x - x,,), rather than 
just (x - x,,). After some experimentation I was able to find 
the following representation, which is equivalent to a trun­
cated Fourier series: 

- N (-lr 
f(x) = sin(N + 1)1TX L f,,~---.!..-

,,=1 2(N+ 1) 
X [cot(1T12)(x - x,,) - cot(1T12)(x + x,,)]. (38) 

From this the second derivative was calculated to be 

1 2 1 1 2 n 
- 3(N + 1) - 6' + 2 csc 17' N + 1 ' 

(_I),,+m [_ csc2(!!.. n - m)] + csc2(!!.. n + m). 
2 2N+l 2N+l 

(39) 

The eigenvalues of this matrix (39), in units of - r, are 

1 (for N = 1); 1,4 (for N = 2); 1,4,9 (for N = 3);... . (40) 

An alternative problem is one with periodic boundary 
conditions: 

f(rp + 217') = f(rp ). (41) 

For N odd we construct the approximate function 

- N N f" (-1)" 
f(rp) = sin -=-<p L . -N ' 

2 ,,= 1 sm~ (rp - rp,,) 
(42) 

with mesh points 

rp" = 21Tn1N; (43) 

and the second derivative operator is represented by 

{

m = n: - -b(N 2 
- 1), 

1"I~n= i:. fm . (-lr- m
+ 1 cos¢"m, 

m=1 m#n. -'-=2~-
2 sm ¢"m 

(44) 

where 
¢"m = (n - m)1TIN. 
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This matrix has the expected eigenvalues: 0, - l(twice), 
- 4(twice), etc. 

For a numerical application I considered the problem 
of the Schrodinger pendulum: 

[ - ~ :022 +g2(l- cos O)]~O) = E~O). (45) 

Using (44), the two lowest eigenvalues were computed for a 
sequence of values of N, for two different values of g. No 
account was taken of the reflection symmetry. Results, 
shown in Table I, exhibit the fastest convergence yet seen. 
The calculation was repeated shifting the coordinate in (42) 
by 90· [actually, by changing cos 0 to sin 0 in (45)] and these 
results were even better, by up to two decimal places accura­
cy at each N. For comparison, a variational calculation of 
(45) using a truncated Fourier series with corresponding 
number of terms gave results which were in between those of 
the two computations just described. 

Some previous work on trigonometric interpolation of 
periodic functions3 bears resemblance to what has been pre­
sented here; but the formula (44) appears to be new. I will 

Charles Schwartz 414 



                                                                                                                                    

TABLE I. Eigenvalues of the Schriidinger pendulum, Eq. (45). 

3 0.29 
5 0.457 
7 0.464 86 
9 0.4649349 

g=1 

11 0.464 935 14734 
13 0.464 935 1477119 
15 0.464 935 1477122" 
17 
19 
21 

1.71 
1.382 
1.34398 
1.3433629 
1.343 360 133 
1.343 360 128403 
1.343360 128 3991" 

• Machine accuracy not reliable after this point. 

confess, however, that the formulas (44) and (39) were first 
obtained by Fourier transform calculation. 

VI. SUMMARY 

The general approach presented here should be very 
powerful in obtaining efficient and accurate numerical com­
putational results in the form of systematic approximations 
to functions that are very smooth. The high accuracy and 
rapid convergence usually associated with variational tech­
niques is obtained along with the simplicity of mesh tech­
niques. The key link between these two methods is the judi­
cious choice of the reference function; here is where the 
human being contributes analytical insights in setting up the 
problem, while leaving the later computational tedium to the 
machine. 

The numerical examples shown here were restricted to 
the solution of one-dimensional differential equations (eigen­
value problems); and the results were excellent. There should 
be many other areas of application for this general method of 
approximating analytic functions. 
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APPENDIX: THE SEMI-INFINITE INTERVAL 

For the infinite interval [ - 00, 00] a general interpola­
tion scheme was given, with uniform intervals, based upon 
trigonometric functions as used in Fourier integrals. For the 
finite interval problem, alternative schemes were again 
based upon trigonometric functions, this time as they are 
used in discrete Fourier series. What follows here is a gener­
alization of the study for the semi-infinite interval [0, 00] 
based upon Bessel functions. 

Choose the reference function, for unspecified value of 
v, 
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0.33 
0.89 
1.33 
1.455 
1.4673 
1.468031 
1.4680535 
1.468 054 007 
1.468 054 013 55 
1.458 054 013 609 

g=3 

13.7 
7.09 
4.97 
4.43 
4.345 
4.33752 
4.3371792 
4.337 17039 
4.337 170257 1 
4.337 170 255 64 

u(x) = x - Y12Jy((xlh )1/2), (AI) 

whichhasthemeshpointsxn = hy:" n = 1,2, ... , whereYn is 
the nth zero ofthe Bessel function Jy(y) on the positive real 
axis. Next, construct the identity integral representation, as 
in (6): 

fIx) = 1. dz. u(x) f(z) , 
J 2m u(z) z - x 

(A2) 

with the contour a small circle aroundz = x. Now, move the 
contour following the same general procedure illustrated in 
Fig. 1. The form of (AI) was chosen so that u(z) is analytic in 
the domain Re(z).;;;;O as well as > O. Assumingf(z) is analytic 
in some sizable region around the positive real axis, we ex­
pect exponentially small errors to the approximate interpo­
lation functionf(x) that results from the residues at each of 
the zeroes of u(z): 

fIx) = L f(hy:,)2 ~(x) 2h 1 + y/2 Y! + y. (A3) 
n x - hYn J y(yn) 

From this one can calculate the definite integral 

roo dx x'J'(x) = Lf(hy~ )4h y+ 1(~)2. (A4) 
Jo n J y(yn) 

This is a new "Gaussian quadrature" formula, or rather a 
family of such for any value ofv. In the special cases v = ±! 
this formula reduces to the trapezoidal rule (13). What is 
interesting about this formula is the fact that the points 
Xn = hy~ at which one evaluates the functionf(x) are spaced 
farther and farther apart as n increases. 

IC. Schwartz, J. Comput. Phys. 4, 19 (1969). 
2C. Schwartz, Ann. Phys. (NY) 32, 277 (1965). 
3H. Kreiss and J. Olinger, "Methods for the Approximate Solution of Time 
Dependent Problems," GARP Publications Series No. 10, February 1973, 
p. 42 If. 
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This paper presents a new method, that we call "the predictor jump," for driving to a faster 
solution of Laplace's equation. Some results obtained by applying this technique are compared 
with those that have been obtained by the traditional methods. 

I. INTRODUCTION 

Laplace's equation 

V2t/J=0 (1) 

arises in many physical problems associated to scalar fields 
(electrostatic and gravitational) and in a large number of 
steady-state cases (flow of heat, dift'usion of a solute, flow of 
an incompressible fluid, and so on). 

The analytic methods for solving this equation are not 
very useful when the physical system's geometry or the 
boundary conditions are somewhat complicated. In these 
cases, some of the numerical methods (Gauss-Siedel, SOR, 
etc.) are used as alternative ways. 1-5 

In this paper, we present a technique which has been 
called the predictor jump method (PJM), that can be com­
bined with any of the relaxation methods for driving to a 
faster solution of Laplace's equation. In particular, the PJM 
has been used in this paper to calculate the distribution of 
temperatures in solids with dift'erent geometries. The results 
obtained with PJM are compared with those that have been 
obtained by using the traditional relaxation methods for 
showing the advantages of the proposed technique. 

II. NUMERICAL METHODS 

To indicate the dift'erence between the PJM and the 
classical numerical methods used for solving Laplace's equa­
tion it is convenient to summarize some basic ideas about 
them. 

The general expression of Laplace's equation for solv­
ing problems by applying numerical methods in Cartesian 
coordinates is6 at a point 

t/Ji - I,J,k - 2tPi,i,k + t/Ji + I,},k 

(.JX)2 

+ t/J;,1- I,k - 2tP;,J,k + t/J;,1+ I,k 
(.Jy)2 

+ t/J;,J,k-1 - 2t/J;,J,k + t/J;,J,k+ I = 0, (2) 
(.JZ)2 

t/J;,},k being the value of the function t/J at a point (i,j,k ) of a 
tridimensional XYZ grid (Fig. 1). 

This last equation is obtained by using a Taylor expan­
sion and the central finite difference approximation for the 
first and second derivatives. 

For a grid of N points the problem is reduced to the 
resolution of N equations which can be expressed by the for-

(3) 

IA I, IB I, and It/J 1 being the matrixes of the coefficients, inde­
pendent terms, and unknown quantities, respectively, Every 
term of the matrix It/J 1 represents the function's value at a 
point of the grid. The matrix IA I is banded and diagonally 
dominant, so that when iterative methods are applied, the 
convergence to the solution is insured. 

Iterative methods start with some arbitrary values for 
the unknown quantities, and the variables are going to get 
values more and more approximate to the correct solution by 
applying the finite difference equations. 

In practice, this process is finished when, between two 
successive iterations (k - 1 and k ), it is verified that 

N 

Error = E (k = L It/J)k - t/J }k 11 < E, (4) 
;=1 

E being as small as one wants. 
One of the first iterative methods used was proposed by 

Jacobi.7 The algorithm of this method can be expressed by 
the following formula: 

t/J'/' = ~ - f au t/JJk- t, k = 1,2, ... , (5) 
au }=I au 

}#; 

that is to say, the values of the unknown quantities in the 
generic iteration number k, are calculated from the values in 
the former one. 

On the other hand, in the Gauss-Seidel method, whose 
algorithm is 

t/J\k= ~ _ iii au t/Jt 
a;i }= I au 

f au t/J lk-I, k = 1,2, ... , (6) 
}=,'+I au 

the values of the unknown quantities in the iteration number 
k are calculated not only from the values obtained in the 

*
i,j,k':<1,i.

k 

i: j -l:k i, i,l ,k 

.l.-l~]~k 

i • i ~}:-1 

mula FIG. 1. Tridimensional XYZ grid. 
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precedent iteration, but also from the previously modified 
values in the same iteration. 

The Gauss-Seidel method presents some advantages 
over the Jacobi method; its convergence is faster, it uses less 
computer memory and its programming is easier. 

Equation (6) can be rewritten as 

t/J~k = t/J~k-I + _1_ {hi _ iI,I aij 
aii j= I 

x t/J jk - j~i aijt/J jk - I} , (7) 

which is transformed in another algorithm by multiplying 
the second summand of the last expression by the factor w, so 
that 

xt/Jjk- j~iaijt/J~k-l (8) 

When W has a value between 1 and 2, this last algorithm 
improves the rate of convergence and the method is called 
SOR (successive over relaxation).7.8 

At each particular problem, there is an optimum value 
for the relaxation factor, named wopt ' with which the num­
ber of the necessary iterations to get the correct solution is 
minimum.9 

In the bibliography, there are some approximate for­
mulas proposed for wopt which have been empirically ob­
tained and used for solving some specific problems. 10,1 I Un­
fortunately, these formulas are very tedious to calculate. 
Moreover, the number of times that it must be applied to 
solve a specific problem for studying the influence of each 
parameter is so high that when one is interested in solving a 
few times the same model of a problem the method is not 
practical. 

Other methodsl2 calculate the value of wopt automati­
cally after a certain number of iterations; for instance, SOR­
AC013 (successive over-relaxation with automatic conver­
gence optimized). Such methods define a convergence 
criterion previously and according to it, values of W are com­
pared untilwopt is reached. Although a lot of time may be 
wasted in the research of wopt ' in practice SORACO is one of 
the most effective iterative methods. 

III. THE PREDICTOR JUMP METHOD 

We propose another technique which can be used with 
any of the other iterative methods, but it starts from a differ­
ent idea. Instead of finding the solution ofEq. (2) by succes­
sive iterations which provide, at the end, the final value of t/J, 
in the PJM we must wait for some conditions to be reached 
and immediately, by jumping over the possible iterations, 
the solution is found almost directly. 

These conditions are given when the parameter called 
EQ(k (error quotient between the iterations k and k - 1) 
reaches a practically constant value. This parameter is de­
fined by the following expression: 

EQ(k = E(k IE(k-1 (9) 

where 
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(0) 

k 

(b) 

............... 
k 

FIG. 2. (a) EQi tends to a constant value. (b) The decrease of the error is 
exponential. 

N 

E (k = L It/J ~k - t/J ~k - II 
i=1 

and 
N 

E(k-I = L 1t/J~k-I_t/J~k-21. 
i=1 

Clearly in order to get the convergence of the method, the 
value of EQ(k must be smaller than unity. Obviously, the 
closer to zero its value is, the faster the system of equations 
converges to the solution. 

Generally, and depending on the value of w, EQ, tends 
to a constant value as it is shown in Fig. 2(a). This figure has 
been obtained applying the SOR method for studying some 
temperature distribution problems. So that, from a certain 
iteration called m, it is verified that 

IEQ(k - EQ(k-11 <E', (10) 

that is to say, by choosing for E' a sufficiently small value, it 
can be obtained with good approximation that 

EQ(k - I =EQ(k =EQ( 00 • (11) 

This constancy of EQ(k indicates that from the iteration m 
the decrease ofthe error is exponential [Fig. 2(b)]. In fact, 

EQ(m = EQ(m + I = ... = a = const. 

From (9) and (12), it is proved (when k>m + 1) that 

Tl~ 37°C 

T2~ 20°C 

(12) 

FIG. 3. A cylinder made up of a grid of 294 points inside which is another 
cylinder at a temperature T, = const. 
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o 
.. ..:::::: ...... . k 

.... 

-3 
. ...... . 

FIG. 4. Log E against the number of iterations for two values of C/) that are 
di1rerent by 0.02S. 

E(m+l =E(ma , 
E(m + 2 = E(m + la = E(ma2, 

(13) 

E(II =E(II-la =E(ma,,-m. 

This law of decreasing for E(k is of the same type as for E~k, 
which is the error associated to a point i of the system. 

By calling 

(14) 

and 

E (k-l_I.I.(k- 1 .l.(k- 2 1 t - 'l't -'I't , (IS) 

it is verified that 

(16) 

where at = EQ~m. 
The particular values of at are very close to the general 

value of a, so that we shall choose at = a. 
If m is the iteration from which EQ(k = a = const, at a 

generic point i, the values of the function 4> from that iter­
ation can be expressed by the formulas 

4>\m+2 = 4>\m+ 1 + {4>\m+ 1 _ 4>~m}a, 

4>\m+3 =4>\m+l + (t,6\m+l_4>~m}a(l +a), 

that is to say, 

(17) 

4> \" = 4>\m+ 1 + (4> \m+ 1 - 4> \m}a[(a"- 2 - l)/(a - 1)].(18) 

So that, when n-CXJ, and because a < 1, it is verified that 

4>\00 =4>\m+l + (4)\m+l_4>\m}[a/(I-a)). (19) 

If the value ofEQ(k is constant, this last equation relates 
the solution of the function 4> in a determined point of the 
system with the values that this function gets in the iterations 
m andm + 1. 

log E(k 
.... 1·~3 
1:_10 

................ 90 iteration. 

. ..... ...... o ~ ________ ~~~ ____________ ~_ 
00.. k 

..................... 
-3 ~ ________________________ ~ __ _ 

FIG. S. Log Elk versus the number of iterations applying the SOR method 
and using C/) = 1.6. 
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....... 

w-1.6 

£.;.10-3 

£ '~10-3 
40 iterations 

o ~---------------------------:k,...-

-3 ~-----------------------------

FIG. 6. Same as Filg. S, but using the PJM when £' .. 10-3
• 

In practice, when the PJM is applied, the value ofEQ(k 
is not exactly constant, and the solution reached with the 
jump may not agree accurately with the exact solution, but if 
it is so close to it that Eq. (4) is verified, we shall consider the 
calculus process to be finished. 

On the contrary, if the solution reached by applying the 
PJM does not verify Eq. (4), the iterative process continues as 
usual until it is verified or until a new constant value ofEQ(k 
is reached and, in this case, the PJM is applied again. 

In any way and in all the cases, the number of necessary 
iterations is substantially lower. 

One could think that if instead of applying a to the 
expression (19) we choose ajJ the value for 4> \00 obtained by 
the PJM would be closer to the exact solution. Nevertheless, 
we have observed that it does not happen in this manner; it 
seems as if the constancy of the general value of EQ(k could 
be reached faster than the values of EQ \k. 

IV. RESULTS 

We have applied the PJM to the solution of the equa­
tions that describes the temperature distribution in solids of 
ditferent geometries. As an example, the following results 
correspond to the solid in Fig. 3. It is a cylinder made up of a 
grid of 294 points inside which is another cylinder at a tem­
perature Tl = const. 

The equations that describe the temperature distribu­
tion are 

aTI -k- =h(Tls - T2 ). an s 
(20) 

This last equation is verified over the external surface. 
All the results shown in this paper have been obtained 

by starting from the initial condition Tt,J,k = T2 = 20 ·C. 

log E(k 

..... 

o 

-3 

'0 

'. 

.... 1. 725 
£_10-3 

43 iteration • 

k 

FIG. 7. Log Elk against the number of iterations for C/)op. = 1.72S. 
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.......... 

w~1.5 

£~10-3 

£''::'8'10-5 

39 iterations 

o ~--"'-""~"'''''''------------
k 

..... -3 ~ _________________________ _ 

FlO. 8. Applying the PJM to the problem. 

Figure 4 shows the logarithm of the error Elk against 
the number of iterations for two values of W that are different 
by 0.025. The great sensitivity of the convergence for the 
small variations of W can be observed. This example gives an 
idea of the great advantage of knowing the wopt factor and of 
the high precision necessary to calculate it. 

Figure 5 displays the log Elk versus the number ofitera­
tions applying the SOR method and using W = 1.6. 

Figure 6 exactly corresponds to the same case but using 
the PJM when £'<10-3

• 

We have calculated wopt for this particular problem and 
it has been obtained Wopt = 1.725. 

Figure 7 shows log Elk against the number of iterations 
for Wopt = 1.725. 

Figures 8 and 9 show how by applying the PJM the 
solution of the problem can be reached with a lower number 
of iterations. For demonstrating the great advantage of the 
PJM, we have chosen two values for W (Wi = 1.5, Wz = 1.4) 
that are rather distant from wopt. 
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....... 

_1.4 

£_10- 3 

£ '~10-2 
38 iterationa 
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It 

...... 
. .... -3 ~ ________________________ _ 

FlO. 9. Applying the PJM to the problem. 

In following articles some practical applications of this 
method will be discussed in detail. 
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A general method for the construction of the second constant of motion of third and fourth orders 
is given for two-dimensional systems in termsofz = q1 + iq2' andz = q1 - iq2' Correspondingly, 
the third- and fourth-order potential equations are obtained whose solutions directly provide the 
integrable systems. Using the Holt ansatz, the potential equation corresponding to the third-order 
invariants has been reduced to a pair of potential equations whose solutions yield a large class of 
integrable systems. 

I. INTRODUCTION 

Whittaker1 first investigated the problem of the con­
struction of an invariant (other than the total energy and 
which will be called the second constant of motion) for a 
system described by 

.. au.. au () q1 = - -, q2= - -, V=vq1,q2' 
aq1 aq2 

His studies were, however, restricted to the invariant of first 
or second order in momenta. Although there have been sev­
eral attempts2 in recent years to construct the second-order 
invariants, not much effort has been made to obtaining the 
third- or higher-order invariants for such systems. In some 
cases, no doubt, the system is found to be integrable just by 
accidentl (e.g., the Toda lattice case). For an interesting re­
view on the subject, we refer to the work of Hall. 2 

Recently, Holt4 has introduced a procedure which es­
sentially has bearing on the perturbation theory of McNa­
mara and Whiteman4 and has obtained the third-order in­
variants for a number of integrable systems. As an outcome 
of this method InozemtseVi has shown that the system 
v = A (q1,q2)-2/3 is also an integrable one at least classically. 
In fact, there already exists scarcity of classically integrable 
systems in two or more degrees offreedom and a test for their 
corresponding quantum integrability in each case should be 
carried out6 separately. The utility of the second or other 
constants of motion, ifthey can be constructed for a system, 
has been noticed7 in recent years from several points of view 
particularly, in reducing some nonlinear dynamical prob­
lems to a quadrature, in solving several problems of plasma 
physics and hydrodynamics, and in the study of a classical 
analog of Yang-Mills field equations with reference to the 
generation of potentials (both time-dependent and time-in­
dependent by choosing suitable gauges). 

Earlier, in the light ofthe work of Katzin and Levine,S 
we have suggested9 a method for the construction of second­
order invariants for time-dependent classical systems in two 

• , Pennanent address. 

dimensions. In fact, some new time-dependent integrable 
systems were found by introducing the complex variable 
z = q1 + iq2 and z = q1 - iq2' A lot of simplifications were 
achieved in the derivation and the analysis turned out to be 
more transparent. With the same spirit, in the present work, 
we reexamine the time-independent systems in two dimen­
sions and construct the second constant of motion of third 
and fourth orders in momenta. We obtain in their most gen­
eral form, the potential equations of third and fourth orders 
(corresponding to the third- and fourth-order invariants) 
whose solutions may directly provide the integrable systems. 
However, for the third-order case this potential equation re­
duces to a pair of potential equations each of second order 
only after making use of the Holt ansatz [cf. Eq. (4.1)]. All 
the cases discussed by Holt are recovered and a new integra­
ble system v(q 1,q2) = a(q 12 + q22) + f3 I(q 1 

2 + Q22), is also 
found. Analytical general results are given for the fourth­
order invariants. The plan of our paper is as follows. 

In Sec. II, we consider the Lagrangian 

.Y = !liY - v(z,zJ 

and requiring that dlldt = 0, we obtain an overdetermined 
set of partial differential equations involving the coefficients 
in which the invariant I is already expanded. In Sec. III, we 
continue with a general solution of these equations in the 
form of "potential" equations. In Sec. IV, we establish the 
correspondence between our method and the method of 
Holt4 for third-order invariants. Section V deals with the 
applications of the potential equations obtained in Sec. IV. 
Various integrable systems are derived and analyzed in Sec. 
VI. 

II. CONSTRUCTION OF THE POTENTIALS AND 
CORRESPONDING SECOND CONSTANT OF MOTION 

We first give here a general treatment of the construc­
tion of invariants up to fourth order in momenta and then 10 

discuss separately the third- and fourth-order invariants in 
the subsequent subsections . 
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A. The method 

We consider a dynamical system described by the La­
grangian 

.!f = HW - v(z,z), z = ql + iq2' Z = PI + ip2 

(2.1) 

with the concomitant equations of motion 

z=_2 au , z=_2
Bv

. 
iii Bz 

(2.2) 

Let us consider the second constant of motion up to fourth 
order in a general form as 

I = ao + al51 + (l/2!)aij515j + (l/3!)aijk515j5k 

(2.3) 

where i,j,k,l = 1,2; 51 = Z, 52 = Z, and the coefficients ao' aj> 
alj' a1jk' and aljkl are functions ofz andz only. These coeffi­
cients are symmetric with respect to any interchange of their 
indices. Using dI/dt = 0, we find from (2.3), 

ao·l:· +a.jl:.l:. +a.i:-. ,'~l J. ~I~J J~' 

+ ~aij,k515j5k + !alj lt15j + t j 5;) + !alj k,l515j5k5l 

+ !aljk lt15j5k + 51tj 5k + 515j tk) 

+ -Aaijkl,m5i5j5k5l5m + -Alti5j5k5l + 51tj 5k5l 

(2.4) 

After accounting for the proper symmetrization of the coef­
ficients and since (2.4) must hold identically in 5 's, we obtain 
the following conditions on aijkl , aijk , ao and ao: 

aijkl,m + ajklm,i + aklml,} + almij,k + amijk,l = 0, (2,5) 

aljk,l + ajkl,l + akli,j + alij,k = 0, (2.6) 

alj,k + ajk.1 + akl,j + aljkltl = 0, (2.7) 

a· . + a·· + a··ki:-k = 0, (2.8) ',J },' l) :. 

aO,i + autj = 0, (2.9) 

altl = 0. (2.10) 

Equations (2.6), (2.8), and (2.10) yield the following set of 
partial differential equations: 

BallI = 0, 
Bz 

(2.11) 

Ba222 = ° 
iii ' 

(2.12) 

Ba l 22 + Ball2 = 0, 
Bz iii 

(2.13) 

BallI + 3 Ba ll2 = 0, 
iii Bz 

(2.14) 

Ba222 + 3 Ba l22 = 0, 
Bz iii 

(2.15) 

Ba l au au (2.16) - =alll -+aIl2-' 
Bz iii Bz 

Ba2 au au 
iii = a l22 iii + a222 Bz ' (2.17) 

Ba l Ba2 Bv Bv (2.18) - + - =20112 - +20122 -, 
iii Bz iii az 
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au au 
a l - +a2- =0, 

iii Bz 

whereas Eqs. (2.5), (2.7), and (2.9) yield 

Ba llll = 0, 
Bz 

Ba llll + 4 Ball 12 = 0, 
iii Bz 

2 Ball 12 + 3 Ba ll22 = 0, 
iii Bz 

3 Ba ll22 + 2 Ba l 222 = 0, 
iii Bz 

Ba2222 + 4 Ba l222 = 0, 
Bz iii 

Ba2222 = 0, 
iii 

3 Ball 20 Bv 20 au 
-- = 1111- + 1112-' 

Bz iii Bz 

3 Ba22 20 au 2 Bv -- = 2222- + a I222-' 
iii Bz iii 

Ball 2 Ba l2 20 Bv 20 au -- + -- = 1112- + 1122-' 
iii Bz iii az 

Ba22 2 Ba 12 20 Bv 20 au -- + -- = 1222- + 1122-' 
Bz iii Bz iii 

Bao Bv au 
- = 2011 - + 2012 -, 
Bz iii Bz 

Bao = 2012 Bv + 2022 Bv. 
iii iii Bz 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

Now, we present solutions of these equations for determin­
ing various coefficients. 

B. Determination of Sijk 

From Eqs. (2.11) and (2.12) 

aliI = alll(Z) = r/11(Z) and a222 = a222(z) = ¢I(Z). 

Equation (2.14), after using (2.11), yields 

B2a 1l2 = ° 
BT ' 

whose solution is 

am = r/12(Z)z + r/13(Z)' (2.32) 

Similarly, Eqs. (2.15) and (2.12) will lead to the solution 

a 122 = ¢2(Z)Z + ¢3(Z). (2.33) 

With these solutions, Eq. (2.13) implies 

z dr/12 + dr/13 + z d¢2 + d¢3 = 0. 
az az dz dz 

Let us consider, ¢3 = CI and r/13 = C2• (Note that here ¢;'s 
and r/11'S are the functions of only z and z, respectively, and 
CI 's are some arbitrary complex constants.) This reduces the' 
above equation to the form 

~ dr/12 + ~ d¢2 = ° (2.34) 
zaz zdz ' 

which after making use of (2.32) and (2.33) in (2.14) and 
(2.15), respectively, yields 
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or 

1/11 = ic;r + C4Z + CS' 1/12 = - f,C;r - !C4· 

Similarly, we find tPl and tP2 as 

tPl = - f,C~ + C"z + c 7, tP2 = f,C~ - !C6• 

Finally, the solutions ofEqs. (2.11) to (2.15) become 

alll = iC;r + C4z + Cs, 

a222 = - iC~ + C"z + C7, 

c. Determination of aijkl 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

From Eqs. (2.20) and (2.25) we have a1111 = a1111 (Z) 
= 0"1(Z) and a2222 = a2222(z) = Xl(Z). Using (2.20) in Eq. 
(2.21), we have 

cJla 1112 = 0 
azl ' 

which admits the solution as 

a1112 = 0"2(Z)z + 0"3(Z). (2.39) 

Similarly, Eqs. (2.24) and (2.25) will lead to the solution 

a1222 = X2(Z)Z + X3(Z). (2.40) 

On differentiating (2.22) with respect to z and (2.23) with 
respect to z, and correspondingly subtracting the results and 
making use of (2.39) and (2.40) we obtain 

d 20"2 d 20"3 __ d 2X2 + d 2X3 
Z tfZ2 + tfZ2 - z dr dzl . 

Now, we fix 0"3 = Dl and X3 = D2. (Note that here 0"; 's and 
X;'s are the functions of only z and z, respectively, and D; 's 
are the arbitrary complex constants.) This reduces the above 
equation to the form 

or 

.l d 2
0"2 =.l d 2

X2 = const D) (say, 3' 
Z tfZ2 z dzl 

0"2 = iD;r + D4Z+Ds, 

X2 = iD~3 + D"z + D7 • 

Similarly, we find 0"1 andXl starting from (2.21) and (2.24) as 

0"1 = - f,D;r - 2D4z2 - 4Ds'Z + Ds, 

Xl = -iD~4_2D~-4D~+D9. 

Equation (2.22) yields 

aa1l22 = _ '!:'Zd0"2 = _ .lD~z2- .!:.D~, 
az 3dZ 3 3 

or 

a1122 = - !D;rz2 - !D4zl + 0"4(Z). 

We note that 0"4(Z) can be determined from Eq. (2.23). Final­
ly, the solutions of Eqs. (2.20)-(2.25) yield 
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a1111 = - f,D;r - 2D4z2 - 4Ds'Z + Ds' 

a2222 = - !D~4 - 2D~ - 4D~ + D9, 

a1112 = D3 zr + D~z + DsZ + D1, 
6 

a1222 = iD~r + D£7'Z + D~ + D2, 

a1122 = - tDp - lD~ - lDcF + DlO• 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

Having solved the potential-independent equations (2.11)-­
(2.15) and (2.20H2.25) in terms of arbitrary constants C; 's 
and D; 's, we now proceed for the solution of potential-de­
pendent equations (2.16H2.19) and (2.26H2.31). 

III. FORMULATION OF THE GENERAL POTENTIAL 
EQUATIONS 

A. Derivation 

In order to eliminate a1 and a2 from Eqs. (2.16H2.18) 
we differentiate (2.18) with respect to z and using (2.16) ob­
tain 

a
2
a2 = (2 aa112 _ aa111 ) av 

az2 az az az 

cJlv cJlv 
+ a112 az.az - alll az2 

2a a
2
v (2 aa122 _ aa112 )aV. 

+ 122 azl + az az az 

Now differentiating this equation with respect toz and using 
Eq. (2.17) for aa21 az the rearrangement of terms leads to the 
equation 

(
cJla 111 + a

2
a122 _ 2 a

2
a112) au 

az2 azl az·az az 

+ 2 (aa 111 _ aa 112 ) a
2
v 

az az az2 

+ 2 (aa222 _ aa122) a
2
v 

az az azl 

a3v a3v ~v 
+a222~ -a112~-aI22--=O. (3.1) 

az az·az- az·azl 

In the same way we proceed to eliminate aw a12> and a22 
from Eqs. (2.26H2.29). On differentiating (2.28) with respect 
to z and making use of (2.26) for aa III az, we find 

cJla12 _ (aa 1122 1 aa 1112) au 
azl - a;--3 az az 

2 a2v 
+ 3 a1112 az·az 

+ (aa 1112 _ .l aa1111 ) au 
az 3az az 

cJlv 1 cJlv 
+a1122 - - -all11-. (3.2) 

az2 3 az2 
Similarly, on differentiating (2.29) with respect toz and using 
(2.27) for aa22/az, we find 
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a
2
012 = (a0 1222 _ J.- a02222) 

iJ12 az 3 az 

au 2 a2v 
X- + -01222--

aZ 3 az·az 

+ (a0 1l22 _ J.- a01222) au + 01122 a 2V 
az 3 az az iJ12 

1 azv - 3" 02222 az2 . (3.3) 

Now to eliminate 0 12' we differentiate twice (3.2) with re­
spect to z and (3.3) with respect to z, and using ir012/ 
(iJ12.az2) = iro12/(az2·iJ12), we finally obtain 

(
iP01122 _ J.- iP01\12 
az·iJ12 3 0z3 

_ iPOl222 + J.- iP02222 ) au 
az·az2 3 az3 az 

+ (az0 1l22 _ azO l222 + az02222 ) azv 
iJ12 az·az az2 az2 

(
a02222 a01222) a3v + 1 + -- - -- - -a2222 

az az az3 3 

X irv + (a0 1l22 _ aa1222) ~ 
az4 az az az·az2 

2 irv 2 irv 
- 3" 01222 az.az3 + 3" 01\12 az.0z3 

+ (a0 1l12 _ aa1l22) ~ 
az az az·iJ12 

+ (iP01l12 + J.- a301222 
az·iJ12 3 az3 

_ iPO ll22 _ J.- iPO IIII ) av 
az·az2 3 0z3 az 

(
azO l112 _ a201122 _ azO IlIl ) a2v 

+ az·az az2 iJ12 iJ12 

+ (a0 1112 _ aO I1I1 ) iPv _ J.- 01111 irv = O. (3.4) 
az az 0z3 3 az4 

Equations (3.1) and (3.4) are general "potential equations" 
corresponding to the third- and fourth-order invariants. 
These equations involve the potential derivatives and known 
coefficients aijk and aijkl through unknown constants C; 's 
and D; 'so On substituting these coefficients from (2.35}­
(2.38) and (2.41H2.45), the potential equations reduce to the 
forms 

2C - au (4 C -2 8 C) azv 
~az+ 3" ~+3" 4 az2 

423 

+ (! C3? + C4z + Cs) :; 

av (4..2 8 )a
2
v 

- 2C~ az - 3" c:¥, - 3" C6 az2 

(J.- C~ - C!7 - C7) iPv 
6 az3 

+ (J.- C~z2 + J.- C4z _ C2) iP~ 
6 3 az·:.;-

(J.- C~z2 - J.- C# + C 1) iP~--2 = O. 
6 3 az·a:.;-
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(3.5) 

and 

10 av 17 (1 ..2 ) azv 
- )D~ az - ) '2D:¥' +D6 az2 

- 5 (! D~ +D!7 + D7) 

X iPv + J.- (_ J.- D~4 _ 2D~ _ 4D~ + D9) irv 
az3 3 6 az4 

- ~ (~ D~z2+D#) 
iPv 2 (1 D -;;,.'3 D - D - D) irv 

X az.az2 - 3" "6 ~ + !7z+ ~+ 2 az.az3 

+ ~ (J.-D~? + D4ii + DsZ + D1) ir: 
3 6 az~ 

+ 2.(J.-D#+D4Z)~ 
3 2 az.iJ12 

10 D-av 17 (1 D-=2+D)azv 
+) ~az+) '2:¥' 4 iJ12 

+ 5 (! D~ +D~+Ds):; 
+ +(! D~+2D4z2+4DsZ-D8):; =0. (3.6) 

As such the solution of (3.5) and (3.6) for v(z,'Z) is a difficult 
task, but we provide the following recipe for the construction 
of the invariant. For a given form of v(z,'Z), the unknown 
constants C; 's or D; 's can be determined by rationalizing the 
potential equation (3.5) or (3.6). Subsequently, the determin­
ation of other coefficients al for (3.5) and oO,aij for (3.6) from 
Eqs. (2.16H2.19) and (2.26H2.31), respectively, lead to the 
final form of the second constant of motion from (2.3). How­
ever, for Eq. (3.1) in the next section, we have shown that it 
reduces into two second-order partial differential equations 
after making use of the Holt ansatz for 0 1 and a2• 

B. An example 

To demonstrate the method outlined above we consider 
the example of Inozemtsev,s V(Q1,q2) = A, (QI,Q2)-2/3 or, 
equivalently 

v(z,'Z) = (4i)2/3A, (z2 _z2)-2/3. (3.7) 

On substituting the derivatives of this potential in (3.5) and 
correspondingly rationalizing the resultant equation, we 
find that 

C1 = C2 = C3 = Cs = C7 = 0 and C4 = C6 = Co (say). 

Thus, the coefficients Oijk from (2.35H2.38) turn out to be 

aliI = Co'Z, all2 = -! CoZ, 

0122 = - !Co'Z, 0222 = CoZ· 
Now substituting these expressions in (2.16) and (2.17) and 
integrating the resultant equations we obtain 0 I and O2 as 

01 = - CokoA-z(z2 - z2)-2/3 + kl' 

O2 = - CokoA-z(z2 - z2)-2/3 + k2' 

where ko = ~(4i)2/3, and k1,k2 are the integration constants. 
Once the coefficients aijk and a; are determined, they can be 
substituted back in (2.3) to give the invariant l. After notic-
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ingthatz = ql + iq2'Z = PI + ;P2' the invariant finally turns 
out to be 

1= U (P2 q2 - PI ql)(qlq2)-2/3 + PIP2(Plq2 - P2ql)' 
(3.8) 

with the choice Co = 1. In the same way Eqs. (3.5) and (3.6) 
can be used to find other integrable systems. However, we 
shall use the Holt's prescription in Sec. V for this purpose. 

IV. CORRESPONDENCE WITH THE HOLT METHOD 

In this section we establish the correspondence of our 
method with that of Holt4 for the third-order invariant and 
use his method for reducing the third-order potential equa­
tion to a pair of second-order potential equations which are 
relatively easier to handle. Holt considers the form of the 
invariant as 

I=EIP/ +E2P/P2 +E3PIP/ +E4P/ +EsPI +E6P2, 

where the coefficients E; 's satisfy a set of partial differential 
equations. If we identify 

EI =! °111, E2 = !0112' E3 = !0122' 

E4 = i0222' Es = °1, E6 = 02' 

and replace z for q I and z for q2 and E = 1, then a one-to-one 
correspondence between our equations (2.11 H2.19) and 
those of Holt [cf. Eqs. (147H155)] of Ref. 4 can be seen ex­
cept for the fact that the kinetic energy term in the Lagran­
gian (2.1) is defined differently for notational purposes. 

Following Holt,4 we assume a solution of (2.19) as 

av av 
OI=G-, 02= -G-, (4.1) 

az iJi 
where Gis some function ofzandz. With thechoiceofo l and 
02 Eqs. (2.16H2.18), respectivel~, reduce to 

(4.2) 

(
aG ) av (aG ) av 
iJi - 20 122 az - a; + 20 112 iJi = 0, (4.3) 

aG av ~v av av 
- -.- -G- =°122- +0222-. 

iJi iJi iJi2 iJi az 
(4.4) 

Equation (4.3) can be solved for Gby introducing a new func­
tion Y such that 

ay ay 
iJi = 20122, a; = - 20 112, (4.5) 

which after using (2.37) and (2.38) leads to the form of Yas 

Y = YO+2CIZ-2C~-!C~+!C4r 

+ AC~z2, (4.6) 

where Yo is some arbitrary constant. The general solution of 
(4.3) can be written as 

G=Y+~ ~n 

where c,6 is an arbitrary function of v. The substitution of (4. 7) 
in (4.2) and (4.4) yields the potential equations, 

(4.8) 
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and 

~v av av _ ~ (-I. av) , Y =2 + 30 122 - + 0222 - = 'I' (4.9) 
oz- iJi az iJi iJi 

which are similar to those obtained by Holt [cf. Eqs. (170) 
and (171) of Ref. 4]. It may be remarked here that Holt has 
considered only those cases for which the function c,6 = o. 
One case in which c,6 #0 is considered by InozemtseyS who 
obtained a new integrable system, V(ql,q2) = A. (QI,q2)-2/3. 

V. APPLICATIONS OF THE SECOND-ORDER 
POTENTIAL EQUATIONS (4.8) AND (4.9) 

In this section, we look for the integrable systems which 
admit third-order invariants through the solutions of the po­
tential equations (4.8) and (4.9). We recover here all the cases 
discussed by Holt for c,6 = 0 [case (a), (b), and (c)] and also 
derive new integrable systems for c,6 #0 [cases (d) and (e)]. 

Cose (0); Consider the potential, 

V(QI,Q2) = Ql2 + 4q2
2 + 8Ql -2 

or 

v(z,z) = ¥z - ~ -1z2 + 48(z + Z)-2. (5.1) 

We note here that although V!QI,Q2) is not symmetric with 
respect to the interchange of Q I and q2' v(z,z) is symmetric in z 
andz. When this symmetry property of the potential v(z,z) is 
used to yield identical solutions of (4.8) and (4.9), we obtain 

c,6 = Yo = C3 = C4 = C6 = 0 

and 

CI = - C2, Cs = - C7 = 3C2, 

which lead to 

G= Y= -2C2(z+Z), 

°111 = 3C2, 0222 = - 3C2, 

0112 = C2, °122 = - C2, 

°1 = -2C2(z+Z){¥-¥- 88(z+Z)-3j, 

02 = 2C2(z + z){~ - ¥ - 88(z + Z)-3j. 

Thus, the invariant I [Eq. (2.3)] reduces to 

1= 4iC2[ PI2 P2 + 2(4qlq2PI - P2Ql2 + 8p2QI-2)] (5.2) 

which coincides with that of Holt on identifying C2 = 1/4i. 
Cose (b): Let us consider the potential2.4-6 

V(QI,Q2) = (Q1 2 + lQ/ + 8)Q/13 

or 

v(z,z) = (2i)2/3(T6r + T6z2 + ~z + 8)(z - Z)- 2/3. (5.3) 

On substituting Y from (4.6) and the potential derivatives 
from (5.3) in (4.8) and (4.9) and rationalizing the latter equa­
tions, we find 

c,6 = Yo = C3 = C4 = C6 = 0 

and 

CI = C2 = - 3Cs = - 3C7 , 

which lead to 

G = Y = 6Cs(z - Z), °111 = Cs, 0222 = Cs, 

0112 = - 3Cs, 0122 = - 3Cs, 
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and correspondingly 01 and 02 can be obtained from (4.1). 
Finally, the invariant from (2.3) turns out to be 

I = 4CS Pl(3q/ - 2q/ - ~)q2 -2/3 

- JCS P13 - 4CS PIP/ - 24CsP2qlq2113, (5.4) 

which has the same form as that of Holt4 for Cs = - i. 
Cose (c): Consider the Toda lattice potential3 

V(ql,q2) = a+eq2 + ,f3q, + a_eq2 - ,f3q, + pe - 2q" 
or 

(5.5) 

where 

A - /3 ± ~ B = _ /3 + ~ C = +_ i. 
±-2 2;' ± 2-2i' ± 

After substituting the potential derivatives and Yin (4.8) and 
(4.9) and then rationalizing the resultant equations, we find 
that 

Yo = 3, C1 = C2 = C3 = C4 = C6 = t/J = 0, 

Cs = C7 = - 3i, 

which lead to 

0111 = - 3i, 0222 = - 3i, 

0112=0122=0, G= Y=3, 

and the corresponding 01 and 02 can be obtained from (4.1). 
Finally, the invariant from (2.3) can be written as 

II I = 3a+(pl - /3P2)eq2 + ,f3q, + 3a_(pl + /3p2)eQ2 - ,f3Q, 

(5.6) 

which has the same structure as given by Hall.2 

Case (d): Now we discuss those cases for which t/J :;i:0 in 
the potential equations (4.8) and (4.9). We assume that the 
potential v depends on one argument TJ only, where TJ is given 
by 

TJ = Y = qlq2 or TJ = Y = (4i)-I(r -:z2) (5.7) 

and 

v = T(TJ), t/J = t/J (v) = t/J (1'). 

A comparison of(5.7) with Eq. (4.6) implies that 

Yo = C1 = C2 = C3 = 0 and C4 = C6 = 3/4i, 

(5.8) 

and correspondingly the coefficients 0ijk can be obtained 
from (2.35)-(2.38) as 

(5.9) 
0112 = - !C4Z, 0122 = - !C4z. 

After making use ofEqs. (5.7)-(5.9) the potential equations 
(4.8) and (4.9) reduce to the forms 

(TJ + t/J)[ 1" + (2i)-lrr"] + [C4(r +:z2) + CsZ]r' 

+ (2i)-lrr,2 ~~ = 0, (5.10) 

- (TJ + t/J )[1" - (2i)-I:z2r"] + [C4(r +:z2) + C~]r' 

425 

+ (2i)-I:z2r,2 dt/J = O. 
dr 
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(5.11) 

Now we multiply (5.10) by:z2 and (5.11) by r and sub­
tract the resultant equations to give 

(TJ + t/J)(r +:z2) + C4tz4 -z4) + Csr - C~ = O. 

For the choice 

Cs = C7 =0, 

Eq. (5.12) leads to 

TJ + t/J = C4(r - :z2) = 4iC4TJ 

[from Eq. (5.7)] or 

t/J = (4iC4 - l)TJ = 2TJ(' :C4 = 3/4i). 

Thus, 

dt/J 2 -=-. 
dr 1" 

Substituting (5.14) in Eq. (5.10), we have 

3TJr" + 51" = 0, 

which yields the solution, l' = ATJ- 2
/
3

, thus 

V(Ql,q2) = A (Q)Q2)-2/3. 

(5.12) 

(5.13) 

(5.14) 

We note here that this potential was derived by Inozemtsevs 

using Holt's equations. Substituting for this potential in (4.7) 
and (4.1), we obtain 

G = 3TJ, 0) = iAZTJ- 2/3, 02 = iAZTJ- 2/3, 

which leads to the same invariant as given earlier in Sec. III 
[cf. Eq. (3.8)]. 

Cose (e): If we choose the single argument TJ on which v 
depends as 

TJ=(Q)2+ Q/) or TJ=zz (5.15) 

and assume that 

Y = TJ2 = z2:z2, V = T(TJ), t/J = t/J (v) = t/J (1'). (5.16) 

then the comparison ofEq. (5.16) with Eq. (4.6) implies that 

Yo = C) = C2 = C4 = C6 = 0 and C3 = 6, 

which in turn lead to [cf. Eqs. (2.35)-(2.38)] 

0)11 = z3 + Cs, 0222 = - z3 + C7, 

(5.17) 

Now making use of (5.16) and (5.17) in the potential equa­
tions (4.8) and (4.9), we obtain 

(TJ2 + t/J )z2r" + (2zz3 - CsZ)1" + :z21',2 dt/J = 0, (5.18) 
dr 

(TJ2 + t/J jz2r" + (2Zz3 + C~r' + r1',2 dt/J = O. (5.19) 
d1' 

On multiplying (5.18) by rand (5.19) by z2 and subtracting 
the results, we find 

r'(CsZ3 + C?) = o. 
But1":;i:O. Therefore, wemusthaveCs = C7 = O. Thus, both 
(5.18) and (5.19) reduce to (TJ = zz), 

(TJ2 + t/J )1'" + 2TJ1" + 1"2 dt/J = O. (5.20) 
dr 

Now we discuss the solution of this nonlinear equation with 
three possibilities. 
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(1) Let us choose T = AI1]. Then, Eq. (5.20) reduces to 
the form 

21] + dq, = 0 (·"A I ¥O) 
d1] 

which yields the solution as 

q,= _1]2 +kl' (5.21) 

where kl is the integration constant. For this case, we have 
G = Y + q, = kl and a l = a2 = 0, if kl = 0; otherwise 
a l = kiLt I' a2 = - kiM I . Finally, the invariant I from Eq. 
(2.3) turns out to be 

II 1= j(qlP2 - q2pd[3klAI - 2(q1P2 - q2PI)2]. (5.22) 

(2) If we put 

1]2T" + 21]T' = 0 

in Eq. (5.20), then it reduces to the form 

q,T" + T,2 dq, = o. 
dT 

The solution to Eq. (5.23) turns out to be 

T = A21]-1 

which leads to the solution of (5.24) as 

q, = q,01]2 (q, = A2q,oT-2), 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

where t/Jo is a positive definite integration constant. For this 
case, the function G and the coefficients a l and a2 are given 
by 

G= Y+t/J=(1 +t/Jo)1]2, 

a l = - (1 + q,0)A,;Z, a2 = (1 + q,0)A,~. 
The invariant turns out to be the same as (5.22) except kl is 
now replaced by another constant - (1 + t/Jo). 

(3) Let us consider a trial solution of (5.20) as 

T = AI 1] + A2/1]. (5.27) 

This provides a consistent solution of the nonlinear Eq. 
(5.20) provided t/J = _1]2. 

For this case, we obtain 
G = Y + t/J = 0 and a l = a2 = 0, 

and the invariant I taks a very simple form as 

II I = ~(qIP2 - q2PI)3. (5.28) 

The cases (IH3) correspond to the well-known two-dimen­
sional harmonic oscillator Hamiltonians expressed in cylin­
drical coordinates and are given by 

{

AI(q/ + q/) 

V(QI,q2) = A2(Q12 + Q/)-I 

AMI2 + Q/) +A2(QI2 + Q/)-I 

VI. DISCUSSIONS 

(case 1) 
(case 2) (5.29) 

(case 3). 

Basically, the paper was intended to derive third-order 
invariants and establish the link between our approach and 
that of Holt.4 Many known potentials of physical interest 
have been rederived. The following additional observations 
can be made in the light of our analysis. 

(1) In general, Hamiltonians which possess invariants of 
polynomial order 3 inpj, may possess invariants of order < 3 
inpj as well, e.g., if we had chosen all aijk ==0, then the invar­
iant I would be expressed as 
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1= ajz + aiZ (first-order in p;) 

with a j satisfying the following equations: 

aa I = 0, aa2 _ 0 aa I + aa2 = 0, 
az az-' az az 

and 

av au 
a l - +a2- =0. 

az az 
On solving for ai' a2, and v, we have 

a l = Clz + C2, a2 = - Clz + C3, 

v =/(Clzz+ C~- C#), 

(6.1) 

(6.2) 

C j being constants and the potential v is an arbitrary func­
tion of the arguments. Correspondingly, I is given as 

1= CI(Zz - zZ) + C~ + C;Z. (6.3) 

Note that if we choose C2 = C3 = 0, then, the potential is 
spherically symmetric and the invariant is the angular mo­
mentum (first order inpj). 

The potential discussed in Sec. III B does not admit 
invariants of order < 3 in pj. Similar conclusions hold good 
also for potentials discussed in V (a-c), e.g., in VIa), if we 
choose C2 = 0 (implying aijk==O), then aj==O also. Thus, I 
vanishes identically. However, for potentials (5.29), it is easi­
ly seen that the invariant I involves odd powers of 
(QIP2 - Q1PI) as it should since such systems have angular 
momentum as a constant of the motion (first-order in pj). 

(2) If the Hamiltonian admitting invariants which are 
polynomials in pj (or, equivalently in Z and Z) of order 4 
should also possess invariants of second order in P j' the fol­
lowing equations are to be satisfied by ao and aij: 

and 

aa l1 = 0, aa22 = 0, aa l1 + 2 aa l2 = 0 , 
az az az az 

aa22 + 2 aa l2 = 0 
az az 

aao au av - = 2a11 -+ 2a 12 -, 
az az az 

aao au av -=2a22 - +2a12 -· az az az 
Solutions of (6.4) yield 

a 12 = a21 = - ~CIZZ - ~C4Z - ~C~ + C6, 

a l1 = ~Clr + C;Z + C3, 

a22 = ~Clr + C4z + Cs. 

(6.4) 

(6.5) 

(6.6) 

Substituting (6.6) in (6.5), we obtain finally the following con­
dition on the potential so that the system will admit invariant 
in second order inpj as 

(~Clr + C;Z + C3)-1/2 i. [(~ Clr + C;Z + C3)3/2 au] az 2 az 

(6.7) 
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The solution of (6.7) will yield logarithmic potentials.2
•
9 

(3) Alternatively, subsidiary conditions on the coeffi­
cients in Eqs. (3.5) and (3.6) can be obtained similar to those 
outlined by Holt4 (see the Appendix) such that v(z,z) does not 
admit invariants lower than third or fourth order in PI' re­
spectively. The derivation of a general solution to Eq. (3.5) or 
(3.6) is indeed very much involved. We wish to report more 
on this problem in a future publication. 
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The twistor encoding of the anti-self-dual Coulomb field is given in terms of the space-time 
connections pulled back to/+ and to/-. This description di1fers considerably from that of the 
twistor encoding of transverse or radiation fields, which have been the only fields studied in this 
fashion to date. A twisted structure results on/+ and a topologically incomputable one on/­
and these are identified modulo the null lines intersecting the source world-line. 

I. INTRODUCTION 

The twistor description of the anti-self-dual Coulomb 
field (a left-handed field) was first given by Penrose and Spar­
lingl and later amplified by these authors2 and Penrose and 
Bailey.3 In this paper the description is given in terms of 
structures on f, the null infinity of conformally completed 
Minkowski space-time. One can see the resulting structures 
in a different and more conventional fashion and the general­
ization to the Lienard-Wiechert field at an accelerated 
charge can also be formulated. This analysis aids one in un­
derstanding how longitudinal fields can be incorporated into 
the twistor description whereas previously only radiation or 
transverse fields could be directly incorporated in terms of 
the asymptotic structure of the field. 4 This analysis can also 
be extended to higher-order multipole moments and to the 
gravitational case. 

II. THE CONSTRUCTION 

Consider Minkowski space-timeM in advanced null co­
ordinates (s, r, ~, Tt ') related to Cartesian coordinates by 

xM' =st AA ' +r[1jATt'lt(1j,7])], (1) 

where t AA ' is the identity matrix, t(1j,7])=t AA '1jA7]A" and 
the spinor fields 1j A ,7] A' are defined only mod C·. The co­
ordinates~A ' are standard Minkowskian coordinates trans­
formed by the Vande Warden symbols so 

xM' = (t - z. x + iy)AA " 
\x-IY t+z 

and thus t A.A. ' represents the components of a timelike vector 

field on M which is parallel and has norm ,fi for conve­
nience. Graphically the coordinates of a point are deter­
mined as in Fig. 1. 

A Coulomb field of a charge e based on the world-line 
given by r = 0 is represented by the closed two-form 
e(ds I\dr)/r and the anti-self-dual Coulomb field is 

F= (edsl\dr)/r + (eAl1I\A1j)/t(1j,7])2, 

with A7]=Tt' d7]A" The field F pulled back to f+ (given 
imprecisely by r = 00), which has coordinates U':;;A.>7]A' (see 
Ref. 5), is 

erA 17' 1\ A:;;)I t W, 17')2, 

and is locally of the form - ar a' where a A' is an arbitrary 
spinor and the exterior derivative operator 
a =(a /a1TA,) 1\ d1TA , [e.g., alA:;; = (al/a1TA, )d1TA ,A:;;], 

- et(a,1T) A-ra = - 17', 
(a·:;;)t (:;;,17') 

where a'~:;;A' Then 

Fir = - ara· 
There is a Hermitian structure defined on S 2 sections of f+ 

associated with the field on f+ 

ra = [a( ~'~:~r]( ~.~:~) -e=CaHa)H;: I, 

where 

Ha = (a'1T a.:;;/t W,1TW. 

For another fixed spinor /3A' (=FaA' projectively) define simi­
lar structures r p,Hp. Then 

Hp = ¢fJaHa r/JfJa, 

with 

r/JfJa = rp'1T/a'1T)e. 

Since r a is not defined on all of f+ (being singular for 
17' A' ex: a A ,) and r p is singular for 17' A' ex: /3 A " the collection 
{r a,r P } covers f+ and the elements are related by 

rp = (lJ¢fJa¥fJa -I + ¢fJara¢fJa -I. 

Thus provided eeZ (is an integer), a holomorphic C· 
principal bundle is specified on f+ with a Hermitian struc­
ture6 whose curvature tensor is i times the field on f+. The 
bundle is given by the transition function r/JfJa and {Ha,Hp } 
provide the Hermitian structure. The Chern class of the bun­
dle on the S 2 section of f+ is e in contrast to the bundle for a 
pure radiation field which has a bundle with Chern class 

FIG. 1. Null coordinates 
based on a world-line in Min­
kowski space, 
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zero. The structure on f+ is not sufficient to specify the 
field on M; using standard procedure oftwistor theory a zero 
field is produced-the radiation field of the Coulomb field. 
The charge e is specified as is the velocity vector of the charge 
which is given by tAA. '. This structure locates the charge 
world-line only up to translation. 

To continue we examine the similar structure on f-. 

Using retarded null coordinates based on the source world­
line I v = s + r, p = r, p,A.' = tA.A. 'r,A.' ftA. = tA.A. 'T]A.' }, 

F = e dv 1\ dp _ e Ap, 1\ Aft 
p2 t 1ji,p.)2 

pulls back to a field on f- given by 

( - e A1T I\A1f)/t (1f,1Tf 

Introducingra' rp, a twisted C· bundle results onf- with 
transistion functions given by 

ifJlJQ = (a'1TI/3'1T)e, 

where the 1T'S label a set of parallel null hyperplanes in M and 
correspondingly a generator of f+ and a generator of f- . 

Null geodesics, elements of PN, can be identified with first 
jets (7) of sections off + ---»S 2, PN + , and also with first jets of 
sections of f- ---»s2, PN -, and one identifies f+ and f­
and their first jets, PN + and PN - , to obtain a unique repre­
sentation ofthe null geodesics, PN. (See Fig. 2.) The bundle 
over f+ (f-) pulls back to a C· bundle over PN + (PN -) of 
Chern class + e ( - e) and the identification of PN + with 
PN - produces no bundle over PN as the bundles are topolo­
gically inequivalent, having different Chern classes. 

Of course, knowledge of the field on M produces a set of 
null geodesics which intersect the charge world-line and 
should be regarded as singular. To be more explicit, consider 
a connection on M based on future null coordinates, 

- -e-1d(..e) et(1f,T]) A-r=sr r - ~T], 
1f.r,t (T],T]) 

and a connection based on past null coordinates, 

r = vp - e - Id ~e) + et (1f,p,) .:iji 
1T'p, t Iji,p,) 

= (s + r)r-e-1d(r) _ e 1f.r, .:iT]. 
t (1T,T])t (T],T]) 

Then r -r [more precisely, r = (dH)H -I + HfH -I] is 
pure gauge and is given by 

;:, - _ d ( . r t (1f,T]j1f.r,)e ( . r t (1f,T]j1f.r,) - e r-r- -l -l . 
t (r, T]) t (T],7]) 

ruling by nun geodesics 

FIG. 2. Null hypersurface in conformally compactified Minkowski space. 
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The transition function ( - i[r t (r,,1T)1T'T]lt (r"T])W maybere­
garded as defined on the primed-spin bundle P I of M with 
coordinates (s, r, r,A.' T]A." 1TA.')' Notice that 
XU 'tA. B' 1TA. ,1TB • = r t (r,,1T)1T'T]lt (r"T]) from (1) and thus this 
transition function is the pullback to P I of a function on PN, 
namely (m.t)e, where mA. =tXAA '11' A.' and m·t ==<J)A.t A. A. '11' A. ' . 
The null twistor is given by za = (mA., 11' A. ,) as usual. This 
function on PN, (m·t )e , is ofhomogenity degree 2e in za and 
thus may be regarded as a section of the Hopf bundle to the 
power 2e on PN and is used to define a transition function 
between the bundle over PN + and the bundle over PN -
modulo the quadric Q defined by m·t = O. But this quadric 
consists of null geodesics intersecting the charge world-line 
and thus we can encode the additional information about the 
field in this manner. 

III. THE BUNDLE 

The end result is a C· bundle over PN, a non-Hausdorff 
mainfold, given as follows. 2 Construct two Hopf bundles 
over PN. The first has transition functions 

ifJpa = (f3'1Tla'1T( 

and twist e, The second has transition function 

ifJpa = (f3'1Tla'1T)-e 

and twist - e. 
Now identify points of PN - Q in the two copies of PN 

and identify fibers over these points using 

ifJaa = (m.t l(a'1T)2)e 

over the region a'1T#O and using 

ifJpp = (m·t 1(f3'1T)2) - e 

over the region /3.11'# O. Do not identify the points of QCPN 
and do not identify the fibers over these points. The other 
transition functions (ifJPa , ... ) are obtained by composition. 
The resulting bundle has a holomorphic extension to the 
complement of Q in PT. Thus the bundle is specified by the 
charge e and the ruled quadric Q with equation m·t = O. 

If one restricts this bundle over PN to the CP (1) of null 
geodesics intersecting at a generic point peM and makes a 
choice of fibers over the two points of CP ( 1) taking one fiber 
from one copy of PN and the other fiber from the other copy 
of PN, then a Hausdorff manifold results with a bundle 
above it given generically by the transition functions 

ifJ- - ifJ- - ifJ _ ( a'1T)e (~)e _ ( m·t )e 
/3a - /3a aa - /3.11' (a'1T)2 - a'1T /3.11' . 

The resulting field ifJ A.B at the point is evaluated by consider­
ing 

restricting the integrand to the CP (1) and choosing appropri­
ate contours. The resulting field is the 1/2 (advanced + 
retarded) Coulomb field at the point p. 

The higher multi pole moments do not contribute to the 
twisting ofthe bundle over f+, f-. The ifJ/3a' ifJlJQ are un­
changed and ifJaa is replaced by 
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t/Ja = (~)e exp[ a(1T,1T) + b (1T1T1T1T) + ... ], 
a (a'1T)2 (M (W.t)2 

where 

a(1T,1T) = crt 'B'1TA ,1TB " 

b (1T,1T,1T,1T) = b A 'B'C'D'1TA ,1TB ,1Tc ,1TD , 

represent, respectively, the dipole and quadrupole moments 
of the source with respect to the charge world-line. Insertion 
into the appropriate integral produces the field at a point 
peM. 

IV. DISCUSSION 

The anti-self-dual Coulomb field in Minkowski space­
time, the prototype of a longitudinal electromagnetic field, 
has an encoding in terms of twistor theory which can be 
obtained from the asymptotic behavior of the field and its 
connection on f+ and on f- . A ruled quadric Q is speci­
fied by the source world-line and an 0 * bundle results on 
PN - Qwhich is inextendible to Q. There are two copies of Q 
in the resulting manifold so that it is non-Hausdorff and a 
fiber over each of the double points. This structure is speci­
fied by considering two copies of PN, one arising from f+ 

and one from f- each with an 0 * bundle with twist + e 

430 J. Math. Phys., Vol. 26, No.3, March 1985 

and - e, respectively. The corresponding points of PN - Q 
are identified as are the fibers over PN - Q. Over a CP (1) 
representing the null geodesics through a point of the Min­
kowski space-time a Hausdorff bundle can be constructed 
from the above non-Hausdorff bundle so that the usual twis­
tor construction yields the Coulomb field. 

Further insight can be gained by examining the Lien­
ard-Wiechert field of an accelerating charge monopole as 
the radiation field is nonzero. 7 

'R. Penrose and O. A. J. Sparling, Advances in Twistor Theory, edited by L. 
Hughston and R. S. Ward (Pitman, London, 1979), p. 136. 

2R. Penrose and O. A. J. Sparling, Twistor News Leu. 9, 18 (1979). 
'T. N. Bailey and R. Penrose, Twistor News Lett. 14,9, 19,22 (1982). 
4J. R. Porter, J. Math. Phys. 24, 1224 (1983). 
sE. T. Newman and K. P. Tod, General Relativity and Gravitation, edited 
by A. Held (Plenum, New York, 1980), Vol. 2. 

6K. Kodaira and J. Marrow, Complex Manifolds (Holt, Rinehart, and Win­
ston, New York, 1971), p. 83. 

7J. R. Porter, J. Math. Phys. 26, 431 (1985). 
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A twistor encoding of Lienard-Wiechert fields in Minkowski space-time 
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The twistor encoding ofthe anti-self-dual Lienard-Wiechert field on Minkowski space-time 
yields a considerably richer structure than that of the Coulomb field encoding due to the presence 
of a nonzero radiation field. The combination of advanced and retarded transverse fields together 
with the longitudinal field and the individual aspects of these fields provides this structure. 
Higher-order longitudinal moments can be incorporated so that general longitudinal fields can be 
given a twistor description. 

I. INTRODUCTION 

In an effort to gain a better insight into the twistor con­
struction of the anti-self-dual Coulomb field on Minkowski 
space and because of considerable interest in its own right, a 
study of the Lienard-Wiechert field was undertaken. The 
encoding follows the same general lines as that of the Cou­
lomb field but given the additional presence of a nonzero 
radiation field is of much intrinsic interest. One can observe 
how the various combinations of advanced and retarded 
fields are separately encoded. Additionally, a more complex 
field with higher-order multipole moments can be easily 
added so that general longitudinal fields in electromagne­
tism can be given a twistor description. Penrose and Baileyl 
have also examined this field and give a very elegant coho­
mological description. 

The electromagnetic fields associated with an accelerat­
ing charge in Minkowski space-time M are specified by giv­
ing the charge world-line and a value for the charge. Denote 
the source world-line x AA' = r AA '(s), which is parametrized 
by s where r ~':==(d I ds)r AA ':==t AA '. The parameter s is cho­
sen so that t AA 'tAA' = 2 and thus ((d Ids)t AA ')tAA' = O. Null 
polar coordinates based on the source world-line are chosen 
so that with respect to the standard Minkowskian coordi­
nates, 

x AA' = r AA '(s) + rfl7f 'It (7j,7]), 

where t (7j,7])=t AA '7jA 7]A" These are illustrated in Fig. 1. A 
coordinate system (s,1T,17') is induced on f+; the s constant 
hypersurfaces are the intersection of the null cones from the 
source world-line with f+ and on such an intersection the 

AA' AA' 
x = or (a) 

FIG. 1. Null coordinates based on a 
curve in Minkowski space. 

points are labeled by 17' A' = 7] A ' (but it is convenient to main­
tain the distinction between 17' and 7]). The retarded field 
pulled back to f + .p, results in a local connection r a such 
thatF= - dra with 

- et (a,17') .d -ra = _ (_) 17' 
a·17' t 17',17' 

for an arbitrary spinor a A, where a'17'==aA1TA' Noting that 
t= t(s), 

e etA
A't AB '17'A,17'B' 

F=--.d17'A.d1T- 2 dsA.d1T. 
t (17',17')2 t (17',17') 

The first term represents the 1/r 2 part of the field pulled 
back to f+ while the second term represents the lIr part of 
the pullback. 

Doing the same for another arbitrary spinor /3 A' results 
in r p and the relation 

rp - ra = [a(!~:r] (!~:) -e, 

[MoreappropriatelYrp = d( )( )-1 + ( )ra( )-I.]Thusthe 
appropriate bundle on f+ has transition functions 

(1) 
with eEZ so that the bundle is the pullback via f+ --S 2 of a 
bundle over S 2 with Chern class e, A similar construction on 
f - results in a bundle with Chern class - e and transition 
function 

(2) 

The standard twistor construction for a field from r a results 
in a pure radiation field with zero charge. However, ra is 
defined on a piece of a twisted bundle on f+ and is only a 
local expression for a a closed (0,1) form pulled back from 
PN. 

Examining the source world-line from the perspective 
of f+, it corresponds to a selection of unique null geodesic 
at each point off + ,namely the null geodesic at that point of 
f+ that intersects the source world-line. This is equivalent 
to specifying at each point of f+ a first jet of a section of 
f + --S 2=cp (1). Now Cp (1) has a complex structure given 
nonprojectively in the coordinates (17'A ,,1TA) by a Ia1TA as the 
antiholomorphic vector field [modulo the homogeneity op­
erator 1TA (a Ia1TA) where the representation is 
CP(1)=C2 

- {OllC· and the homogeneity operator is tan-
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gent to the fibration C*]. The manifold f+ has no natural 
CR structure but a shear-free congruence in M endows f+ 
with a CR structure---namely the congruence determines a 
CR submanifold of N(or PN). 

Specifically, giving a future null coordinate system 
based on a straight world-line results in a coordinate system 
(A,lT A,1r A' ) on f+ and a timelike parallelly propagated vec­
tor field zrU '. Let u = Av(1T,1r). This gives a CR structure on 
f+ whose antiholomorphic vector field is (a /alT A lI,l. = const. 

The CR structure determined by the source world-line is 
related to a change ofthe CR structure on f+:a /alTA-a/ 
a1TA -? L (a/aA), whereL (A,lT,1r) is of degree (0, - 2) in 
(1rA' ,1TA). Given the straight world-line, a null twistor i~ de­
fined at each point of f+, wg = UV A, where vA =VAA 1rA , 

and wglTA = uv=iu. The source world-line gives 
w1 = i~(s) = i~'(S)1rA" w11TA = iu = iT(s). Thus 

u =AV = T(s) 

gives implicitly s = f(A,lT,1r). Writing w1 in terms of? and 
vA gives 

w1 = AV A - Lw A = wg - LVlT A, 

with 

w1vA =Lv2 = 1'A(S)VA = 1' AV'(A,lT,1r))VAf 

so that Lv2 = l' A VA' The claim is that 

;5A=~_LlTA~ 
a1TA aA 

(3) 

is tangent to the sections of f+ given by s constant. The 
claim is substantiated by computing the normal one-form to 
the sections s = const, ds, and acting on;5A with this form. 
Sinced(AV) = d(T(s))andds = df(A,lT,1r),dscanbewrittenas 

ds = ~ dA + ( AV A ; l' A ) dlT A 

(
AvA' A') + ~ l' d1rA,. 

Applying;5A from (3) to ds gives 

AV A _ l' A _ A V AV A - l' A l' BVB _ A V 
-----L1r -= ---1r -. 

t t t v2 t 

That this is zero can be seen by contracting with 17 A which 
gives u - u and with VA which gives -1'A VA / t + (1'B VB/ 
v2)v(v/t). Also note that - (VA/v)8A = (j - L (a/a A ). 

If 1'(s) is not real analytic but, say COO , the inverse, can­
onically exists, s = f(A,lT,1r) and is COO in A and 
wA VA - L (A,1T,1r)V2 is defined on real jets of f+ ,on PN, and 
the zeros of this function specify the source world-line in 
terms of null geodesics intersecting that world-line. The ze­
ros also specify a three-dimensional ruled surface in PN (of 
dimension 5) ruled by complex manifolds each of which con­
sists of all null geodesics through a point of the source world­
line. Given the map PN-.F+,;5A pulls back (mod homo­
geneity) to the CR vector field defined on this 
three-dimensional submanifold of PN given by the intrinsic 
CR structure of PN restricted to the submanifold. 

Additionally, ;5A = (a/a1TA )Is=const and so 
~(LV2) = (a/a1TA )(-rA (S)VA )Is=const = 0 and this is propor­
tional to the difference in the asymptotic shears of the two 
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congruences given by s = const and by A = const. The quan­
tity - (VA./vj8A'L + (VA/v)8AL is proportional to the dift'er­
ence in the twist of the two congruences and is given by 
(- (~'VAVA./V) + (1'/v)) - c.c. and is, of course, zero for 
the congruences involved. 

II. THE BUNDLE 

The construction of the bundle representing the Lien­
ard-Wiechert fields proceeds in a fashion similar to the Cou­
lomb case. The two oppositely twisted bundles on f+ and 
onf- are each pulled back toPN + andPN -, respectively, 
and the identification between them is made on the comple­
ment of the ruled quadric Q defined by w A VA - Lv2 = 0 
using 

rpaa = (w AVA - Lul)/(a'1r)2)e (4) 

and compositions of the transition functions to define the 
rest. 

The radiation fields are obtained by the following con­
struction. The function L satisfies 

so 

a(LV2) _ LlT A a(Lv2) = O. 
alTA aA 

Now eL,l. = (Lv2)-e (j(Lv2r, where (j = - (vA/v)(a/alTA). 
Then 

eL). ..117 = (Lv2)-e -4-(Lv2)e dlTA = Y 
a1rA 

(5) 

is the connection on f+ for the radiation field and gives the 
same 1/r part of the field as Ya when pulled back to f+ 
[conveniently expressed in (s,lT,1r) coordinates on f+]. But 
this connection results in a field with zero charge. This is 
easily seen to be the case by examining the field on f+, Or 
and pulling it back to a A = const section which is a two­
sphere, then integrating the two-form over the two-sphere. 
The relevant expression is 

i dy=J ay /\ d1rA.' =0 
). = const a1r A. ' 

by Stokes theorem and the fact that y is a globally defined 
one-form. In addition, y represents an element of 

FIG. 2. Extent of.F data for the field 
at a point P in Minkowski space. 
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H ~R (PN, tJ *) as it should in the Dolbeault representation. 
One might suspect that (5) gives only advanced infor­

mation about the field at a point pEM but in fact it gives the 
112 (advanced-retarded) field at this point. This can be seen 
by examining the space-time diagram in Fig. 2, where one 
sees that the CP(l) integration that gives the field atp con­
tains the information on the source motion from 9 = 90 to 
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9 = 9) which contains both the advanced and the retarded 
field information at p. 

The generalization to higher-order multipoles proceeds 
as in the Coubomb case and presents no difficulties. 

IT. N. Bailey and R. Penrose, Twistor News Lett. 14, 9, 16, 19,22 (1982). 
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Nontrivial zeros of the Wigner (3'"1) and Racah (6-)) coefficients. 
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Some formuals for nontrivial zeros in the 3-j and 6-j symbols have been found. 

I. INTRODUCTION 

Current work in the fields of algebraic theory and quantum mechanics has underscored the importance of Racah­
Wigner algebra and, thereby, of the 3-j and 6-j symbols. In the ninth volume of the Encyclopedia of Mathematics and Its 
Applications, an entire topic 1 is devoted to the nontrivial zeros of these symbols. The problem of finding such zeros through a 
non-numerical method is the subject of this paper. 

II. PROCEDURE 

The 3-j symbol of Wignec2 has been given explicitly by Racah.3 As modified by Rotenberg,4 this symbol has the form 

(
jl jz j3) 
m 1 mz m3 
= ( _ l)l, - i, - m3( Ul + j2 - j3)!Ul - j2 + j3)!( - jl + j2 + j3)IUl + mtllUl - m 1)!U2 + m2)!U2 - m2)IU3 + m3)!U3 - m3)1 )112 

Ul+j2+j3+ 1)! 

(-w X> . 
T' k !Ul + j2 - j3 - k )IUl - m 1 - k )!U2 + m2 - k )!U3 - j2 + m1 + k )IU3 - jl - m2 + k)! 

(1) 

The 6-j symbol has also been explicitly defined by 

{
jl j2 j3} 
11 12 13 

= ( - W, +j, + I, + 1,.1 Ulj2j3lA (/1/2j3lA (/dzi3lA Ullzf3) 

X ~( - W U 1 + j2 + 11 + Iz + 1 - k )! [k !U 1 + j2 - j3 - k )1(/1 + 12 - j3 - k )!U 1 + 12 - 13 - k )! 

X (11 + j2 - 13 - k )!( - j 1 - 11 + j3 + 13 + k )!( - j2 - 12 + j3 + 13 + k )!] - 1, (2a) 

where 

.1 (abc) = [ (a + b - c)!(a - b + c)!( - a + b + c)1 ] 112. 
(a +b+c + I)! 

(2b) 

In analyzing the 3-j and 6-j coefficients we note the following: Opposed to the trivial zeros resulting from symmetry 
conditions (3-j symbol) or violations of one or more triangle conditions (3-j or 6-j symbols), there also exists another class of 
zeros, called nontrivial zeros. The nontrivial zeros are zeros of the "polynomial part" ofWigner or Racah coefficients. A table 
of presently knownS•6 nontrivial zeros is given in the ninth volume of the Encyclopedia of Mathematics, pp. 420-428. From 
these tables it is possible to deduce some algebraical formulas, each of which can be used to calculate nontrivial zero solutions. 

When the polynomial part of the Wigner and Racah coefficients has only two terms, i.e., when the summation is carried 
out over k = 0,1, we call the resultant expression "linear." Formulas defining the nontrivial zeros of this linear expression 
have been obtained. For example, a pair of linear formulas for the 3-j coefficients are 

en 
2n + 1 n + 1) 

3n -1 -2n I-n 
(3) 

and 

en
+

1 2n 
- ~). n+l -n 

(4) 

For the 6-j coefficients, the following linear formulas exist: 

{
n + 2 n + 1 2 }, 
n n + 1 n + 1 (5) 

{ 
3n/2 + 2 3n/2 + 2 n + 2 } 
n + ~ ~ 3(n + 1 )/2 ' 

(6) 

rj--------------------------------------
and all their Regge symmetries. From (5) we obtain 

Inn + 2 (1 + 3n)/2 (3 + n)/2} 
(3 + n)/2 (3 + n)/2 ' 

(5') 

and from (6), for n = 0, we calculate the first nontrivial zero 
of the Racah coefficient, 

WH, 2,~, 2;~, 2). 

In all these expressions for the Racah coefficients (3~ 
(5'), at least two of the six angular momenta are equal. This 
relationship, however, is not necessary. For example, 

{ 2 7 6} 
5.5 2.5 3.5' 
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which is a specific example of 

{
II 4JI - 1 3/1 } 

2 II + ~ II + ! 2/1 -! ' 
(7) 

where I = 2, has a nontrivial zero, but none of the angular 
momenta are equal. 

A more general parametrical formula for the linear 3-j 
coefficients is given by 

II = alb + e)/2, (Sa) 

12 = d (b + e)/2, (Sb) 

13=(b+e)(a+d)/2-1, 

m l = a(e - b )/2, 

m2 = d (e - b )/2, 

(Sc) 

(Sd) 

(Se) 

where the parameters a = 1, ... ,00, b = 1, ... ,00, 
e = 1, ... ,00, andd = 1, ... ,00. 

A more general parametrical formula for the linear 6-j 
coefficients is given by 

II = (del + adg + abc)/2 - !, (9a) 

12 = (abe + ghi + beh )/2 - !, (9b) 

13 = (del + adg + ghi + beh )/2 - 1, 

LI = (ghi + adg)/2, 

L2 = (del + beh )/2, 

L3 = (abe + adg + beh )/2 - !, 
where the condition 

abe + del + ghi + adg + beh = eft 

(9c) 

(9d) 

(ge) 

(9f) 

(10) 

must be satisfied and where a, b, e, d, e,J, g, and h go from 
1, ... ,00. 

The following are two examples. In the first example, 
for a = b = d = e = g = h = 1 and e = I = i = 2, the small­
est case arising from (9) and (10) is obtained: 

2 
1.5 

In the second example, for a = e = d = h = 1 and b = 4, 
e = 3,1= 6, g = 2, and i = 9, 

{
11.5 16.5 24} =0. 
10 15 S.5 

All the known nontrivial linear zeros given in both ta­
bles previously citeds.6 are obtained by this method; proof 
that these equations constitute the total solution to the linear 
nontrivial-zero problem, however, has yet to be demonstrat­
ed. 
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APPENDIX: DERIVATION OF SOLUTION SETS (8) AND 
(9) 

For the first two terms in the summation of (1) (the 
polynomial part) to sum to 0, the following sufficient condi­
tion exists: 

F = (jl + j2 - j3)UI - mdU2 + m2) 

= (j3 - j2 + ml + 1)(j3 - jl - m 2 + 1), (AI) 
where F can be decomposed into four multiplicands, 

F=abed. 
In order that the summation of ( 1) consist of only the 

first two terms (k = 0,1), one of the first three multiplicands 
of (A 1) must be equal to (1). Without loss of generality, 

jl + j2 - j3 = 1. (A2a) 
Taking one particular partition of F, namely, (ab )(ed), 

jl - m l = ab, (A2b) 

j2 + m 2 = ed, (A2c) 

j3 - j2 + m I + 1 = ae, (A2d) 

j3 - jl - m2 + 1 = bd. (A2e) 

The five equations of (A2), with the determinant not 
equal to zero, yield solution set (S) having 72 symmetries, i.e., 
72 nontrivial zeros. The other two remaining partitions, 
namely (ae)(bd ) and (ad )(be), yield similar solution sets, with 
each set, again, having 72 symmetries. The combination of 
these three solution sets yields 216 symmetries, i.e., 216 non­
trivial zeros of the 3-j coefficients, all ofthese derived from a 
single a, b, e, and d. It must be remembered, however, that 
each F can be decomposed into abed in many ways and that 
for each abed there are 216 nontrivial zeros, all of which may 
be different. 

Solution sets for the 6-j coefficients, e.g., solution set (9), 
may be derived using an analogous method. 
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We obtain a high-frequency asymptotic expansion of Newton's Marchenko equation for three­
dimensional inverse scattering. We find that the inhomogeneous term contains the same high­
frequency information as does the Born approximation. We show that recovery of the potential 
via Newton's Marchenko equation plus the "miracle" depends on low-frequency information. 

I. INTRODUCTION 

The exact inverse problem for Schrodinger potential 
scattering in three dimensions has a simple exact solution 
(even in the presence of bound states) based on the Born 
approximation. 1 This inversion method uses high-frequency 
scattering data in the near-forward direction. Considerable 
effort has been expanded in developing other exact inverse 
methods which do not depend exclusively on high-frequency 
data. For example, Newton has recently introduced a meth­
od 1-3 which generalizes the one-dimensional Marchenko 
equation. 1 Newton's Marchenko equation is derived in a 
way which depends on data at all frequencies, in contrast to 
the inverse Born approximation, which depends on high­
frequency data alone. It is quite natural to ask about the 
relationship between the two methods. To what extent does 
Newton's Marchenko method rely on high-frequency data? 
To answer this question, we have undertaken an asymptotic 
high-frequency analysis of Newton's Marchenko integral 
equation. It will be shown that all asymptotic high-frequen­
cy information is contained in the inhomogeneous term of 
the Newton-Marchenko integral equation. This informa­
tion is sufficient4 to reconstruct the potential exactly by 
means of the Radon transform. 

The Newton-Marchenko method, however, does not 
involve the Radon transform. Rather, the wave field every­
where is first recovered from the scattered amplitUde using 
the Newton-Marchenko equation. Finally, the potential is 
extracted from the high-frequency asymptotics of the wave 
field using an equation dubbed the "miracle" by Newton. As 
will be shown, the method just described relies essentially on 
low- as well as high-frequency components of the scattering 
amplitude. References 4 and 5 provide a physical discussion 
of the "miracle." Note that throughout this paper it is as­
sumed that the scattering amplitUdes considered were gener­
ated from some local potential. That is, the characterization 
problem is not considered. 

The structure of this paper is as follows. In Sec. II we 
introduce our notation and Newton's Marchenko equation 
in the frequency and time domains. In Sec. III we complete 
an asymptotic high-frequency analysis. The determination 
of the potential from the inhomogeneous term alone via the 
Radon transform is discussed. Next, we show that Newton's 
method of recovering the potential relies on the low-frequen­
cy content of the data. The final section qualitatively dis-

cusses the physical meaning of the inhomogeneous term in 
the far-field and weak scattering limits. A theorem and 
lemma on the high-frequency asymptotic are proven in the 
Appendix. 

II. REVIEW OF NEWTON'S MARCHENKO METHOD 

This section states the problem, introduces our nota­
tion, and reviews Newton's approach. Both frequency do­
main results and a time domain interpretation are treated. 

Consider the time-independent Schrodinger equation 

- .t.1 f/1(k,x) + V (x)¢'(k,x) = k 2f/1(k,x). (2.1) 

Here the coordinate x is a vector in R 3, the potential V(x) is 
real valued and decays at infinity, and k is a scalar. We as­
sume that V induces no bound states. Scattering solutions 
are defined by the Lippman-Schwinger equation 

¢,±(k,e,x) = exp(ike· x) - J (41Tlx - yl)-I 

Xexp( ± ik Ix - yl)V(y)f/1(k,e,y)d3y. (2.2) 

Here the incident wave is a plane wave in direction e, where e 
is a point on the unit sphere. The incoming and outgoing 
solution ¢'- and ¢'+ are related not only by the relation 

¢'+( - k, - e,x) = ¢,-(k,e,x), (2.3) 

but also byl 

¢'+(k,e,x) - ¢,-(k,e,x) 

= - ik (8r) -I 1, J exp( - ike' • y)V (y) 

x ¢'+(k,e,y)dy ¢,-(k,e',x)de'. 

Here we have used Eqs. (10.112) and (10.114) of Ref. 1. 
Recall that the scattering amplitude is given by 

A (k,e',e) = - (41T)-1 J exp( - ike'· x)V(x) 

(2.4) 

x¢,+(k,e,x)dx. (2.5) 

In what follows, we will use the notation ¢' = ¢'+ and 

{3 (k,e,x) = f/1(k,e,x) exp( - ike· x). (2.6) 

The following high-energy asymptotic expansion of {3 is 
knowns for 0 < E < ~ and for k large: 

{3(k,e,x) = 1 + (ik)-IB(e,x)+g(k,e,x), (2.7) 
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where 

B (e,x) = ! 100 

V(x - re)dr, 

and where Igl <elk I-I-E. 
This implies that once /3 is known, the potential can be 

recovered by the following procedure. We first isolate the 
k - 1 coefficient: 

(21r 1 (00 V(x _ re)dr = lim k [/3 (k,e,x) - 1]. (2.8) Jo k-+oo 

The potential can be recovered from (2.8) by noting that 

e·VV(x-re)= -~ V(x-re). ar 
When we apply 21e • V to the left side of (2.8), evaluation of 
the integral at the lower limit gives us the potential. We have 
thus obtained the formula 

V(x) = 2ie· V lim k [/3 (k,e,x) - 1]. 
k~oo 

(2.9) 

For future reference let us write some ofthe above equa­
tions in the time domain.4 We use the Fourier transform 

u(t,e,x) = (21T)-1 J: 00 exp( - ikt )1/1(k,e,x)dk. (2.10) 

The Lippmann-Schwinger equation (2.2) implies 

tP(k,e,x) = 1/1*( - k,e,x), 

where * denotes complex conjugation. The time-domain 
wave field u is therefore real. If 1/1 satisfies (2.2), then u de­
fined by (2.10) satisfies4 

[ a2 ] A A - - - V(x) u(t,e,x) = o. at 2 
(2.11) 

The Fourier transform of /3 [Eq. (2.6)] is u(t + e . x,e,x). 
Fourier transformation of the asymptotic expansion (2.7) is 
then 

u(t + e • x,e,x) = 5(t) - !B (e,x) sgn(t) 

+ (smoother terms). (2.12) 

However, we know that /3 is well-behaved for small k, and is 
analytic in the upper half k plane. This low-frequency behav­
ior allows us to deduces a more accurate version of (2.12), 
namely 

u(t + e· x,e,x) = 5(t) - B (e,x) H(t) + h (t,e,x), (2.13) 

whereHistheHeavisidefunction[H(t) = 1 fortpositiveand 
zero for t negative] and h is a continuous function that van­
ishes for t<O. Equations (2.12) and (2.13) are not contradic­
tory; Eq. (2.13) merely contains more information about the 
"smoother terms" of (2.12). 

From (2.13) it is evident that u satisfied the causality 
condition 

u(t,e,x) = 0 for t < e • x. (2.14) 

We shall write 

1](t,e,x) = u(t + e • x,e,x) - 8(t ). (2.15) 

We now return to the frequency domain for a moment 
to derive the Newton-Marchenko equation of inverse scat­
tering.2 We mUltiply (2.4) by exp( - ike· x) and use (2.3) in 
(2.4): 
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/3 (k,e,x) - /3 ( - k - e,x) 

= -k(21Ti)-1 ( A(k,e',e)exp[ik(e'-e).x]de' 
Js' 

-k(2mrl ( A(k,e',e)exp[ik(e'-e)·x] 
Js' 

X [/3 ( - k, - e,x) - 1 ] de'. (2.16) 

We shall refer to the first and second terms on the right side 
of (2.16) as terms I and II, respectively. The Fourier trans­
form (in k) ofEq. (2.16) is the Newton-Marchenko equation 

1](t,e,x) - 1]( - t, - e,x) 

i M( A A, )dA' = t,e,e,x e 
s' 

+ fao (, M(t - s,e,e',x)1]( - s, - e',x)de' ds, 
- 00 Js 

(2.17) 

where 

M(a,e,e',x) = (21T)-2 J: 00 exp[ - ik (a + (e - e')· x)] 

XikA (k,e',e)dk, (2.18) 

and 1], which was defined by (2.15), is the Fourier transform 
of /3 - 1. We consider t > 0 only in (2.17), and use causality 
(2.14) to eliminate 1]( - t, - e,x) on the left-hand side. 

Equation (2.17) can be used to solve the inverse scatter­
ing problem as follows. One assumes that the scattering am­
plitude A is given. One then solves (2.17) or (2.16) for /3, and 
recovers the potential V from Eq. (2.9). 

III. ASYMPTOTIC HIGH-FREQUENCY POTENTIAL 
RECONSTRUCTION 

In this section we analyze the large k limit of Newton's 
reconstruction method. A proof of the basic result is con­
tained in the appendix. 

Clearly Eq. (2.9) recovers the potential from the large k 
limit of the reconstructed field/3. The question then arises: is 
it really necessary to solve (2.16) or (2.17) to obtain this high­
energy information? Perhaps the desired high-energy infor­
mation can be extracted more easily. In particular, since 
/3 - 1 decays like k -1, it might be suspected that term II of 
(2.16) decays faster at infinity than term I, and that therefore 
the high-energy information is contained entirely in term I. 
In this case, it might not be necessary to solve the integral 
equation (2.16). 

In the Appendix, we show that term II of (2.16) does 
indeed decay faster than k - 1, so that all k - 1 terms on the 
right side of(2.16) do indeed arise from term I. Moreover, the 
nth term of the Neumann expansion of (2.16) decays at infin­
ity at least as fast as k -,. - E for arbitrarily small positive E. 

The k -1 coefficient, however, is not (21)-1 So V(x - re)dr, 
but is rather (2i)-1 S~ 00 V(x - re)dr. [This follows from 
(2.7)]. Thus, for each x, term I determines the integral of V (x) 
over a line which passes through x and is parallel to the 
direction of incidence e. For a single direction of incidence 
these line integrals are not sufficient to determine the poten­
tial. However, if we vary the direction of incidence over 90" 

M. Cheney and J. H. Rose 437 



                                                                                                                                    

in a plane, we can build from this set ofline integrals a set of 
"plane integrals." In other words, we can determine the Ra­
don transform of V(x). (For a discussion of Radon's trans­
form, see Ref. 6.) We can then invert the Radon transform to 
recover V(x). Details of the reconstruction method are given 
in a near-field context in Ref. 4. This reconstruction method 
is similar to the inversion method using the Born approxima­
tion. 1 

The analysis in the appendix gives insight into the New­
ton-Marchenko equation, which is the Fourier transform of 
(2.16). The high energies alone do indeed contain informa­
tion (2.12) about the jump in the solution u across the wave 
front. However, in the Marchenko equation, the jumps cor­
responding to both the "outgoing solution" P (k,e,x) and to 
the "incoming solution" P ( - k, - e,x) appear. They occur 
in such a way that when only high energy information is 
used, the two jumps add together: the left side of(2.17) can be 
expanded using (2.12) as 

I lco - - V(x - re)dr sgn(t) 
4 ° 

1 lco + - V(x + re)dr sgn( - t) + (smoother terms) 
4 ° 

1 Sco = - - V(x - re)dr sgn(t) + (smoother terms). 
4 - co 

(3.1) 

This shows that only line integrals of the potential can be 
recovered from the first term of the high energy expansion. 

When low energies are taken into account, we can use 
expansion (2.13). In this case, the left side of (2.17) is 

-- V(x-re)drH(t)+- V(x+re)H(-t) 1 Lco 1 lco 
2 ° 2 ° 
+ (smoother terms). (3.2) 

We see that the limit t-o+ of (3.2) allows us to recover the 
function -!SO' V(x - re)dr, from which V can be recon­
structed via 

V(x) = - 2e. V Lco V(x - re)dr. (3.3) 

[Equation (3.3) is equivalent to (2.9).] Thus, the low-frequen­
cy content of the reconstructed wave field allows us to deter­
mine how much of the total jump discontinuity should be 
apportioned to the incoming wave and how much to the 
outgoing wave. 

IV. POSSIBLE EXTENSIONS 

We have shown that the inhomogeneous term in New­
ton's Marchenko equation (2.17) dominates at high frequen­
cies. Therefore, if the high-frequency data are good, this 
term can be used (following the Born approximation meth­
od) to invert exactly for the potential. One is consequently 
led to wonder whether the inhomogeneous term might 
dominate in other limits as well. Intuitively, four such limits 
come to mind. First, if the potential is sufficiently weak in 
some appropriate sense, both the wave field and the scatter­
ing amplitude A will be small, and the higher-order terms of 
(2.17) will be unimportant. Second, the inhomogeneous term 
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should dominate in the far-field limit; this is because the 
scattered field (which enters into higher-order terms) decays 
like Ix 1- I in the far field. Third, the first term of (2.17) may 
be useful in determining the high-frequency decay of the 
higher-order terms. Finally, the first term of (2.17) may be 
useful in determining the potential near the boundaries of its 
support; this is because of the weakness of the scattered wave 
(and hence of the higher-order terms) during the time the 
probing plane wave has barely penetrated the region of inter­
est. 
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APPENDIX: HIGH-ENERGY ANALYSIS 

Lemma: Suppose that Vis bounded and integrable, and 
suppose that for some xo, the three functions I V I, I V V I, and 
I.J V(x) I are all bounded by F(lx - xoll, whereFis a positive 
function satisfying SO' F(t) dt< 00. Let 0<a<2. Then for k 
sufficiently large, we have the following estimate for the 
scattering amplitude: 

IA (k,e',e)i<c(k Ie - e'll- a
• (AI) 

Proof We write 

A (k,e',e) = - (417')-J exp[ik (e - e') • x] 

X V(x)p(k,e,x)dx, (A2) 

wherepis defined by (2.6). We multiply (A2) by ik (e - e') and 
then integrate by parts, differentiating Vp and integrating 
the exponential. The resulting integral is bounded because 
Vp is bounded.s Therefore, (AI) holds for a = 1. We then 
integrate by parts once again, and use boundedness of .Jp. 
Equation (AI) therefore holds for a = 2. Boundedness of A 
then allows us to interpolate to obtain (AI) for 
0<a<2. Q.E.D. 

Theorem: Suppose that V satisfies the same hypotheses 
as above, and suppose that (2.16) holds. Then term II of 
(2.16) is O(k- a

), where 1 <a <2. 
Proot Equation (2.7) implies that IP ( - k, - e' ,x) 

- 11<ck -I forlargek; we use this fact together with (AI) in 
term II of(2.16), obtaining 

lI<c r (kle-e'll- a de'. (A3) JS2 
We write (A3) in polar coordinates with the z axis along e' 
and with polar angle (} and azimuthal angle tP. The resulting 
integral is independent of tP; accordingly, we carry out the tP 
integration. We then split the polar angle integration into 
pieces corresponding to integration over (} < k - I and 
(} > k -I, respectively. We obtain two terms, which we label 
III and 112, respectively. 

In III we use a = 0, which gives us 
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II I <c .C-' sin () d(}<c k -2. 

In 112 we use 1 < a < 2: 

112 <c k - a 1"_. (2 - 2 cos ()) - al2 sin () d(} 

<c k - a [ 41 - al2 _ (2 _ 2 cos k - I) 1 - a12] = 0 (k - a). 

Q.E.D. 

Remark 1: It follows from (2.7) that term I of (2.16) is 

(Uk )-1 Loo 00 V(x - re)dr + o(k -I). 

At high frequencies, therefore, term I dominates term 
II. 
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Remark 2: The proof of the above theorem depends 
only on estimate (A 1); this shows that application of the inte· 
gral operator appearing in term II gives rise to an asymptotic 
factor of k- a

, where 1 <a <2. 
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Scattering theory for extended elementary particles in stochastic phase space is studied. It is 
shown that the interacting Hamiltonian is equivalent to an effective potential in configuration 
representation. Asymptotic completeness can be studied by investigating the behavior of the 
effective potential. The sharp-point limit of the extension of these particles is studied. It is also 
shown that scattering theory can also be studied directly in stochastic phase space in the optimal 
case. 

I. INTRODUCTION 

The mathematically rigorous approach to nonrelativis­
tic scattering theory was initiated in the fifties, and by now it 
represents an extensively developed mathematical frame­
work. This framework is, however, primarily applicable to 
pointlike particles. On the other hand, we know that all ha­
drons (and possibly also the leptons) are extended. We shall 
see that the theory of stochastic phase space will enable us to 
adjust the basic concepts of conventional scattering theory 
to the case of extended particles. 

Let us recall that conventional nonrelativistic scatter­
ing theory is based on the wave operators 

n ± = s-lim exp(iHt )exp( - iHot) , 
E-=F 00 

(Ua) 

H=Ho+ V, Ho =p2/2m, V= V(X) (Ub) 

(X jrp) = xjrp(x), ( P jrp) - (k) = k j¢1k) , (1.lc) 

which are acting on the Hilbert space of square integrable 
functions of the relative position of the interacting particles. 
It turns oue that n ± are defined everywhere and satisfy 

(E H (B )n ± rp)(r) = l.i.m. ( ¢ l. ± )(r)¢1k)d k , (1.2) 
J-1-'(B) 

A (k) = k 2/2m, (1.3) 

under some technical restrictions on the potential. The dis­
torted plane waves ¢ L ±) satisfy the Lippmann-Schwinger 
equation 

¢L±)(r) = ¢k(r) + J Gb±(r,r'; ~)v(r/)¢l.±)(r/)dr/, 
(1.4) 

where the plane waves and the advanced and retarded free 
Green's functions are, respectively, given by 

¢k(r) = (217')-3/2 exp(ik.r), (1.5) 

Gb±)(r,r/;~) = - m exp( ±ilkllr - r/l). 
2m 21Tlr - r/l 

(1.6) 

The operators n ± are unitary operators with initial domain 
L 2(R3

) and final domain E H (S~)L 2(R3
), and therefore the S 

operator 

S = n *- n + (1. 7) 

is unitary. 
In adapting this formalism to the scattering of extended 

particles, we shall show that the potential scattering problem 
in stochastic phase spaces for such particles can be reduced 
to a potential scattering problem in the configuration repre­
sentation of pointlike particles interacting via a new poten­
tial and we shall subsequently state sufficient conditions for 
having 9' n± = L 2(R3)andRn± = EH(S~)L 2(R3

). We shall 
also indicate how the three-body problem can be solved. 
However, while adapting the configuration space formalism 
to stochastic phase spaces, we shall see that the stochastic 
center of mass motion turns out not to be separable from the 
stochastic relative motion. Consequently, we shall have to 
prove that a unitary mapping between the stochastic phase­
space representation and the momentum representation 
leads us to equations which are the formal analogs of the 
Lippmann-Schwinger equation. We will find the solutions 
of these modified Lippmann-Schwinger equations by the 
Fredholm method, and prove that thereby we get an analog 
of (1.2). We shall also show that all the basic quantities for 
scattering theory in stochastic phase space merge into their 
conventional counterparts in the sharp-point limit, and shall 
derive a T-matrix formula for the scattering of extended par­
ticles. 

II. STOCHASTIC QUANTUM MECHANICS 

Stochastic quantum mechanics is a recently devel­
oped2

-
5 framework mathematically related on the Menger­

Wald6
•
7 concept of statistical metric spaces, and physically 

based on the idea of stochastic value for observables, which 
can be traced to the work of Born. 8.9 In this section we shall 
review those basic concepts and results required for the for­
mulation of the potential scattering of extended particles. 

The Galilei group G,IO 

G = {(b,a,v,R ):bER, a,vER3
, RESO(3)} , (2.1) 

is a transformation group which acts on 

FEIlR = {(q,p,t):q,pER3
, tER} (2.2) 

as follows: 

q-q' = Rq + vt + a, 

p---+p' = Rp + mv , 

t--+t I = t + b . 

(2.3) 
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We define4 

L 2(r) = {tP(q,P): I I tP(q,p) 12 dqdp< oo} , 

with inner product 

("11"2) = I "r(q,p)"2(q,P)dq dp . 

(2.4) 

(2.5) 

Let us consider the following reducible unitary ray represen­
tation: 

(U(b,a,v,R ),,)(q,p,t) 

= exp{ ~ [ - mt (t - b) + mv • (q - a)]} 

XtP(R -1[q-v(t-b)-a],R -I(p-mv);t-b). 

(2.6) 

The operators X j, P j, 

X · . 'Z.a j .z.a 
J = qJ + iT' - P = - IT'-

apj ' aqj' 
(2.7) 

which are multiples of the infinitesimal generator of velocity 
boosts and space translation, respectively, 

U(O,O,v,1) = exp((illi)mv· X), 

U (O,a,O,1) = exp( - ia • Pili) , 
(2.8) 

realize a reducible representation of the canonical commuta­
tion relations 

[X j,pk] = i-Mjk , 

[Xj,xk] = [pj,pk] =0, j,k= 1,2,3. (2.9) 

The irreducible subspaces TJ s of physical significance are 
those possessing a rotationally invariant resolution gener­
ators, 

5 (q,p) = s(R -lq,R -Ip), VReSO(3), 

11511 = h -3/2, 

i.e., an element 5 such that 

tP(q,p) = (Sq,p I,,) , 

where 

Sq,p = U(O,q,p/m,/)s· 

(2.1Oa) 

(2. lOb) 

(2.11a) 

(2.11b) 

The resolution generator 5 and the subspace TJs define 
each other unambiguously. It is called resolution generator 
because we have the resolution of identity on TJ s 

f Isq,p) (Sq,p Idq dp = P s , (2.12) 

where P s denotes the orthogonal projector of L 2(r) onto TJ s' 
The spaces TJ s are of physical importance because they 

give rise to unitary mappings between TJ s and the configura­
tion representationL 2(JR3). These mappings can be written in 
the form 

(ws")(x) = l.i.m. f Sq,p(x)tP(q,p)dq dp, 

(2.13) 

(WS-1,,)(q,p) = f s:'p(x)tP(x)dx, 

where Sq,p (x) is the corresponding configuration space repre­
sentative of Sq,p' 
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Sq,p(x) = (U(O,q,p/m,1)s)(x) 

= exp((illi)p· (x - q))S(x - q). (2.14) 

The variables q and p in the stochastic phase space are inter­
preted as stochastic variables, i.e., measured with imperfect­
ly accurate instruments of confidence functions2-S 

Xq(q') = h 3Is(q' _ q)12, 

xp(p') = h 3It(p' - pW· 
(2.15) 

It turns oue that these instruments can be taken to employ 
test particles which are extended elementary particles of 
proper wave functions 5. The stochastic phase space is the set 
of "extended" stochastic points 

r= {(q,.o):q = (q,Xq),.o = (p,xp), q,peR3J • (2.16) 
On account of (2.15) we have the following relations: 

( .. ::bj )(.:1kj );>1iI2, j = 1,2,3, (2.17) 

for the spreads of these stochastic points: 

(.:1Xj) = (L3 (Xj - qj )2X q (X)dX) 112 , 

(.:1kj ) = (13 (kj - Pj)2Xp(k)dk y/2. 
(2.18) 

These relations show that we are not violating the uncertain­
ty principle. In the optimal case, i.e., when relation (2.17) is 
an equality, the only possible choices for the resolution gen­
erators depend on a positive parameter / and are given by 

5 (/)(x) = (1T/ 2h 2)-3/4 exp( - x2/2/2). (2.19) 

In fact, in the case where the resolution generator corre­
sponds to optimal localization in phase space, the wave func­
tion h 3/25 (I) coincides with the proper wave functions intro­
duced by Lande in 193911 for the description of extended 
particles. 

III. THE SCATTERING PROBLEM 

Let us assume that we are dealing with a system of two 
particles whose stochastic position and momentum is mea­
sured by means of test particles of proper wave functions 5 (I), 
i = 1,2. Then probability amplitudes for results of such mea­
surements provide a representation of the states of the sys­
tem and are elements of the Hilbert space 

L 2(F12) = {t/IEL 2(lRI2):tP(~I'~2) = (sgi ®s~;ltP) J , 

S~~ = U(O,CI;,p;/m i ,1)s(l), (3.1) 

~i = (CI;,Pi)' i = 1,2, 

where mi denotes the mass of particles i, i = 1,2, and where 
qiJPi represent, respectively, the mean stochastic position 
and momentum of particle i, i = 1,2. The Hilbert space 
L 2(r d is a closed subspace of L 2(r), r = R 12. 

The scattering problem for such a system has two 
aspects: In the first instance, the system consists of pointlike 
particles, in which case the potential energy operator acting 
on L 2(rd is given by 

HI = V(XI - X2), Xj = CI} + i1iVP1 ' j = 1,2, (3.2) 

and the kinetic energy operator is given by 
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Ho = Pf/2ml + Pi/2m2' Pj = - ifzVqj , j = 1,2. 

(3.3) 

In thatcasethereisa unitary transformation [cf. (3.7)] which 
takes us from present stochastic phase-space representation 
in L 2(R6

), where we recover the standard potential scattering 
theory for two pointlike particles. 

In the second instance the system consists of extended 
particles. However, if these extended particles consist in tum 
of constituents bound together by potential forces, then we 
are dealing with a multichannel scattering problem in dis­
guise. On the other hand, if we are dealing with extended 
elementary particles, then their extension might be of a fun­
damental nature, Le., due to their possessing proper wave 
functions. In that case we are faced with a type of scattering 
problem that has not yet been investigated in literature. It is 
with the mathematical theory of this problem that we shall 
concern ourselves in this paper. 

In the case of two extended elementary particles of 
proper wave functions s 1'1, i = 1,2, the kinetic energy opera­
tor is still given by (3.3), but the potential energy operator is 
given by 

HI = p(rdV(QI - Q2)p(rd, (3.4) 
where 

[V(QI - Q2)tP](~I'~2) = V(ql - q2)tP(~I'~2)' (3.5) 

and p(rd is the projection operator from L 2(r) onto 
L 2(rI2): 

(p(rdtP)(~I'~2) = f d~; d ~i <s~I!ls g/> <s~;ls~1>tP(~; ,~i) . 
(3.6) 

Naturally, the above problem can be formulated also in 
configuration representation. Indeed the unitary mapping 
from L 2(rd onto the configuration representation space 
L 2(R6

) is given by 

(liJ I2tP)(XI,X2) = l.Lm. f d ~I d ~2 s ~1)(xIls ~2)(X2)tP(~I'~2) , 
"1"2 (3.7) 

and it has an inverse of the form 

(liJil ItP)(~I'~2) = f dXI dX2 S ~t(XI)S ~t(X2)tP(XI,X2) . 
(3.8) 

Therefore, assuming that the potential energy operator HI is 
given by (3.4)-(3.6) where the potential V is locally square 
integrable and bounded at infinity then, by a direct applica­
tion oftlre inversion theorem, we see that the potential ener­
gy operator liJ 12HI liJi'2 I in the configuration representation is 
given by the operator V.1f 

Velf = VeIf(XI - X2), (X j tP)(XI,X2) = x j tP(XI,X2) , 
(3.9) 

V.If(x) = f dql dq2 V(ql - q2 + x)X (l)(ql)X (2)(q2) 

Therefore, in the configuration representation the potential 
energy operator acts like an ordinary potential (which we 
shall call the effective potential) which depends only on the 
relative position of the particles which act on extended parti­
cles and which approaches the original potential V (x), in the 
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sharp-point limit (corresponding to pointlike particles), Le., 
when X 1'1--5, i = 1,2, at all points where the potential V (x) is 
continuous. 

The Schrodinger operator 

H = Pi /2ml + PV2m2 + p(rd V(QI - Q2)p(rd 

(3.10) 

is self-adjoint if the potential V(q) is locally square integrable 
and bounded at infinity. Indeed, in that case the effective 
potential V.1f is locally square integrable and bounded at 
infinity. 12 It has also been shown in this last reference that 
the Schrodinger operator is then essentially self-adjoint on 
the domain 

Do = {r/JEL 2(r ):tP(~1'~2) = P (~1'~2) 

xexp( - ~ - qi - ~ - pi )} (3.11) 
2a 2a 2b 2b ' 

obtained as P varies over all polynomials in the Cartesian 
components of ~I and ~2' 

In the scattering theory of the system described above, 
two problems are of fundamental importance: the existence 
of strong asymptotic states and asymptotic completeness of 
the quantum mechanical theory. Sufficient conditions are 
known for the scattering of pointlike particles in order to 
have those two above problems automatically solved. The 
conditions are imposed on the potential and are the follow­
ingl: V is locally square integrable, it satisfies 

V(r)=O(lrl- 12 +E)), r~oo, €>O, (3.12) 

and is of Rollnik class, Le., 

I!VII~ :: r !V (r)V(r')I dr dr' < 00 • 

JR" Ir - r'1 2 (3.13) 

Therefore, the above problems reduce to finding sufficient 
conditions on the potential Vand the confidence functions 
X (1) and X (2) under which the effective potential satisfies the 
above restrictions. 

It might be possible a priori that a long-range potential 
gives rise to a short-range effective potential. However, a 
counterexample has been builtl2 for the Coulomb potential 
VIr) = Vlrl in the optimal case (2.19) where the effective 
potential is then 

(217')-1/2 [IXl/llt + 1~)I/2 ( _ y2) 
Velf(x) = exp -- dy, 

Ixl -v2I"l/llt+I~)I/2 2 

(3.14) 

where II and 12 are the parameters I in (2.19) for particle 
number 1 and particle number 2, respectively. We note that 
in the sharp-point limit 11,/2~' the potential (3.14) indeed 
approaches Vlxl, i.e., the original Coulomb potential. On 
the other hand, the effective potential (3.14) is not of short 
range since the function 

fIx) = [ exp( - y2) dy (3.15) 
-ax 2 

does not decrease at infinity as Ixl- E for some € > O. 
Sufficient conditions for asymptotic completeness are 

stated in the following theorem. 12 
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Theorem 3.1: Assume that the potential Vand the con­
fidence functions X (1\ i = 1,2, are locally square integrable, 
that V is uniformly continuous, that 

Ix (I)(r) I = 0(lrl-4
), (3.16) 

!V(r) I = 0 (Irl-4
) , (3.17) 

and that 

i da X (I)(q - a)x (I)(q' - a) 
lal<R 

(3.18) 

are almost everywhere uniformly bounded in q and q' for any 
R > 0, i = 1,2. Then the initial domains Mo of the Moller 
wave operators [J ± are L 2(rd, the final domains R ± of 
[J ± are both identical to E H (S~)L 2(r d, and the S operator 
is unitary on Mo; furthermore, if tP(r,R) = f/11(r)f/12(R), where 

r = r l - r2 , R = (mlrl + m2r2)/(ml + m2)' (3.19) 
then . 

(IJ ± f/1)(r,R) = (u.m. 13 t/J L±)(r)~I(k)dk )f/12(R), (3.20) 

where f/1 and ~ are the configuration and momentum repre­
sentatives of f/!EL 2(r d specified explicitly by (2.13) for the 
configuration representation, and where t/J L ±) are, respec­
tively, the outgoing and incoming distorted plane waves sa­
tisfying (1.4). 

We can readily check that the hypothesis of the above 
theorem on the confidence functions are satisfied in the opti­
mal case. 

We see that we cannot readily conclude that we have 
asymptotic completeness for any extended particles interact­
ing via short-range potentials. There might be, however, a 
way out of this impass. Indeed Faddeevl3 when investigating 
the three-body scattering of pointlike particles interacting by 
pair showed that under some restrictions on the potentials, 
the theory is asymptotically complete. This theory has a two­
body counterpart, and the conditions on the potential are the 
following: 

(1) !V(k)l<c(I+lkl)-I-8, 
(3.21) 

(2) !V(k)-V(k+h)l<c(I+lkl)-I- 8Ihl", Ihl<l. 

Using (3.9) it is straightforward to prove the following 
theorem. 

Theorem 3.2: Assume that the Fourier transform Vof 
the local potential V satisfies conditions (3.21), and that i (11, 
i = 1,2 are bounded and satisfy 

(3.22) 

Then the quantum mechanical theory with the interaction 
Hamiltonian HI in (3.4) is asymptotically complete. 

Let us note that the conditions imposed on the confi­
dence functions in the above theorem are satisfied in the 
optimal case. 

The three-body problem can be solved in the same man­
ner as in Theorem 3.2 if the particles are interacting by pairs 
if the conditions of Theorem 3.2 are satisfied with 
JLI = JL2 = JL3' That last restriction is in particular satisfied 
for the optimal case. 

The conditions imposed in Theorem 3.2 are also rather 
restrictive since the potential must be bounded. Therefore, 
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we will be looking for a more general method (in the optimal 
case) to solve the scattering problem for extended particles 
interacting via a potential. We shall see that the framework 
introduced in the next section is adequate for such a purpose, 
and that it has the advantage of expressing the states [J + f/1 in 
terms of the stochastic variables ql' PI' ~, P2' 

IV. EIGENFUNCTION EXPANSIONS IN STOCHASTIC 
PHASE-SPACE VARIABLES 

In this section, we start with the conjecture that in the 
optimal case the wave operators [J ±' specified by (1.1a), 
(3.3), (3.4), (3.5), and (3.6) satisfy an asymptotic completeness 
condition analogous to the one in conventional scattering 
theory [cf. (1.2)] for pointlike particles, but expressed in 
terms of stochastic variables. We shall then show that under 
those circumstances an equation analogous to the Lipp­
mann-Schwinger equation (1.4) is satisfied. We shall subse­
quently study the sharp-point limit of that theory and derive 
a T-matrix formula. The Lippman-Schwinger equation will 
be solved in the next section, so that we will be able to prove 
that the asymptotic completeness is indeed satisfied for the 
solutions of the aforementioned Lippmann-Schwinger 
equation. 

By (2.13) we have the following unitary mapping 
between the momentum representation and the stochastic 
phase-space representation for a system of two particles: 

¢1kl,k2) = l.i.m. f d ~I d ~2 t/J ~I.k, (~1'~2)tP(~1'~2)' (4.1) 

tP(~1'~2) = f d kl d k2 t/Jkl.k, (~I'~2)¢1kl,k2) , (4.2) 

,/,. ,..,.. t- (I)·(k )t- (2)· ) 
'f'k l .k,('i:lI''i:l2) =!:o \;1 l!:o~, (k2 • (4.3) 

Therefore, we can consider that we have an expansion analo­
gous to the eigenfunction expansion in conventional scatter­
ing theory, where the role of the plane waves (1.5) is taken 
over by the phase-space waves (4.3). 

In conventional scattering theory it is possible to sepa­
rate the center of mass motion from the relative motion, and 
therefore work in L 2(R3) instead of L 2(R6

). However, this 
procedure is not possible in stochastic phase space. Indeed, 
upon performing the change of variables 

q = ql - q2' Q = (mlql + m2q2)1(m l + m2)' (4.4a) 

P = (m2PI - m lP2)1(m l + m2) , P = PI + P2' (4.4b) 

we see that the resolution waves are given by 

t/Jk k (~1>~2) = h -3( 1T"If ) - 3/2 exp(~ k • q + ~ K • Q) 
I' , /1/2 Ii Ii 

( ( Ii n) 2 X exp - 21j2 + 21j2 (k - p) 

2/2 + 2/2 
_ m l I m2 2 (K _ p)2 

2(ml + mz)21j2 

-mI 2 +mI 2 
) + I I 2 2 (k _ p) • (K _ P) , (4.5) 

(ml + m2)1j2 

(4.6) 
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In order to derive an equation equivalent to the Lipp­
mann-Schwinger equation we have to introduce the distort­
ed phase-space waves tP ~:Jz satisfying (as will be proven lat­
er) 

(E H (B)n ± tP)(~I'~2) 

= L tP ~eJz (~I'~2)¢1kl,k2)d kl d k2 , 
A -I(B) 

where B is any Borel set in R, and where 

.Ii (k"k2) = kU2m, + kV2m2 . 

(4.7) 

(4.8) 
It will tum out that distorted phase-space waves of the form 

tP ~~~z (~1'~2) = exp(iK • Q)¢ ~1,l(q,PI,P2) (4.9) 

will meet our needs, the dependence in Q being explicitly 
given by the left factor in the right-hand side of(4.9) when we 
use the variables (4.4a) and (4.6). 

GO•K (q,PI,P2;q',P; ,p~;~) 

I U ~ m [ (n + n) 2 ,2 

= 411'4 ( P r + P ~ + P ~ ) 112 exp - 2 (p + P ) 

In order to prove that the functions tP ~:J satisfy an 
equation of the Lippmann-Schwinger type, we first have to 
introduce the counterpart of the free Green's function in 
terms of ~eC, 

GO•K (q,P"P2;q' ,P; ,p~;~ ) 

def f (k2 )-1 = - (217l d k 2m - ~ 

X ¢K.k (q,P"P2)¢ I.k (q',p; ,pi) , 

where m is the reduced mass 

m = mlmz/(ml + m2) . 

(4.10) 

(4.11) 

The above function is defined whenever 0 < arg ~ < 211'. 
The function (4.10) is computed explicitly in the Appen­

dix and the result is 

+ Iml- 2
m

2 (p.(K-P)+p'.(K-P'))- Iml 2 22 ((K_P)2+(K-P')2)-2m~a (f2 f2) (f2 2 + 12 m2
) ] 

ml + m2 2(m, + m2) 

X {exp(i~pr + p~ + p~ v'2m~ ) [e~ - ~Pi ~ia + P~ - iv'2m~a) - 1] 

+ exp( - i~pr +P~ +P~ v'2m~ ) [e~ - ~Pi ~~ +P~ + iv'2m~a) + I]}, (4.12) 

where 

(4. 13a) 

a = q - q' - i[ (n - I ~ )(p + p') 

_ I I 2 2 (2K _ P _ P') . (1
2
m +/

2
m) ] 

m 1 +m2 
(4. 13b) 

We are now ready to derive the Lippmann-Schwinger 
equation in the context of the following theorem. 

Theorem 4.1: Let V(q) be locally square integrable and 
such that V(q)=O(lql-3). Suppose that ¢k~k) exists for 
(k,K)eR6\S t (S t being a set of Lebesgue measure zero) as a 
function of q, PI' P2' and that 

(4.14) 

is uniformly bounded in q when kl and k2 are restricted to a 
compact set. Then the functions ¢ ~:J, (k,K)EtS t, satisfy the 
Lippmann-Schwinger equation 

A ( ) 

tP K:k (q,P"P2) 

= ¢K.k (q,PI'Pz) + J dq' dp; dpi 

X G (±)( . ' I I. kZ)V( 'I.l(±)(, , ') O.K q,PI,P2,q ,PI ,P2' 2m q I'f' K.k q ,PI ,P2 , 

(4.15) 
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where the advanced and retarded free Green's functions are 
given by 

G b~)(q,PI,P2;q' ,P; ,pi;A. ) 

= lim GO.K(q,P"P2;q',P; ,pi;A. + iE). (4.16) 
....... ±o 

Proof: (Ref. 12) The Lippmann-Schwinger equations in 
Hilbert space [Eq. (3.34) of Chap. V in Ref. 1] are 

tP± = tP + s-lim f"" 1. HI d;..Ef tP± . 
....... ± "" - co A. - Ho ± IE 

(4.17) 

Hence, by Theorem 5.5, 

(gl/+) - (gil) = E~~O {gl f: co Go(A. + iE)H/ dEf/+) , 

(4.18) 

where by (4.2) and (4.7) (see Theorem 5.8) 

(gl/+ -I) = f d~ld~2g*(~I'~2) f dk, dk2i(k,K) Jr JR· 
X [ tP ~:Jz (~1'~2) - tPkl.kz (~1'~2)] . (4.19) 

Let us assume that 

g(~,,~zleC~(R6)nL 2(rd, 

i(k,K)eCC:-CC~(R6) , 

(4.20) 

(4.21) 

where CC:- is the set of all functions of c~ with support dis­
joint from the exceptional set S t. We therefore have for any 
a,heR, a < b, by the Fourier-Plancherel inversion theorem 
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Xi d k d K exp( - iK • Q)¢x k' (q,Pl,P2) 
Aj_ I <k2/2m + X2/2M<Aj , 

(
, . k,2 K2 ) - I A • ", A I ±) , , , _ 

X A j + IE - 2m - 2M '" X,k' (q ,PI ,P2)'" K,k (q ,PI ,P2 )f(k,K) . (4.22) 

Since the above integral in k', q', pi , p~, k, K has an integrand 
bounded by the integrable function 

I 
A ( k,2 K2 ) - 1 

V(q'),pK,k,(q,Pt>P2) A; + iE - 2m - 2M 

X¢h(q',pi,p~)¢k;k)(q',pi,p~) ~k,K)1 ' (4.23) 

[cf. (4.14)], we can reverse the order of integration in such a 
way that we integrate with respect to k' first, then with re­
spect to q', pi, and p~, then with respect to k and K, and 
finally with respect to ~1'~2' Now the functions 

(4.24) 

X¢ :,k' (q',pi ,p~), R > 0, 

are bounded by a function A which does not depend on R, 
and is such that the integrand 

Ig·(~I'~2)exp( - iK· Q)i(k,K)V(q')¢ k;k)(q',pi ,p~)A 1 

(4.25) 

is integrable in ~I' ~2' k, K, q', pi, p~. Indeed, applying the 
following relation: 

I r d k(~ - t) -I exp( - ak2 + 13 • k) I 
J1kl<R 2m 

1 (11")312 ((ReP f) <-- - exp =A, 
IImtl a 4a 

to (4.24), we find that A satisfies 

f IA 12 dp' dP' < 00 

which is true since 4ad>c2 for 

a=(1i +n)+(1i -n)2/2(1i +n), 

d _ lim~ + l~m~ (nm l + l~m2)2 
- (m l + m2)2 + 2(1i + n)(ml + m2)2 

(4.26) 

(4.27) 

(4.28) 

(4.30) 

Therefore, (4.25) is satisfied in view of the Cauchy-Schwartz 
inequality, (4.20H4.21) and (4.14). Therefore we can carry 
the limit as R-oo in our expression for the left-hand side of 
(4.22). So that, carrying the sum under the integral sign, we 
obtain an integral in ~1' ~2' k, K, q', pi, p~, for which the 
integrand is majorized in virtue of inequality (4.26) by an 
integrable function of ~1' ~2' k, K, q', pi , p~. Therefore, we 
get by Lebesgue dominated convergence theorem the follow­
ing expression for the left-hand side of (4.22): 
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I 

L d ~I d ~2 g·(~I'~2) f d k d K exp( - iK • Q) • i(k,K) 

x f dq' dpi dp2 V(q')¢k;k)(q',pi,P2) 

XGO,K(q,Pl,P2;q',pi,p~;k2/2m + iE). (4.31) 

In order to be able to apply the Lebesgue dominated conver­
gence theorem to take the limit as E-o, let us note that by 
(4.12) and (4.20H4.21) the integrand in (4.31) is bounded by 
an integrable function independent of E. Indeed, (4.12) is 
bounded by 

1 
const -:----

Iq-q'l 
X exp( - ap,2 + e • P' + cp' • P' + f. P' - d P,2) , 

(4.32) 

when 13 is restricted to a compact set, where 

Ii +n lim1 -nm2 
a= , c= ------

2 m l +m2 

d= (limi +nm~) 
2(ml +m2)2 . 

(4.33) 

A straightforward computation shows that 
4ad - c2 = I ~ I ~ > 0, which is sufficient to guarantee the in­
tegrability of (9.74). Therefore, the integrand of (4.31) is 
bounded by an integrable function independent of E, when 13 
is restricted to a compact set. Now for 13 outside a sufficiently 
large compact set, the function 

Gr; = I exp( - 2mta + i~pi +p~ +P~ ~2mt) 

X [erf( - (~P~ + p~ + P~ )/2..j(i 

- i~2mta) - 1] I 
is smaller than 

(4.34) 

lexp( - (P~ +P~ +P~)/4a)1 . (4.35) 

Therefore, comparing (4.12) with (4.35) we see that, by 
(4. 13b), (4.28H4.30), (4.20H4.21), (4.14), the restrictions on 
the potential and Cauchy-Schwarz inequality, the integral 
of 

Ig·(~I'~2)lli(k,K)IIV(q')II¢k;k)(q',P;,P2l1 
X Gr;(q'Pl,P2;q',pi ,p~) (4.36) 

is convergent. The same arguments apply for 

lexp( - 2mta - i~P~ +P~ +P~ ~2mt) 

X [erf( - ('" P~ + P~ + (:J~ )/2..j(i + N2mta) -1] 1 . 

(4.37) 

By Cauchy-Schwarz inequality the integral of 
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Ig*(~I'~2)11 f(k,KlIl V(q'lIl¢ k;k)(q',pj ,P2)1 

x lexp( - i~/3i + /3i + /3; "2mt II (4.38) 

is also convergent. Therefore, the limit as E-- + 0 in (4.31) 
can be taken under the integral sign, so that combining (4.18) 
with (4.19) and the expression (4.31) for the left-hand side of 
(4.22), we obtain (4.15) since C~(R6) and C~ are dense 
sets. Q.E.D. 

Let us now investigate the sharp-point limit of the dis­
torted phase-space waves. We see from (4.5) that 

lim (/1/2)-3/2tPk k (~1'~2) = (4~)-3/2 exp(ik· q + iK· Q) . 
11,1,---+0 I' 2 

(4.39) 

Furthermore, from (4.12) we see that 

= - (m121T4Iq - q'lJexp(ilq - q'l"2mt ) . (4.40) 

Thus, we can state that upon renormalization with the factor 
(/1/2/1T)-3/2, the phase space wave tPkl,k2 merges in the sharp­
point limit into a configuration representation plane waves 
from which the center of mass has not been removed [see 
(1.5)]. Furthermore, the free Green's function GO,K goes, 
upon renormalization by the factor (/1/2/1r)-J, into the con­
ventional configuration representation free Green's function 

Go(r,r';p) = - m exp(ilr - r'I"2mt). (4.41) 
21Tlr - r'l 

The same is true for the advanced and retarded free Green's 
functions, with the same choice of renormalization factor. 
Let us show that eiK

• Q¢ k;k)(~I'~2) [where ¢ k;k) are the solu­
tionsof(4.15)] go in the limit 11,/2-D tOtPK(Q)tP 1.+ )(q) [where 
tP L +) are the solutions of (1.4)] upon renormalization by the 
factor (/Ii2/1T)-3I2. To prove this, let us first find the solu­
tions of the series 

n +/i 
a n + l = 

2 
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(a",a",/3",'V",l)",E,,) , 
satisfying the following conditions: 

1
3
1 / 2

3

m f [ 1 -- exp 7(2 Ii +/~)(p2+p'2) 
41T4 

(12 m - Pm) + I 1 2 2 (p. (K _ P) + p' • (K _ P')) 
m l +m2 

(f2m 2 + Pm2
) ] _ I I 2 2 ((K _ P)2 + (K pl)2) 

2(ml +m2f 

(4.42) 

X/,,(p',P')dp' dP' =/,,+ dp,P) , (4.43) 

so that the terms of the series occur in 

/,,(p,P) = a" exp( - a"p2 - /3"p2 

+ 'Vn • P + l)n • P + E"p' P), (4.44) 

and for n = 1 assume the following values: 

al = (21T)-3(~) - 3/2 exp [ (Ii + Ii) k2 

11/2 2 

(nmi + nmD K2 (- mIn + mzli) ] 
- 2 + k·K , 

2(ml + m2) m l + m2 

a
l 
= Ii + I~ /31 = (nmi + I~mi) , 

2 2(ml +m2)2 

'VI = (n + n)k + (mIn - mzli) K, 
m l +m2 

£. (mIn -m2/ D (nmi +/im~)2 
UI = k+ 2 K, 

ml + m2 (ml + m2) 

- mIn + m2/i 
EI = ----'---_":'" 

m 1 +m2 

We therefore obtain 

m l +m2 
We see that 

(11 )-3/2a __ _ (~)-3/2 1,,1,---+0 ( m )" 
12 n+l 41T ' 
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(4.47) 

(4.48) 

(4.49) 

(4.53) 

(4.54) 
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provided that 

(nm l - nm2)V~ + n) 1,,12--.{) 0 
~ , (4.SS) 

nn 
and that 

I( (nm~ + nm~) - 2[(nml - nm2)2/(n + n)])2 
i.,i2----r{) 

X(n + Im/(/~n) ~ 0, (4.S6) 

These conditions are satisfied if the radius of one particle 
does not decrease much faster than the radius of the other 
one. Thus, upon performing all integrations with respect to 
the momentum variables (except p and P) in the expression 
(5.8), where D ~ +) is given by (S.lO), and then letting the pa­
rameters II and 12 go to zero, we see that 

t/J ~tk)(~I'~2) - t/J",k (~1'~2) (4.S7) 
goes upon renormalization by the factor 

D~+)(r,r';A) = (- It f 
n! JR3n 

K(+)(r,r';A ) 

K(+)(rl,r';A ) 

K(+)(r,r';A) = VI/2(r)Gb + )(r,r';A )1 V(r')11/2 , (4.6S) 

VI/2(r) = {I V(r)II/2 sgn VIr) , if V(r)¥=O, (4.66) 
1] exp( - r2), 1] > 0, if VIr) = 0 . 

Hence, in order to obtain for tP k+k) the same renormalization 
factor as for tP",k we must have 'that d (+) converges to d (+) 
when the parameters II and 12 go to zero. Using Eq. (6.3S) of 
Chap. S in Ref. 1 we see that 

D k;n)(q'PI,P2;q' ,pi ,pi;A ) 

= d ~ + )(A. )6 b;t:)(q,PI,P2;q' ,pi ,pi;A ) 

+ f D k;L I (q,PI,P2;q" ,pi' ,P~;A ) 
JR" 

X 6 ( + )(q" P" P" 'q' p' p" 1 )dq" dp" dp" 0," 1'1>2, '1'2'" I> 2' (4.67) 

And therefore, performing the integration with respect to pi' 
and p~ and letting 11,/2~ we obtain 

1,,12--.{) D (+ )(q q,.l ) 
d(+)(A.) n' ". 

n ~ K(+)(q,q';A) 

f D (+) (q q")K- (+)(q" q')dq" -
n - 1_' , = d ( + )(A. ) • (4.68) 

K(+)(q,q';A) n 

Consequently, in the sharp-point limit, we indeed have the 
same renormalization factor for free and distorted phase­
space waves. 
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(l1/2hr)-3/2d (+)(k2/2m)/d (+)(k2/2m) 

to the function 

(4.S8) 

(4.S9) 

where t/J ~ +) is the solution (4.60) of the conventional Lipp­
mann-Schwinger equation (1.4)1 for pointlike particles in 
configuration space, and d (+) and d (+) are, respectively, giv­
en by (4.62H4.63) and (S.9), (S.ll): 

V-I/2(r) 
tP~+)(r) = t/Jk(r) + d(+)(k2/2m) 

X 13 D(+{r,r'; :~)vl/2(r')tPk(r')dr' , 

D(+)(r,r';A)= f D~+)(r,r';A), 
n=O 

co 

d (+ )(A. ) = L d ~ + )(A. ) , 
n=O 

K(+)(rl,rn;A ) 

K(+)(r2,rn;A ) 
drl dr2· .. drn , 

o 

K(+)(r,rn;A ) 

K(+)(rl,rn;A ) 

o 

dr l dr2 .. ·drn , 

(4.60) 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

Now, we intend to investigate the T-matrix, defined in 
terms of 

T=w-lim TE , 

e--+O 
(4.69) 

where the operator TE can be computed from 

(gITEf> = ~ f dk l dk2(glt/Jk1,k2
)' (tPkl,k2IP(rdVIJ + 

1T JR" 

X[(Ho-~-~)+~]-IEf). (4.70) 
2ml 2m2 

Theorem 4.2: Let us assume that the conditions of 
Theorem S.4 on the potential Vare satisfied. Then the transi­
tion operator T satisfies 

(gITf> = ?~[f dkgr(k) 

xf dk' !5E(~: - :~)(kITlk'>it(k')](g2If2>' 
(4.71) 

withfandg related to/; andg;. i = 1,2, by 

i(kl,k2) =il(kV;(K), (4.72) 

g(kl,k2) = gl(k)g2(K) , (4.73) 

with the T-matrix 
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(kITlk') = (21T)3(~K,k IVI~ tkn (4.74) 

that does not depend on K, and with 

<5E (x) = 1T- IE(x2 + ~)-I . (4.75) 

The proof follows from the formula 

!.i.m. I tq,p (k)(Sq.p Isq',p' )dq dp = tq"p' (k) , (4.76) 

which can be derived from (2.12). The independence of (4. 74) 
on K follows from the fact that d (+) does not depend on K [in 
view of (4.12), (5.9), and (5.11)], and from 

A A (, A A ( ) 

(~K,k I V I~ K;k' ) = (~O,k I V I~ 0;') (4.77) 

which follows from (4.12), (4.5), (5.8), and (5.10), (5.12). 
It can also be checked that 

A '" I,Jz--t>O 

(~K,k IV I~ ~~k:) -.. (~k IV I~~;') , (4.78) 

provided that II (or 12 ) do not decrease much faster than 12 (or 

II)' 
Let us now study the first Born approximation 

(kl T Ik')(I) obtained, as usual, by rep1acing~ (+ )by ~ in the T­
matrix formula [in our case, formula (4.74)]. We obtain 

(kl T Ik,)(J) = (~k I V elf I~k') , (4.79) 

where ~k is the configuration space plane wave, and where 
Velf is given in (3.9). Therefore, we have 

(kl T Ik')(1) = h -3/2(vd(k - k') 

= h 3/2V(k - k')i(l)(k - k')i(2)(k - k'). (4.80) 

In other words, we obtain the form factor h 3/2i(I)i (2) in the 
resulting first-order Born approximation for the T-matrix. 
Thus, we see that particle extension that manifests itself in 
terms of nontrivial proper wave functions indeed gives rise to 
form factors in the scattering theory for such particles. 

V. ASYMPTOTIC COMPLETENESS 
In this section we shall solve the Lippmann-Schwinger 

equation and prove the asymptotic completeness. The Fred­
holm method can be used for solving that equation, but it 
cannot be applied directly to Eq. (4.15) since ~K,k (q • PI,P2) is 
not square integrable in q,PI>P2' Hence, let us perform a Roll­
nik decomposition 

D(+)(u a';A.) = (- It 
K,n , n! 

o 
(; b~)(a2,al;A. ) 

(;b~)(an,al;A. ) 

(;(+)(a a'·2) O.K , y" 

(;b~'(al,a';A. ) 

(; b~)(al>~;A. ) 

o 

(;(+)(a lY_. 2 ) O,K "'-.ly" 

(; b~)(a,al;A. ) 

o 

The proof of the above theorem 12 consists in showing 
that the function ~K'k eL 2(R.9) and that the kernel (; b~) is 
Hilbert-Schmidt. The fact that SV,K = {k2/2m:keS~K} is 
compact and of Lebesgue measure zero is established in 
Theorem 6.7 of Chap. 5 in Ref. 1. Therefore S t is of measure 
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- 1/2 A 

~K.k (q,Pl>P2) = V (q~K,k (q,PI,P2) , 

~ k;k'(q,PJ,P2) = V 1/2(q)~ k;k'(q,PI,P2) , 

(;b~)(q'PJ>P2;q',P; ,pi;A.) 

= V If2(q)Gb~)(q,Pl,P2;q',P; ,pi;A. )1 V(q'l!1I2 , 

V 1/2(q) = lV(q) I 1/2 sgn V(q) , 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

and we shall assume that V(q)#O a.e. The Lippmann­
Schwinger equation then takes the form 

~ k;k)(q,PI,P2) = ~K,k(q,PJ,P2) + I dq' dpi dpi 

X(;(+'( .' I ,.k
2

) O,K q,Pl,P2,q ,PI ,P2, 2m 

X 1.(+'(' I ') 'f' K,k q ,PI ,pz . (5.5) 

Theorem 5.1: (Ref. 12) Suppose that the potential V(q) 
satisfying 

V(q) = 0 (Iql- 3 - E) , Iql-..(Xl, (5.6) 

is different from zero almost everywhere and is of Rollnick 
class, i.e., 

I I V(q)V(q')1 dq dq' < (Xl . (5.7) 
Iq-q'1 2 

Then for kEfS t,K' where S ~K is a compact set of Lebesgue 
measure zero for each value of K, the Lippman-Schwinger 
equation (4.15) has the unique solution 

V-I/~ ) 
~L~~2(~I'~2) = ~kl,k2(~I'~2) + d(+)(k 2/~m) exp(iK:' Q) 

X I Dk+ {q,PI,P2;q',Pi ,pi; :~)VI/2(q') 
X exp( - iK • Q'~kl,k2 (~; ,~i )dq' dp; dpi , 

(5.8) 

in which 
'" d(+I(A)= L d~+'(A), (5.9) 

n=O 

Dk+ '(q,PI,P2;q',P; ,pi;A.) = i Dk;n'(q'PI,P2;q',P; ,pi;A.) , 

I 

(; b~'(al,an;A. ) 

(; b~'(a2,an;A. ) 

o 
(;(+'(aa .1) 0,1( 'n yi< 

(;b~'(al,an;A. ) 

o 

11=0 

da l daz··-da" , 

dald~ ... da" , 

zero since d (+ )(A ) do not depend on K. 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

We now intend to prove that the functions (5.8) are the 
distorted phase-space waves satisfying (4.7). The proofhas to 
be carried in several stages. Let us note first that the operator 
Go(b) can be considered as an integral operator with kernel 
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GO(~I'~2;kl,k2;~) = ~k"k, (~1'~2)~ - ki/2m I - kV2m2 ) -I . 

(5.14) 

There might be a similar relation for the kernel of the full 
Green's function. 

Theorem 5.2: (Ref. 12) Let us assume that the Green's 
operator G (~ ) is an integral operator with kernel 
G (~I'~2;kl,k2;~ ). Then we have the following relation for this 
kernel (called the full Green's function in stochastic phase 
space): 

G (~I'~2;kl,k2;~) = l.i.m. I d ~i d ~i ~k"k, (~i ,~i) 

xI dki dki G*(~i,~i;ki,ki;~*) 

X~ki,ki(~I'~2)' (5.15) 

The proof relies on the fact that G *(~ ) = G ~ *). 
In view of(5.14), let us set 

G (~I'~2;kl,k2;~) 

=~k"k,(~I'~2;~)(~-ki/2ml-kV2m2)-I, (5.16) 

for ~fS H. Then the next step in the proof of asymptotic com­
pleteness consists in proving the following theorem. 

Theorem 5.3: Let us suppose that the potential 
V(q) = 0 (iql- 3 - j is of Rollnick class, locally square inte­
grable and different from zero almost everywhere. Then 

~ ± (kl,k2) = l.i.m. I ~ ~~~:(~1'~2)tP(~1'~2)d ~I d ~2 (5.17) 

exists for any (k,K)fSt, 

st = {(k,K)eR6:keSh J , (5.18) 

if ~ ~~~, (~1'~2) are the solutions (5.8) of (4.15) and (4.9). Fur­
thermore if Be (0, 00 ) is a compact set and BrS ~ = ~, where 
S~ =A -1St, with A given by (4.8), then 

IIEH(B )tl1I2 = f. I~ ± (kl,k2W dkl dk2 • 
k~/2m, + ki/2m, 

(5.19) 
Proof: (Ref. 12) Using (5.16) and the second resolvent 

equation we see that the Green's function is of the form 
"'-

G (~I'~2;kl,k2;~) = GK,k (q,PI,P2;~ )exp(jK· Q) (5.20) 
"'-

for some GK,k ( • ;~) which does not depend on Q. Therefore, 
writing 

~k"k, (~1'~2;~) = ~K,k (q,PI,P2;~ )exp(iK • Q) , (5.21) 

for some ~K,k ( • ;~) not depending on Q we obtain 

~K'k (q,PI,P2;~) = ~K,k (q,PI,P2) + I dq' dpi dpi 

(5.22) 

Performing a Rollnik decomposition, we obtain an equation 
which is solvable by the Fredholm method. Therefore, defin­
ing 

~k .. k2;~) = I ~ :'"k, (~1'~2;~ *)tP(~1'~2)d ~I d ~2 , (5.23) 
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we obtain, by (5.16), Theorem 5.2 and the Fubini and Tonelli 
theorems 

(G(~)tI)-(kl,k2) = ~ - ki/2m l - kV2m2)-I~kl,k2;~)' 
(5.24) 

We get from the first resolvent equation and Theorem 5.12 of 
Chap. 5 in Ref. 1 

(tli(E: - E:)tI) 

1 i b 

=- lim dJ.. 
11' E-++O a 

XI EItP(kl,k2;A. ± JEW dk dk 
2 2 2...2 I 2' 

(J.. - kl 12m I - k2 /2m2 ) + ~- (5.25) 

since E If = E If _ 0 for J..fS~, because S:: is disjoint from 
[0,00 !,-S ~. Indeed [0,00) \S ~ CS ~ C [0, 00 ). Furthermore, 
from the explicit expression for the solution of (5.22), we see 
that 

lim ~kl,k2;ki/2ml + kV2m2 ± iE) = ~Of (kl,k2) • 
E-++O 

(5.26) 
Q.E.D. 

We obtain the following theorem, which is a conse­
quence of the above one. 

Theorem 5.4: Suppose that the conditions of Theorem 
5.3 are satisfied. Then the continuous spectrum of H satisfies 

[O,oo!,-S~CS~C [0,00), (5.27) 

and for any Borel set B CS~, 

(E H (B )tI)(~I'~2) = l.i.m. f. ~ ~ ±~ (~1'~2) 
k~/2ml + k~/2m2eB I- 2 

(5.28) 

(fIEH(B)g) 

= f. J~ (kl,k2lk+(kl,k2)dkl dk2 , 

k~/2m, + k~/2m,eB (5.29) 

where ~+ is given by (5.17). 
The existence of strong asymptotic states has been prov­

en in Ref. 12. 
Theorem 5.5: Let us assume that the potential V(q) is 

locally square integrable, and that for some E> 0, 

V(q) = O(lql-l-j, Iql~oo, (5.30) 

then 

Mo=M+ = {feL2(F12)=,~~~ fl(t)fexists} 

(5.31) 

The proofl2 consists in showing that there exists a domain 
fj; I dense in L 2(r) satisfying 

"'-
exp( - itHo)~ I C ~ Ho ' (5.32) 

I: 00 II Vexp( - itHo)p(rdtllidt < 00 , (5.33) 

"'-
for all tPe~ I' The following set 
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~I = {1/Ip:l.i.m.(21T)-6 I d~1 d~2 
xexp( - i~1 .~; - i~2 - ~2)1/Ip(~J>~2) 

_ [ q,2 gi2 p,2 p,2 ) 
= 1/Ip(~; '~2) = exp __ 1 ______ 1 ___ 2_ 

2m l 2m2 a b 

X exp( - i(~; '~2) • p), peR 12} (5.34) 

satisfies these requirements. 
Before proving the asymptotic completeness, we have 

to check that the following expression 

(W+1/I)(~I'~2) = l.i.m. I ¢~~~2(~I'~2)~kl,k2)dkl dk2 

(5.35) 

determines a well-defined operator W +. 
Theorem 5.6: Suppose that ¢ ~~~2 (~1'~2) are the solu­

tions (5.8) of the Lippmann-Schwinger equation (4.15), 
where the conditions of Theorem 5.3 are satisfied. Then 
there exists a unique operator W +, defined by (5.35), and 
satisfying 

(5.36) 

W'!.-EH(B)=EHO(B)W'!.- (5.37) 
Proof: (Ref. 12) Let us consider the bilinear form 

(1/I1,p') = I ¢.*(kl,k2)¢.'+ (kl,k2)dkl dk2 · (5.38) 

By Theorem (5.4), this bilinear form is bounded. 12 Conse­
quently there exists a unique bounded linear operator W + 

for which 

(W +1/111/1') = (1/111/1') , (5.39) 

for every 1/1,1/1' eL 2(rd· Assuming that ¢teC v and 1/I'eC'b we 
can drop the l.i.m. in (5.35), and (5.38) is equal to 

(1/111/1') = I dkl dk2 ¢.*(kJ>k2) 

X I d ~I d ~2 ¢ ~~~:(~J>~2)1/I'(~I'~2) . (5.40) 

On account of the conditions of Theorem 5.3 we can apply 
Fubini's theorem to (5.40)12 to obtain (5.35). We can easily 
show that 

(W'!.- 1/I)(~1'~2) = l.i.m. I ¢kl.k2(~I'~2)¢.+(kl,k2)dkl dk2, 

(5.41) 

for any ¢. + given by (5.17). Equation (5.36) is a consequence 
of (5.28), (5.35), and (5.41); whereas Eq. (5.37) is a conse­
quence of(5.28), (5.29), (5.17), and (5.41). Q.E.D. 

We are now left with the task of proving that 
W + = n +, and thus establish asymptotic completeness for 
n+. 

Theorem 5.7: Let us assume that a potential satisfies the 
conditions of Theorem 5.3. Then W + = n+. 

Proof: Since t/IE~ HI ift/IE~ Ho' we have by Eq. (2.37) of 
Chap. 5 in Ref. 1 

(n (1")1/IIg) = (1/IIg) - i [ (exp(itH)HI 

X exp( - itHo)1/IIg)dt , (5.42) 

for any geL 2(rd. Setting g = W +lP, q:JeL 2(rd and using 

W'!.- exp(itH) = exp(itHo)W'!.-, (5.43) 

which is a consequence of (5.37), 1 we obtain 

(lPl W'!.- n (1")1/1) = (lP I W'!.- ,p) + i [ dt 

X (lP lexp(itHo) W'!.- HI exp( - itHo)1/I) . 

(5.44) 
Now using Exercise (7.1) in Chap. 5 of Ref. 1 we obtain 

(lPIW'!.- n+1/I) = (lP IW'!.-,p) +ilim r"" e-£t(lP I 
£->0 Jo 

X exp(iHot ) W'!.- HI exp( - itHo),p)dt . 

(5.45) 

Using (5.41), (4.1), (4.2), and (5.17), we obtain l2 for 
~(kJ>k2)eC b 

(lPl W'!.- n+1/I) 

= (lP I W'!.- 1/1) = i ~ L"" dte-£J dkl dk2 ~ *(kJ>k2) 

X I d ~I d ~2 ¢ ~~~:(~J>~2) 
X (HI exp[ - i(Ho - kU2ml - ki/2m2)t ]1/I)(~I'~2)' 

(5.46) 

ForlPEC 'b, supp ~CB, B compact, Br>S~ = ¢, 1/ICC 'b, we 
can interchange the order of integration in (5.46)12 to obtain 

(lPl W'!.- n+1/I) 

= (lP I W'!.- 1/1) + i ~ I dkl dk2 ~ *(kl,k2) 

xI d~1 d~2 ¢~~~:(~I'~2)i"" dt(HI 

xexp [ - i(Ho - ~ - ki - iE)t ]1/I)(~1'~2)' 
2ml 2m2 

(5.47) 

Consequently, using Theorem 3.1 in Chap. 4 of Ref. 1, we 
obtain 12 

(lPIW'!.- n+,p) = (lP IW'!.- 1/1) - ~ I dkl dk2d~; d~2 ~*(kl,k2)1/I(~;'~2) 

Xl.i.m. J depl dep2 ¢ ~~~:(~I'~2)V(q) f dk; dki ¢k;.k2(~J>~2) 

( 
k2 k2 k,2 k,2 ) - 1 

X -2
1 

+-2
2 

+iE--
2

1 
--2

2 ¢:;.k2(~;,~2) 
m l m2 m l m 2 
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since ~ k;k) satisfy the Lippmann-Schwinger equation. Con­
sequently, since C band C v are dense in L 2(Fd, 

W'!.-fJ+ =1. 

Therefore, 

W+ = W+W'!.-!1+ =EH(S~)!1+ =!1+. 

(5.49) 

(5.50) 
Q.E.D. 

We can summarize the results of the last two sections in 
the following theorem. 

Theorem 5.8: Suppose that the potential V (q) is different 
from zero almost everywhere, that it is locally square inte­
grable, of Rollnick class, and that it satisfies (5.6) for some 
E> O. Then the initial domain Mo of the Moller wave opera­
tors!1 ± is L 2(rd, the final domains R ± are both identical 
toEH(S~)L 2(Fd, and theSoperatoris unitary on Mo. Fur­
thermore, (4.7) is satisfied for the distorted phase-space 
waves rP ~~~2 [given explicitly by (5.8) for the outgoing case]. 

VI. CONCLUSION 

The standard nonrelativistic quantum scattering theory 
for potential interactions between point particles can be 
transferred, with no fundamental changes, to potential inter­
action between extended particles. However, for the former 
the configuration representation is quite satisfactory, in case 
of the latter stochastic phase space emerges as an essential 
tool for deriving many of the fundamental results. 
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APPENDIX 

In this appendix, we intend to evaluate (4.10) explicitly 
and show that it is given by (4.12). We have the following 
[since the proper wave functions are the optimal ones given 
by (2.19)]: 
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(AI) 

(A2) 

I 

13 = q - q' -;(tn - n)(p + p') 

_ (Iim J + nm2) (2K _ P _ P')] . 
m J +m2 

(5.48) 

(A3) 

We shall first evaluate the following integral: 

J dk (:~ - ~ ) -1 exp( - ak2 + il3' k) 

= - -. - dr exp( - ar - 11131r) 411'm fOC> r -2 • 

II P I - OC> r'l - 2m~ (A4) 

for vectors 13 with real-valued components. Let us set 

f
OC> 1 

I( P ) = r'l exp( - ar'l - pr)dr . 
- 00 - 2m~ 

(AS) 

Then we obtain 

I"(P) - 2m~/(p) = (:Y12 exp(~). (A6) 

The homogeneous differential equation associated with 
(9.16) has the solutions 

I(P) = exp( ± ~2m~ P). (A7) 
Consequently, solving (A6) by variation of parameters, we 
set 

I(P) = uJ(P)exp(~2m~ P) + u2(p)exp( - ~2m~ P) ,(A8) 

0= u; (P )exp(~2m~ P) + u~ (P )exp( - ~2m~ P). (A9) 

Therefore, combining (A8), (A9), and (A6) we obtain 

~2m~ (u; (P )exp(~2m~ P) - u~ (P )exp( - ~2m~ P)) 

= ~11'/a exp(p2/4a). (A 10) 

Solving the system consisting of (A9) and (A1O), we get 

u;(P)=- -- exp --~2m~ P , 1 ~ (P 2 

) 
2 2m~a 4a 

(All) 

u~(P)= -..!.~ 11' exp(!!..:...+~2m~ p), 
2 2m~a 4a 

(A12) 

And hence inserting the solutions of (All) and (A12) into 
(A8) we obtain 

I(P) = 11' exp(~2m~ P - 2m~a) 
2i~2m~ 

xerrf_i_p - i~2m~a) 
"bra 

11' exp( - ~2m~ P - 2m~a) 
2i~2m~ 

xerrf_i_p + N2m~a) 
"bra 

+ kJ exp(~2m~ P) + k2 exp( - ~2m~ P). 
(A13) 
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(AI4) 

Now,sincef'(O) = 0, wemusthavethatkJ = k2• To evaluate 
k J, it is sufficient to evaluate 

S
ao 1 

1(0) = r exp( - ar)dr . 
-ao -2m~ 

(A1S) 

When regarded as a function g of a, the above satisfies the 
differential equation, 

g'(a) + 2m~g(a) = - ~1T/a 

having for solution 

(A16) 

g(a) = exp( - 2m~a)[(i1T/~2m~ )erf(i~2m~a) + 8] . 
(AI7) 

To evaluate the constant 8 we have to evaluate (A1S) for 
a = 0 which lead by the residuum theorem to 

8 = 1Ti/~2m~ . (AI8) 

Therefore, combining (A13) with (AI7) we obtain 

kJ = (i1T/2~2m~ )exp( - 2m~a) . (A19) 
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Therefore, since the right-hand side of (A4) is given, for a 
with real valued components, by 

(41Tm/ila Ilf'(ilall , (A20) 

then we obtain by analytic continuation the expression 
(4.12). 
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Suppose H is the Hamiltonian that generates time evolution in an N-body, spin-dependent, 
nonrelativistic quantum system. If r is the total number of independent spin components and the 
particles move in three dimensions, then the Hamiltonian H is an r X r matrix operator given by 
the sum of the negative Laplacian - A x on the (d = 3N I-dimensional Euclidean space Rd plus a 
Hermitian local matrix potential W(x). Uniform higher-order asymptotic expansions are derived 
for the time-evolution kernel, the heat kernel, and the resolvent kernel. These expansions are, 
respectively, for short times, high temperatures, and high energies. Explicit formulas for the 
matrix-valued coefficient functions entering the asymptotic expansions are determined. All the 
asymptotic expansions are accompanied by bounds for their respective error terms. These results 
are obtained for the class of potentials defined as the Fourier image of bounded complex-valued 
matrix measures. This class is suitable for the N-body problem since interactions of this type do 
not necessarily decrease as Ix 1- IX) • Furthermore, this Fourier image class also contains periodic, 
almost periodic, and continuous random potentials. The method employed is based upon a 
constructive series representation of the kernels that define the analytic semigroup 
{ e - zH IRe z > 0). The asymptotic expansions obtained are valid for all finite coordinate space 
dimensions d and all finite vector space dimensions r, and are uniform in ad X Rd. The order of 
expansion is solely a function ofthe smoothness properties of the local potential W(x). 

I. INTRODUCTION AND SUMMARY 

Take H to be the self-adjoint semibounded operator 
that generates time evolution for the N-body problem in non­
relativistic quantum mechanics and let the complex variable 
z take values in the open right half-plane D, then the family 
of bounded operators 

{e-ZHlzeD I (1.1) 

constitutes the analytic semigroup induced by H. The re­
striction of z to the positive real axis leads to the one-param­
eter semigroup associated with the heat transport equation 
and the partition function of the canonical ensemble. In the 
heat transport problem the positive value of z is the time 
variable, whereas in the partition function z is proportional 
to the inverse temperature of the system. On the other hand, 
if z belongs to the boundary aD and takes on purely imagi­
nary values then the family of operators (1.1) forms the one­
parameter unitary group which describes time evolution of 
the system. 

A second, equally basic, family of bounded operators 
are the resolvent operators 

(1.2) 

that appear in the time-dependent formulation of quantum 
mechanics. This paper studies the uniform asymptotic ex­
pansions of the coordinate-space kernels of both operator 
families (1.1) and (1.2). For the analytic semigroup 
(e - zH Iz ED) the asymptotic expansion variable is Izl-+O. 
Physically these expansions are applicable for short times or 
high temperatures. Asymptotic expansions for the resolvent 
kernels then result from a Laplace transform of the analytic 
semigroup kernels. The resolvent kernel expansions are val-

"On leave from the University of Manitoba, Winnipeg R3T 2N2, Canada. 

id for IA I-IX), or convergent for high energies. 
Recently the first of these two problems, (1.1), has been 

discussed at length for the case of scalar fields by Osborn and 
Fujiwara in Ref. 1 (hereafter OF). Let x be the generic point 
in Euclidean space ad that specifies the location of all N 
particles in the system. If each individual particle moves in 
three dimensions then the Euclidean space dimension is 
d = 3N. The scalar problem for local potentials is realized if 
the Hamiltonian H is taken to be the self-adjoint extension in 
L 2(Rd

) of the quadratic elliptic differential form 

H(x) = - qAx + v(x). (1.3) 
Here Ax denotes the Laplacian in Rd and v: Rd -R is the 
perturbing local potential. In terms of the rationalized value 
of Planck's constant Ii, and the particle mass m, the quantum 
scale factor is 

q=*/2m. (1.4) 

The notationally simplifying device of setting q = 1 is avoid­
ed because it is illuminating to exhibit explicitly the q depen­
dence of the heat-kernel and resolvent-kernel expansions 
and thereby see the semiclassical content of these expan­
sions. 

However, the general N-body problem is not described 
by scalar fields unless all the particles are bosons with spin 
zero. If the ith particle has spin s;, the resulting N-body wave 
function is a vector-valued complex function of dimension 

N 

r= L (Zs; + 1) 
;=1 

and an element of the spaceL 2(JRd ,(no In this circumstance 
the local perturbation becomes for each x an Hermitian ma­
trix W(x): C' -C', and the scalar Laplacian - Ax general­
izes to - Ax], where] is the identity on C'. The matrix­
valued analog of(1.3) assumes the form 
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H(x) = - ql1J + W(x). (1.5) 

The appearance of (1.5) seems to assume that all N particles 
have common mass m. This restriction is apparent rather 
than real since a scale transformation of the particle coordi­
nates always allows one to write the most general diagonal 
kinetic energy operator in the form - ql1 x • The Hamilton­
ian operator H which defines the physical quantum system is 
the self-adjoint extension of H(x) in L 2(Rd ,er). 

Denote the kernel of the semigroup element e - zH by 
U(xJ';Z): Rd XRd X~f::x'. Similarly ifp(H) is the resol­
vent set of H, we define the kernel of the resolvent operator 
(H -A )-lbyR (xJ';A ) for alIA ep(H). The basic objective of 
this paper is to derive the precise forms assumed by the natu­
ral asymptotic expansions of U (x,y;Z) and R (xJ';A ). Specifi­
cally, we obtain the existence of the kernels, the analytic 
form (in z) of the asymptotic expansions, explicit closed ex­
pressions in terms of W (x) of all the coefficient matrices that 
enter the asymptotic expansions, and Rd X Rd uniform 
bounds for the remainder terms. In fact we show that the 
derivation of these uniform asymptotic expansions requires 
only continuity and differentiability properties in x of the 
potential W(x). In particular, there is no necessity to assume 
that W (x) decays as Ix I~ 00 • The restriction we do impose on 
the allowed form of W is that the potential be the Fourier 
image of a complex bounded rX r matrix measure, p., on Rd . 

The analytic semigroup (1.1) is characterized uniquely 
by its associated family of kernels { U (xJ';Z) Iz E D J .Our ap­
proach to determining the existence and the properties of 
U (xJ';Z) is constructive. Let Ho denote the free kinetic energy 
operator (the self-adjoint extension of - ql1 x I). We establish 
that the kernel analog of the Dyson series2.3 for e - zH in 
terms of time-ordered parametric integrals of e - zHo and W 
leads to an absolutely and uniformly (in Rd X Rd) conver­
gent series representation of U (xJ';Z). As an immediate by­
product of this result, it follows that if W(x) has uniformly 
bounded derivatives of order 2, then U (xJ';it Iii), where t e R 
and represents time displacement, constitutes the funda­
mental solution of the Schrodinger equation 

Hi!.... U(xJ';it Iii) =H(x) U(xJ';it IIf) VXJ'e Rd (1.6) at 
obeying the delta-function initial condition 

U (xJ';it lli)-c5(x - y)/ as t-O. (1.7) 

Parallel conclusions apply to the heat-conduction problem. 
The heat-conduction or diffusion problem results if one for­
mally replaces the imaginary time variable withP> O. Again 
U (xJ'; P) is the fundamental solution ofthe heat problem. In 
particle physics terminology, U (xJ';it Iii) is the propagator of 
the N-body system. 

The center of interest in this investigation is the small z 
uniform asymptotic expansion that U (xJ';Z) admits. It is well 
known that these kernels are highly singular in the limit 
z-o. This is evident from the formula for the free heat kernel 
defined by Ho: 

Uo(xJ';Z) = [ 1 exp ( - Ix - YI2)] 1. (1.8) 
(41rzq)d 12 4zq 

Here Ix - yl represents the Euclidean distance in Rd 
between x and y. This convolution kernel has an essential 
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singularity atz = O. Thus, asymptotic expansions of U (xJ';Z) 
for small z require that this essential singularity structure be 
explicitly factored out in order to expose a smooth function 
of z. For this reason it is useful to define a function 
F(xJ';Z):Rd xad xD_~erxr by 

U(xJ';Z) = Uo(x,y;z)F(xJ';Z). (1.9) 

Both Uo and Fare r X r matrices. In (1.9) we adopt the hereaf­
ter standard convention that UoF implies the matrix pro­
duct. Now if the Dyson series for U(xJ';Z) is written in the 
appropriate form, one finds an explicit series expansion for 
F. The f-series is uniformly convergent on all compact sub­
sets of D (the closure of D). As a consequence it follows that 
F(xJ';Z)isanalyticinD,continuousinD,andF(xJ';O) = I for 
allx,YE Rd. 

A further restructuring of the F-series leads to the 
asymptotic expansion 

M ( zt 
F(x,y;Z) = L ---Pn(xJ') + EM (xJ';Z). (1.10) 

n=O n! 
Here, M is an integer proportional to the number of contin­
uous bounded partial derivatives that W(x) supports. The 
error term is of order 0 (lzI M + 1 ) and has a uniform bound in 
Rd XRd. In addition, identity (1.10) can be differentiated 
with respect to x, y, or z as often as desired and the resulting 
equation is also an asymptotic expansion provided W(x) is 
sufficiently smooth. This flexible nature of (1.10) permits one 
to use it as the basis for calculating the small time behavior of 
correlation functions for an arbitrary pair of observables. 
The expansion (1.10) has been analyzed extensively in the 
literature4-8 for a wide variety of operators H. Generally it is 
known that the coefficients Pn [Po(xJ') = I] are functions of 
W(x) and its partial derivatives up to order 2(n - 1). A novel 
feature of the constructive approach is that one can deter­
mine for every n explicit expressions of the coefficient matri­
ces Pn (xJ'). These expressions are not only applicable when 
x = y, but valid for all x,y e Rd. Another useful aspect of the 
constructive approach is that one can prove that expansion 
(1.10) is uniform in arg z. Thus the short time expansions are 
on exactly the same analytical footing as the high tempera­
ture expansions. In passing we note that the XJ' uniform 
character of expansion (1.10) is a necessary ingredient for the 
correct description of N-body systems that incorporate the 
wave function symmetrization required by either fermion or 
boson statistics. 

The study of the resolvent kernel proceeds by using the 
Laplace transform of U (xJ';Z) to determineR (xJ';Z), namely, 

R (xJ';Z) = l"" ePzU(xJ';P)dP, x=;!:y, Rez<c, 

(Ll1) 

where c is any negative lower bound for the spectrum of H. 
The condition Re z < c < 0 ensures that the integral in (1.11) 
is absolutely convergent. The resolvent kernel is holomor­
phic in a much larger domain of z, namely z E p(H). Identity 
(1.11) may be analytically continued to a subset of this larger 
domain in C by changing the variable of integration so that 
the integration contour along the positive real axis is rotated 
until it becomes a complex ray with origin at f3 = 0 and hav­
ing constant arg P e (17'12, - 17'12). We find, upon using the 
analytically extended form of (1.11), that the Laplace image 
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ofthe heat-kernel asymptotic expansion (1.10) becomes 

M (It (a)n R (x,y;Z) = L ----Pn (x,y) - Ro(x,y;Z) 
n=O n! az 

(1.12) 

Here, Ro(x,y;Z) denotes the kernel defined by (Ho - Z)-l. 
This free resolvent is an analytic function of z in the open cut 
plane C\R+ and for Ho = - qiJxI it is given by a Bessel 
function multiplied by I. 

Although it is not so apparent from the form of (1.12), 
the small parameter in the expansion is Z-I. Furthermore if 
M + 2> d/2 then the error term in (1.12) has a uniform 
bound in Rd XRd and is of the order (lzl-I)M+2-dI2. The 
boundedness of the error T M as x_y implies that the singu­
larities of R (x,y;Z), Ro(x,y;Z), and the derivatives of Ro(x,y;Z) 
in the neighborhood of the diagonal x = y are identical on 
both sides of(1.12). The uniformity inz of(1.12) can be char­
acterized as follows. For any 8 E (0,17'/2) let Vc5 denote the 
subset of C given by 

{ZIZE C, arg(z + lIP II (sin 8 )-1) E (28,217' - 28)j. 

Clearly Vc5 is the complement of a wedge symmetric about 
the positive real axis with its apex at z = - IIJlII (sin 8 ) - I. 
The expansion (1.12) is uniform for all z E Vc5 ' Although the 
opening angle of the wedge, 48, is arbitrary and can be made 
as small as desired, there will always be a strip about the 
positive real axis disjoint from Vc5 . Thus the values of R (x,y;Z) 
as z converges to points on the spectrum, u(H), are not esti­
mated by (1.12). This is to be expected since stating only the 
smoothness properties of W(x) is insufficient information to 
determine the detailed nature of the spectrum. In examples 
where formula (1.12) has been continued to the spectral 
boundary (such as Buslaev's treatment9 of R3

), extensive in­
formation about the Ixl-oo decay of W(x) is required in 
order to extend the z domain of (1.12) to the boundary of the 
open domain C\u(H). 

A balanced overview of the results outlined above 
emerges if we consider their connection to the spectral 
asymptotics of H. Local geometrical spectral asymptotics is 
the study of the relationships that link three basic structures 
generated by the differential operator H (x) • These structures 
are (a) the local coefficient functions that define H (x) and the 
boundary conditions which are obeyed; (b) the Weyl expan­
sion 10,11 predicting the density of eigenvalues A 1 satisfying 

HIJIA, =A/IJIA/, IIIJIAili = 1, (1.13) 

asA/-OO, or the appropriate generalization ofthe Weyl ex­
pansion when the spectrum has a continuous component; 
and (c) the asymptotic expansions of the integral kernels for 
the basic operator functions of H such as the semigroup or 
resolvent operators. 

In general, the coefficient functions that enter H (x) 

come from the functions that define the Laplace-Beltrami 
operator for a non-Euclidean manifold (either compact or 
noncom pact), the functions appearing in the first-order 
terms (such as the magnetic vector potential), and the poten­
tial W(x). In our N-body problem the manifold is flat so the 
Laplace-Beltrami operator reduces to the Laplacian, the 
first-order derivative terms are absent, and so the only non­
trivial coefficient function is W(x). The boundary condition 
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for Rd reduces to the requirement that H(x) have a unique 
self-adjoint extension in L 2(Rd ,Cr

). If the manifold support­
ing the functions on which H (x) acts is noncompact (as in the 
Rd case), characteristically one finds that the spectrum has a 
continuous part. The appropriate extension of the Weyl 
problem is to replace the study of the density of eigenvalues 
by the asymptotic expansion of the spectral kernels e(x,y;A) 
asA-oo. 

In essence the asymptotic expansions (1.10) for the heat 
kernel and (1.12) for the resolvent kernel display the relation­
ship between (a) and (c). In particular, the explicit expres­
sions we derive later for Pn(x,y) show how the local form of 
H (x) controls these two expansions. In this sense this paper is 
a special application of the local geometrical asymptotics 
program. The approach emphasized in this work is to deter­
mine first (via the Dyson expansion) the detailed properties 
of the semigroup family of kernels and then by various trans­
forms obtain the other asymptotic expansions of interest. 

It is worth observing that the connection (a)-(b), al­
though of fundamental importance, is still not well under­
stood in the noncom pact domain problems. Following the 
technique introduced by Carleman,12 most investigations of 
the large A behavior of e(x,y;A ) have utilized the Tauberian 
theorems. I3-16 This approach is capable of predicting only 
the leading-order behavior of e(x,y;A ). An alternate method 
ofinvestigating the continuum-Weyl problem and obtaining 
a higher-order asymptotic expansion was developed by Os­
born and Wongl7 (hereafter OW). The technique of OW is to 
obtain the link (a)-(b) by the chain of results (a)-(c) then 
(c)-(b). In particular, one may prove that the kernel U (x,y;Z) 
has the spectral representation l7

•
18 

U(x,y;z) = i e-zAde(x,y;A), ZED. (1.14) 
o(H) 

In order to implement the stage (c)-(b) the inverse of this 
transform is required, namely, 

1 [+100 ~ 
e(x,y;A ) = -. - U (x,y;z)dz, c> O. 

217'1 c-loo Z 
(1.15) 

The validity of (1. 15) is established in OW. This formula has 
the feature of transforming semigroup kernels into spectral 
kernels. 

Under the hypothesis that the continuous spectrum 
contribution to U (x,y;it Iii) has nice decay properties as 
t_ ± 00 (this assumption just reflects the physically reason­
able expectation that particles and stable clusters of particles 
that belong to the continuum of H will diffuse as t_ ± 00) 
then e(x,y;A ) admits a higher-order Weyl expansion given by 

M (It ( a )n e(x,y;A ) = L ----Pn (x,y) - eo(x,y;A ) 
n=O n! aA 

(1.16) 

Here eo(x,y;A ) is the spectral kernel of Hamiltonian Ho and is 
a known analytic function of A. This expansion is uniform 
within compact regions of Rd X ad. The error term is of 
order 0 (IA I - N), where N depends in a complicated way on 
the number of bounded derivatives of W (x) and on the nature 
of the t-decay of the continuous spectrum contributions to 
U (x,y;it Iii). A more detailed overview of local geometrical 
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spectral asymptotics may be found in the excellent review of 
Fulling.4 

The construction of this paper is as follows. In Sec. II 
the complex matrix-valued measure representation of the 
potential W(x) is introduced. Section III describes the con­
structive series representation of the kernel U(x,y;Z) and ob­
tains the x,y-uniform asymptotic expansion associated with 
Eq. (1.10). Furthermore, under appropriate smoothness re­
strictions on W(x), it is established that U(x,y;it Iii) and 
U (x,y; /3) are fundamental solutions of their respective par­
tial differential equations. The explicit formulas for the coef­
ficient matrices P" (x,y) are determined. Finally in Sec. IV we 
utilize an analytic continuation of the Laplace transform to 
find the large IA I expansion of the resolvent kernelsR (x,y;A ). 
Formulas bounding the total error in the resolvent asympto­
tic expansion are derived. 

II. FOURIER IMAGE POTENTIALS 

For a particular class of potentials W(x), the operator 
H(x) is studied. Let vR(Rd ,crxr

) be the set of all bounded 
complex matrix-valued measures defined on the Borel field 
8IJ on Rd. Each measure Il e vR, defines a matrix-valued 
potential function by the Fourier transform of Il, 

W (x) = i e;kx dll(k ), (2.1) 
ftd 

where ke ad and kx denotes the scalar product in Rd. The 
equality above is understood as that appropriate for the 
space of complex matrices, C'xr. Ifv,y = 1,2, ... ,rspecify the 
row and column of a matrix, then (2.1) implies 

(2.2) 

Each Ilvr is a bounded complex-valued measure on 8IJ and 
each vr component of the matrix W is a complex-valued 
function of x. Hereafter, in order to simplify our notation the 
integration domain Rd will be omitted. 

We employ the symbol 1·1 to represent several different 
norms. If the argument of 1·1 is in C, then 1·1 denotes the 
absolute value; if the argument is inCr or crxr then the norm 
is the appropriate Euclidean vector length. For example, if E 
is any set in 8IJ , 

(2.3) 

A somewhat different meaning of the absolute value sign 
applies to III I· Here, III I is defined to be the total variation of 
Il, namely the non-negative scalar-valued set function on 8IJ 
given by 

00 

11l1(E) = sup I IIl(E;) I, (2.4) 
;=1 

where the supremum is taken over all partitions {E; } of E. 
The statement that Il e vR is bounded means that 
III I (Rd ) < 00. In fact, the total variation III I may be used to 
define a norm 11·11 for vR if we set 

Iillil = 11l1(Rd). (2.5) 

Equipped with this norm vR is a Banach space. 19 It is clear 
from the definition of (2.1) that the Fourier image of vR con-
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sists of Rd _Crx 
r functions that are uniformly bounded and 

uniformly continuous. In particular, 

IW(xll<lIllll, VxeRd. (2.6) 

The transformation (2.1) defines a class of potentials 

(2.7) 

The elements of the spaces Y and vR are in a one-to-one 
correspondence. This is a consequence of the uniqueness20 of 
the transformation (2.1) that states W (x) = ° if and only if 
Il = 0. Again by adjoining norm IIIlIl to Y one defines a 
Banach space. 

Consider the subset of potentials in Y that are Hermi­
tian matrices for all x e ad. For a set E e 8IJ the reflected set 
- E is defined to be - E = {k Ik e Rd, - k e E}. We say 

the measure Il satisfies the reflection property if 

Il( - E) = 1l*(E), VEe 8IJ, (2.8) 

where * denotes the adjoint on C'x r • Then the Fourier trans­
form of a Il satisfying the reflection property is a Hermitian 
matrix for all x. And, conversely an element We Y that is 
Hermitian for all x has an associated measure Il e vR that 
obeys the reflection property. Define the subset of vR that 
consists ofmeasuresll of the type (2.8) asvR* and let y* be 
the Fourier image of vR*. The potentials We y* are the 
physically significant ones since they comprise all the Her­
mitian potentials in Y. 

The asymptotic expansions derived in the next several 
sections are a manifestation of the smoothness of the poten­
tials W (x). For this reason it is convenient to further classify 
the potentials in y* into subclasses in which derivatives up 
to order M are bounded. We define Ytt~Y*, 
M = 0,1,2, ... , to be 

Ytt= {wlwey*,J d 11l1(k)lk 1"< 00, n=o,I, ... ,M}. 

(2.9) 
In fact, for We Ytt there exists a smallest finite positive 
constant K (W,M) such that 

J d 11l1(klik 1"<K(W,M)"IIIlII, n = O,I, ... ,M. (2.10) 

We call K (W ,M) the bound constant of potential W in the 
spaceYtt· 

If D!, represents an arbitrary partial derivative in Rd, 
multi-indexed by L = (/1,l2, ... ,ld ), I; ;>0, with length 
IL I = II + 12 + ... + Id' and given by 

D!, = (~)/l ... (~)Id, (2.11) 
aXI aXd 

then We Ytt implies 

I(D!,W)(x)I<K(W,M)'LIIIIlII, IL I<M. (2.12) 

It is useful to decompose the matrix measurell into the 
product of the total variation measure III I and a matrix func­
tion with unit Euclidean norm. 

Lemma 1: Let Il e vR, then there is a unique 11l1-mea­
surable matrix functionA:Rd_C'xr such that 

IA(k)1 = I, VkeRd, (2.13) 
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and 

L dp,(k) = L d 1p,I(k)A (k), 'tiE E f!Jj. (2.14) 

Proof: Sincep,<Ip,1 the Radon-Nikodym theorem im­
plies the existence ofa 1p,I-measurableL 1(1p,1) function A (k). 
The proof that A (k ) has Euclidean norm equal to unity fol­
lows from a simple modification of the argument Rudin21 

(Theorem 6.12) gives for the scalar case. 0 
For scalar problem (r = 1) the potential class Y was 

introduced by 1t022 to study the Feynman path integral re­
presentations of eitH /fi. Later, Albeverio and H0egh-Krohn23 
used Y for the same purpose and in a fashion similar to our 
treatment of the kernel form of the Dyson series. 

III. ASYMPTOTIC EXPANSIONS FOR e- zH 

Throughout the remainder of the paper it is always as­
sumed that WE Y*. For this class of potentials the Hamil­
tonian H is defined as the self-adjoint extension of H (xl in 
L 2(Rd ,Cr

). We also let the symbol W stand for the linear 
operator on L 2(Rd 

, cr 
) given by multiplication in cr with the 

potential function W(x). Inequality (2.6) implies that W has 
the operator norm bound II W II 0;;;; lip, II; this in tum means that 
His semibounded with lower bound H;;;. - lip, III. Because W 
is bounded, the unbounded operators H and Ho have com­
mondomains g(H) = g(Ho)CL 2(Rd ,Cr

). Take A = a(H) 
to be the spectrum of Hand {E;. IA E A } to be the unique 
family of spectral projectors generated by H. The semiboun­
dedness estimate above tells us that A ~ [ - lip, 11,00). The 
analytic semigroup operators are then defined by their spec­
tral integrals 

e- zH = L e-z).dE;., ZED. (3.1) 

Restricting Z = f3 > 0 gives us the heat operator e - PH. Re­
placing H by Ho in (3.1) determines the free heat operator 
e -PHo. 

Before proceeding with the derivations we introduce a 
number of the notational conventions that will be employed. 
The Hilbert space on which the semigroup operators act is 
K = L 2(Rd ,IC'). On this space (.,.) represents the inner pro­
duct and Ilfll = (f,[) 1/2 the associated norm. For example, 
if [,g E K then these functions have r components [Le., 
[= (/1>/;, ... ,/r), where/; E L 2(JRd) and similarly for g] and 
the K-inner product is 

r 

([,g) = L (/;,g;), (3.2) 
;=1 

where (0,.) is the inner product on L 2(JRd). The general LP 
norm for [E LP (Rd ,IC') will be indicated by I If lip . The nth­
order iterated parametric integrals which enter the Dyson 
expansion will be abbreviated by 

f dn5= f d51 is' d52 ... [n-t d5n 

and the iterated p, measure integrals 

(3.3) 

f d np,=: f dp,(kn) f dP,(kn - 1 ) ••• f dp,(kl)' (3.4) 

Note that for differing values of x 1 and x 2, generally 
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(3.5) 
or equivalently dp,(kl)dp,(k2)#-dp,(k2)dp,(kd. This noncom­
mutivity of the potentials W (x I)' W (x2 ) is the most significant 
structural distinction with the scalar problem. Our choice of 
the Euclidean norm (2.3) for the matrix measures p, is made 
on the basis that this norm definition for p, is the one that 
makes the bound estimates for the vector problem closely 
parallel to those that enter the scalar case. As a result, we are 
able to adopt many of the proofs for the scalar problem with 
only minor alterations. 

Several simple mathematical functions occur repeated­
ly in our analysis so it is convenient to introduce an abbrevi­
ated notion for them. For i = 1, ... ,n, let 5; E [0,1], set 

8!5,,5m) = min{5/(1 - 5m),5m{1- 5/)). (3.6) 

For k i E JRd define the polynomials in k; by 
n 

an!5I,·",5n;k l,· .. ,kn) = L 8 (5,,5m)k,km, (3.7) 
/,m=1 

n 

bn(51, .. ·,5n;kl ,· .. ,kn) = L [(1 - 5/)x + 5/ y]k" (3.8) 
/=1 

where k,km denotes the scalar product in JRd. Furthermore 
we denote the scalar free diffusion kernel by 

h (X;Z) = (41rzq)-d/2 exp{ -lxI2/4zq). (3.9) 

The Dyson series for e - PH is obtained by iterating the 
identity24 

e- PH = e- PHo - .r df31 e-P,HVe-(P-p,)Ho. (3.10) 

The constructive series representation for U (x,y;Z) given in 
Lemma 2 and Theorem 1 results from the analysis of the x,y 
kernel analog of the Dyson series (3.10) followed by an ana­
lytic extension from the positive real axis f3 E (0,00) to ZED. 

Except for some minor technical details in handling the vec­
tor norm on Cr

, Lemma 1 permits one to adopt in an obvious 
way the proofs given in Ref. 1. We have the following results. 

Definition 1: Let WE Y*. For each zED, let 
F (.,.;z):Rd X JRd ~crx r be the function defined by the series 

co 

F(x,y;Z) = L Bn(x,y;Z), (3.11) 
n=O 

where Bo(x, y;Z) = I and 

Bn(x,y;Z) = (_z)n f dn5 f dnp, e-zqan+ibn
• (3.12) 

Lemma 2: Let WE Y*. The function F(x,y;Z) has the 
following properties. 

(i) Let Dc be any compact subset of 15. The series (3.11) is 
absolutely and uniformly convergent for all 
(x,y;Z) E JRd XJRd XDc. Furthermore, Fvy(x,y;Z) has the 
bound 

IFvy(x,y;z)lo;;;;elzlllllll. (3.13) 

(ii) F (x,y;Z) is a Crx 
r valued holomorphic function in D 

and continuous in D. It is jointly continuous in Rd X JRd . 
In order to proceed further, let us define the free analyt­

ic semigroup kernel by 

Uo(x,y;Z) = h (x - y;z)I, zED \ {O}, (3.14) 

where h is (3.9). With this notation we have the following 
theorem. 
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Theorem 1: Let WE ,7*. Define the function 
U:Rd XRd X(D \{O}~'X' by 

U(x,y;z) = Uo(x,y;z)F(x,y;Z). (3.15) 

(i) For all ZED and allf E K, 

(e-ZHf)(x) = f dy U(x,y;zlf(Y), a.a. XElRd. (3.16) 

(ii) Suppose t E R, t #0, andf E L I(Rd ,C')NY, 

(e -lt~)(X) = J dyU (x,y;it If(Y), a.a. x E lRd
• (3.17) 

IffE K then 

(e-itH/)(x)=s_lim r dyU(x,y;itlf(y). (3.18) 
Y-oo J1yl<;Y 

The form of Theorem I, in particular part (ii), for time­
evolution kernels is the best result that can be expected since 
if H is replaced by Ho then (ii) is the standard25 representa­
tion of the free time evolution kernel. Related results on the 
existence of time evolution kernels have been obtained by 
Kitada,26 Kitada and Kumanogo,27 Fujiwara,28 and Zel­
ditch.29 

Tum now to the problem of demonstrating that 
U (x,y;it Iii) and U (x,y;P) are fundamental solutions of their 
respective SchrOdinger and heat partial differential equa­
tions. 

Proposition 1: Let WE Y!, the function U (x,y;it Iii) is 
the fundamental solution of the Schrodinger equation 

ili!.- U(x,y;it Iii) = H(x) U(x,y;it Iii), t #0, (3.19) 
at 

that satisfies the delta-function initial condition 

U{x,y;it lli~(x - y)I, as t-o. (3.20) 

Proposition 2: Let We Y1, the function U (x,y; P ) is the 
fundamental solution of the heat equation 

a 
- ap U(x,y;P) =H(x) U(x,y;P), p>O, (3.21) 

that satisfies the delta-function initial condition 
U(x,y;P)-5(x - y)I, asp-o. (3.22) 

Proof Propositions 1 and 2 have similar proofs. We 
shall write out the proof of Proposition 1. First substitute 
expression{3. 15) into Eq. (3.19). So U(x,y;it Iii) is a solution of 
(3.19) if and only if F(x,y;it Iii) is a solution of 

ilii.F(x,y;it Iii) = {H(x) - iii (x - Y)VxI} F(x,y;it Iii). 
at t 

(3.23) 
The functionF(x,y;it Iii) as defined by series (3.11) converges 
uniformly in Rd X Rd to I as t-O. Furthermore it is well 
known that Uo(x,y;it Iii) is a delta function in the limit t-o. 
Thus U (x,y;;t Iii) obeys the initial condition (3.20). So it suf­
fices to prove that F(x,y;it Iii) satisfies (3.23) for all t. 

To proceed further, consider the terms B"(x,y;it Iii) in 
the series expansion (3.11) for F. Make the change of variable 
5i = (1 - tJt),; = 1, ... ,n for the integral expression of B". 
One obtains 
B"(x,y;it Iii) 

= ( - ~r 1'dtn 1'" dtn _ I ••• 1" dt1 

X f d"p exp{Sn j, (3.24) 
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where the exponential argument is 

S"(x,y;tl ... t";kl· .. k,, ) 

. ~ ( Iltm) = -lq ~ tll\tm - -- klkm 
l.m=1 t 

+ i ± [~x + (1- ~)y] kJ• 
1= Itt 

Here the notation tl 1\ tm is 

tll\ tm = sgn(t )Minfltll,ltm I}. 
Note that S" has the algebraic property 

S" (x,y;t l' " t" ;kl· .. k" )It. = t 

(3.25) 

(3.26) 

= S" _ I (x,y;tl"·t,, _ I ;kl' .. k" _ I) + ixk". (3.27) 

Now assume We Y1. Using formula (3.24) together with 
identity (3.27) gives one the recursion relation for n> I, 
·z a B ( it) 

ITI at " x,y; ~ 

= [ - q.::1x - (ililt )(x - y)V x ]B"(x,y;it Iii) 

+ W(x)B" _ tlx,y;il Iii). (3.28) 

The assumption WE .71 is needed in order to justify passing 
the derivative operators through the multiple integral in 
(3.24). The last step is to sum (3.28) from n = 1 to 00. If 
WE .7!, all the infinite sums are absolutely and uniformly 
convergent in Rd X Rd. In addition, the n-summation may 
be interchanged with all the differential operators appearing 
in (3.28). Thus (3.23) is satisfied for all x,y,t by F(x,y;it Iii) 
defined through series (3.11). 0 

The solution of (3.19) and (3.20) is appropriately termed 
fundamental. All other forms of solution of the time-depen­
dent Schrodinger equation are implied by Proposition 1. For 
example. one immediately obtains the following statement of 
the Cauchy-data problem. 

Corollary 1: Let We Y1. Supposefis any wave packet 
(element) in L I(Rd ,C')nJl"'. Then 

tf(x,t) = f dyU(x,y;it llilf(y) (3.29) 

is a solution of 

iii ~ tf(x,t) = H Ix) tf(x,t ), at 
with the Cauchy initial data 

rf{x,O) = fix). 

(3.30) 

(3.31) 

Proof' This follows from an obvious modification of the 
argument demonstrating Proposition 1. 0 

The remainder of this section implements a reordering 
of the series expansion for F(x,y;Z) and obtains the higher­
order asymptotic expansion (1.10). It is proved that the num­
ber of terms M in the expansion is solely a function of the 
order of the bounded partial derivatives that W(x) supports. 
Explicit formulas for the diagonal and nondiagonaI values of 
P" (x,y) for all n are found. The remainder term EM (x,y;Z) is 
given a bound that is uniform in both Rd X Rd and 
arg Z E [17'12, - 1T12]. It is observed that the asymptotic ex­
pansion ( 1.10) may be freely differentiated with respect to all 
the variables of F (x,y;Z). 

OsbOrn, Corns, and Fujiwara 458 



                                                                                                                                    

Proposition 3: Let WE Y!tN + I) and let K be the corre­
sponding bound constant of W in the family Y!tN + I)' For 
allz ED and n>l. 

N (_z)"+m 
B,,(x-y;Z) = L , qmDm,,, + m(x-y) + E",N(X-Y;Z). 

m=O (n +m). 

(3.32) 

The coefficient functions Dm,,, + m (x-y) are jointly and uni­
formly continuous in ad x Rd and are represented by the 
parametric integrals. 

Dm,m+n(x-y) = n! (m; n) f d"s J d"p.(a"ti \ 

n > O. m>O. (3.33) 

where the factor in front of the multiple integral is the bi­
nomial coefficient. Furthermore. D 0,0 (x-y) = I. and for 
m> 1. Dm,m (x-y) = O. The coefficient matrices and remain­
der term have estimates 

(3,34) 

(3.35) 

for m<.N and n>O. 
Proof: The argument for Proposition 5. Ref. 1. is easily 

modified to accommodate the matrix nature of (3.32). 0 
The asymptotic expansion of the analytic semigroup 

kernel U (x-Y;Z) follows from Proposition 3 and Lemma 2 for 
F (x-Y;Z). Suppose WE Y!tM + I) thenF-series (3.11) is decom­
posed into two parts: 

M 00 

F(x-y;Z) = L B,,(x-y;Z) + L B,,(x-y;Z). (3.36) 
,,=0 ,,=M+ I 

Inserting (3.32) into (3.36) with N = M - n constructs the 
M-term power series inz for F(x-y;Z) [Eq. (1.10)]. The defini­
tion of the error term in (1.10) is then 

M 00 

EM(x-y;Z) = L E",M_,,(X-Y;Z) + L B,,(x-y;Z), 
,,=0 ,,=M+ I 

(3.37) 

It is straightforward to see that EM is of order 0 (Izl M + I ). 
Concise bounds for EM follow from the bounds (3.35) and 
the absolutely convergent integrals that define B" (x-Y;Z). By 
this process it is found that the following theorem holds. 

Theorem 2: Let WE Y!tM + I) and K be the associated 
bound constant in the space Y!tM + 1)' Let U (x-Y;Z) and 
Uo(x-y;Z) be the integral kernels of operators e - zH and 
e - zHo. respectively. Then for all zED" {O}. 

U(x-y;Z) = Uo(x-y;Z) L~o (-,,;l" P,,(x-y) + EM(X-Y;Z)}. 

(3.38) 

where the e xr valued coefficient functions are [Po(x-y) = I] 
,,-1 

P,,(x-y) = L qmDm,,,(x-y). n = 1 •...• M. (3.39) 
m=O 

The coefficient functions P" and the remainder EM have 
Rd X Rd uniform bounds for ZED 

(3.40) 
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and 

IE (x-y;z)l<. (Izl/I#I/)M+ 1 {[I + qM2K2]M+ 1+ e1zllll'lI} • 
M (M + I)! 411#11 

(3.41) 

Several comments are in order. Although we do not 
formulate it as a theorem. it is apparent that if 
WE Y!tM + I +)1 then one may dift'erentiate the F-asympto­
tic expansion j times with respect to z (for details see the 
proof of Theorem 2. Ref. 1). The resultant identity is an 
asymptotic expansion with uniform (in x-y.arg z) error term 
of order 0 (lzlM + I - j). Similar conclusions apply to dift'eren­
tiating (1.10) with respect to the variables x and y. 

Equation (3.39) contains the general formula for the c0-

efficient matrices that appear in the heat-kernel expansion 
(3.38). The x=j:y off-diagonal formulas for the coefficients 
P" (x-y) have a geometrical character. Denote by ti the linear 
path from x to y parametrized by Si. 

(3.42) 

In terms of this linear path the formulas for PI(x-y) and 
P2(x-y) become 

PI(x-y) = f dSI Wltl). (3.43) 

P2(x-y) = 2 f dSI f' dS2 Wlt2)Wltl) 

- 2q f dSI SI(1 - sl)(A W)ltl)' (3.44) 

So. PI (x-y) is just the linear average of Walong on the straight 
line drawn in Rd between x andy. In P2(x-y). the q part is an 
average of A W weighted by the polynomial SI(1- SI)' Of 
course. the parametric integrals over Si are inherited from 
the time-ordered parameters that appear in the Dyson 
expression (3.11). 

The functions simplify markedly on the x = y diagonal. 
If x = y then ti = x and is thus independent of the value of 
Si' So in the integrals (3.43) and (3.44). and in general. the 
potentials W can be taken outside the parametric integration 
d" S. The parametric integral d" S mUltiplies a given polyno­
mial in SI.S2 ..... S" and yields a numerical coefficient. In this 
way one is able to determine all the formulas for diagonal 
values of P". Specific formulas for PI through P4 are 

PI(x,x) = W(x). (3.45) 

(3.46) 

P3(x,x) = W 3(x) - q{!W(AW) + !(AW)W + !(VW)2}(X) 

+toq2(A 2W)(X). (3.47) 

P4(x,x) = W4(X) - q{~W2(AW) 

+!W(AW)W+~(AW)W2 

+ !W(VW)2 + ~(VW)W(VW) + !(VW)2W}(X) 

+ q2f!W(A 2W) + !(A 2W)W + i(A W)2 

+ ~(VW)[V(AW)] + HV(AW)](VW) 

(3.48) 
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If these coefficients are compared to the known formu­
las8

•
30 for the r = 1 case we see the first structural change 

occurs in the P3(x,x) coefficient, where the noncommutivity 
of Wand .d W lead to the symmetric combination 
! W.d W + !.d WW rather than W.d W. The result available in 
the literature that comes closest to (3.45)-(3.48) is the deter­
mination by Fulling3

! of the coefficient matrices Pn for r> 1 
but with space dimension d = 1. In this special case, com­
plete agreement is found with Fulling's coefficient expres­
sions, including the n = 5 coefficient which we have not giv­
en above because of its substantial length. 

Finally observe the symmetry that the Pn obeys as a 
consequence of the self-adjoint nature of H. Since H is self­
adjoint, so is e - PH , {3 > O. If * denotes the adjoint on crx 

r , 

then the integral kernel of e - PH satisfies 

U (x,y;/3) = U (y,x;/3)*. (3.49) 

Inserting (3.15) and series (1.10) in the above identity gives 

Pn(x,y) = Pn(y,x)*. (3.50) 

This follows since h (x - y;/3) is real and invariant under 
x++y. If r = I, then (3.50) and the symmetry Pn(x,y) 
= Pn (y,x) requires that the Pn (x,y) be real valued. 

The semiclassical facet of the heat-kernel expansion 
(1.10) resides in the fact that the Pn (x,y) are polynomials in q 
of order n - 1. It has been shown32

•
33 in the r = 1 case that if 

the asymptotic series for (1.10) is exponentiated, then a non­
perturbative semiclassical approximation for U (x,y;Z) is de­
fined. Furthermore, if x = y the Wigner-Kirkwood semi­
classical expansion34

•
35 is recovered as a special case. 

IV. RESOLVENT KERNEL EXPANSIONS 

This section describes the large z asymptotic expansion 
of the resolvent kernel R (x,y;Z). The technique utilized is to 
investigate the behavior of R (x,y;Z) by using the Laplace 
transform (1.11) that connects the heat kernel to the resol­
vent kernel. In the first instance, the Laplace transform 
(1.11) is defined as a convergent integral only on the restrict­
ed set Rez< -1l1l1i. However by exploiting the holomor­
phic character in z of the kernels U (x,y;Z) it is possible to 
analytically continue the Laplace transform representation 
of R (x,y;Z) to the domain V6 . With this approach the Laplace 
image of asymptotic expansion (3.38) for U(x,y;Z) becomes 
the asymptotic expansions for R (x,y;Z). Furthermore the er­
ror term bound (3.41) for EM(x,y;Z) suffices to provide an 
Rd X Rd uniform error term bound for the R (x,y;Z) asympto­
tic expansion. 

Let {E ~ IA. >0 J be the family of spectral projectors that 
is defined by Ho. In terms of E~, the spectral representation 
of the free solvent is 

ro(z) = (Ho _Z)-1 = foo _l_dE~, zEt[O,oo). (4.1) 
Jo A.-Z 

Consider first the kernel representation of the free resolvent. 
Lemma 3: Suppose Re z < 0, then we have the follow-

ing. 
(i) For each f E L 2(Rd ,cr), 

(ro(z)f)(x) = i
oo 

ePZ(e- PHo fHx)d{3, a.a. x. (4.2) 
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(ii) Let Co = {zlz E C,Re z < 0 J. Define the function 
Ro:Rd X Rd X Co_Crx r by the integral 

Ro(x,y;Z) = i
oo 

ePzUo(x,y; {3 )d{3. (4.3) 

Ro(x,y;Z) is translation invariant in Rd X Rd (i.e., it depends 
only on the variable x - y). For each pair x,y (x =1= y) Ro(x,y;z) 
is an analytic function in domain Co. Finally, Ro(x,y;Z) satis­
fies the integral estimate 

f dY IRo(x,y;z)I..;;; Fr . 
-Rez 

(4.4) 

(iii) For z E Co, ro(z) is an integral operator with an L 1_ 
convolution kernel Ro(x,y;Z). For each f E L 2(Rd ,Cr

), 

(ro(z)fHx) = f dy Ro(x,y;z)f(y), a.a. x. (4.5) 

Proof These results are all elementary but we will write 
out a detailed proof in a form that allows an easy extension to 
include the (H - z)-! case. Start with (i). Observe that the 
right-hand side of (4.2) defines an L 2 function of x: 

f dx li
oo 

ePZ(e-PHOfHX)d{312 

..;;; i
oo 

d{31 i
oo 

d{32 e(P, +p,)Rez 

X f dx l(e-P,HofHx)ll(e-P,Hof)(x)1 

(4.6) 

The second inequality follows from II e - PHoll <; 1. Let g be an 
arbitrary element of L 2(Rd ,Cr

). Then 

A = ( g, i
oo 

efh(e - PHo f)d{3 ) 

= f dx g(x)* {lOO ePZ(e-PHOfHX)d{3}. (4.7) 

Using the Schwartz inequality and lIe-PHofll<;lIfll it fol­
lows that the dx d{3 integral in (4.7) is absolutely convergent. 
Fubini's theorem allows us to interchange the order of inte­
gration giving 

A = i
oo 

ePz (g,e- PHo f)d{3 

= i
oo 

ePz{i"" e-PAd(g,E~ f)}d{3. (4.8) 

The last equality employs the spectral theorem for Ho. The 
spectral measure has finite total variation bounded by 
II glillfll· Further, eP Rezd{3 is absolutely integrable, so the 
order of integration in (4.8) again can be reversed. Using 

foo eP(Z-A)d{3 = _1_, (4.9) 
Jo A. - z 

(4.8) takes the form 

l
oo 1 

A = -,-- d (g,E~ f) = (g,ro(z)f)· 
o /I. - Z 

(4.10) 

The equality of (4.10) and (4.7) for all gEL 2(Rd ,Cr
) implies 

(4.2). 
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(ii) The expression (3.14) for Uo(x,y;/3) shows that the 
integral (4.3) for a fixed pair x,y (x¥=y) is absolutely conver­
gent for Re z < E < O. Since the integrand of(4.3) is analytic in 
Co it follows that the integral defines an analytic function for 
Re z < E. Since E may be selected to be as small as desired, the 
allowed domain for z may be extended to Co. Here, Ro(x,y;Z) 
is translation invariant because Uo(x,y;/3) is a function of 
x - y. Finally, since h (x - y;/3) is real and positive, 

f dyIRo(x,y;z) I < LX> eP Rez{7 {f dy h (x - y;/3)} dp. 

(4.11) 

The diffusion functionh (x - y;/3 ) is normalized so thatthedy 
integral is unity. Equation (4.4) follows by carrying out the 
dP integration. 

(iii) Identity (3.16) with W = 0 states for fE L 2(Rd ,cr) 

(e-PHof)(x) = f dy Uo(x,y;/3)fly), a.a. x. (4.12) 

Combining this with (4.2) gives us 

(ro(z)j)(x) = LX) ePz {f dy Uo(x,y;/3)fly)} dp. (4.13) 

Changing the order of the dP dy integrals here leads at once 
to formula (4.5) with R o(x,y;/3 ) defined by (4.3). Now, consid­
er the justification of this interchange of integral order. The 
iterated integral on the right of (4.13) is majorized by 

A (x) = LlO eP Rez {f dyh(x - y;/3)lf(Y)I} dP. (4.14) 

All the functions in (4.14) are non-negative so it may be writ­
ten 

A (x) = f dy U:"" ePRezh (x - y;/3JdP} If(Yli 

= f dy ro(x - y;Rez)lfly)i, (4.15) 

~here ro(x - y;Re z) is just the resolvent kernel Ro(x,y;Re z) 
10 the r = 1 case. Estimate (4.4) means that (4.15) is an L 1-

convolution. Now the Hausdorff-Young inequality for con­
volutions36 states that if we have a convolution 

¢(x)= f dyK(x-y)¢(y), (4.16) 

where K E L l(Rd
) and ¢ E LP (Rd

), p> 1, then 

1I¢,lIp <11K IIlll¢ lip· (4.17) 

Applying (4.17) to (4.15) with p = 2, it follows that A (x) is 
L 2(Rd) and thus A (x) < 00 for all but an exceptional set of 
measure zero in Rd. So. the majorant (4.14) of the iterated 
integral is absolutely convergent almost everywhere in x. 
Outside this exception set we apply Fubini's theorem in or­
der to justify the change of integral order in (4.13). D 

The next step is to extend our analysis to treat the full 
resolvent r(z). For the self-adjoint operator H, we let 
{E.dA> - 1I,u III be the family of spectral projectors. The 
resolvent then has the spectral representation 

r(z)=(H-Z)-I= foo _I_dE;., zEp(H). (4.18) 
-lipll A-Z 

Lemma 4: Let WEY* and Rez< -1iJ.t1l. then we 
have the following. 
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(i) For each fE L 2(JRd ,Cr
), 

(r(z)f)(x) = EO ePZ(e- PH f)(xJdP, a.a. x. (4.19) 

(ii) Let Cp = {zlz E C,Rez< -1I,ulll. Define the func-
tion R:JRd X JRd XCI' _Crx 

r by the integral 

R (x,y;Z) = EO ePZU(x,y;/3JdP. (4.20) 

For each fixed pair x,y (x ¥= y), R (x,y;Z) is an analytic function 
of z with domain Cp . Furthermore, for z E Cp ,R (x,y;Z) satis­
fies the pointwise bound 

IR (x,y;zll..;;;{7IRo(x,y;Rez + 1i1L1I)1, Vx,y E Rd. (4.21) 

(iii) If z E CP ' r(z) is an integral operator with the kernel 
R (x,y;Z). For each fE L 2(Rd ,Cr

), 

(r(z)f)(x) = f dy R (x,y;z)f(y), a.a. x. (4.22) 

Proof: The estimate 

lie-PH fll..;;;eRePlipilli fll, fE 7r', PED, (4.23) 

and estimate (3.13) for 1F..,,(x,y;/3)1 allow us to follow the 
same line of argument used to prove Lemma 3 provided that 
the restriction Re z < 0 is shifted to Re z..;;; - 1iJ.t II. The 
pointwise bound (4.21) results from 

11"" ePZ U(x,y;/3)dP I ..;;; LX> eP Rez jU(x,y;/3)ldP 

..;;; 1"" eP(Re z + IIplllrh (x - y;/3 JdP 

..;;;{7IRo(x,y;Rez + 1I,u11l1, (4.24) 

where the second ineqUality is a consequence of (3.15) and 
(3.13). D 

The existence of the Laplace transform (4.2) requires 
the restriction Re z < O. However, the domain of analyticity 
of Ro(x,y;Z) is considerably larger. First fix the polar coordi­
nate representation of Z by choosing arg z E [0.21T) with the 
positive real axis corresponding to arg z = O. With this nota­
tion, the transform (4.3) may be evaluated explicitly37 yield­
ing a modified Bessel function. For x¥=y, 

R x . _ 2 (ilx- yl )l-dl2 
o( ,y;Z) - (41Tq)dI2 2q1/2z 1/2 

XK(dI2)_ d - ;q-1/2z 1/2Ix - yl)l, (4.25) 

wherez l/2 is the square root with positive sign. The right side 
of (4.25) is an analytic function with domain C\ [0, 00 ). 

In the subsequent anlaysis it is shown that one may 
exploit the analyticity of U (x,y;/3) in order to implement an 
analytic continuation of R (x,y;Z) from the domain C to a 
larger subset ofC. The method utilizes contour rotati;n and 
depends only on the analytic semigroup properties obtained 
in Sec. III. 

We introduce some convenient terminology. Hereto­
fore, P has denoted a positive number. Now let P E D and 
specify the polar form to be P = IP lei argp with arg P E [1T / 
2, - 1T/2]. For any 6 E (O,1T/2] define two linear rays in D by 

L ±(6) = {PED I ± argp= 1T/2 - 6}. (4.26) 

Here, L +(6) is a ray in the upper right quadrant of the com-
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plex p-plane and L - (15) lies in the lower right quadrant. Let 
us introduce special notations for several different domains 
in C for the z-variable appearing in R (x,y;Z). For 15 E (0,1T12] 
define 

V +(15) = {z E q2c5 <argz<1T}, (4.27) 

V-(c5) = {ZE q1T<argz<21T - 2c5}. (4.28) 

Finally indicate by V± (15) + ( - z') the set in C defined by 
translating the set V± (15) by - Z' E C, i.e., Z + z' E V± (15). 

Proposition 4: Let WE y* and parameter 15 E (0,1T12). 
Define D 8± = V± (15) + ( - 11J.t1l(sin 15 )-1). 

(i) If either zED l or zED 8- and f E L 2(Rd ,Cr
), then 

(r(z)f)(x) = i efh(e- PH f)(x)dP, a.a. x, (4.29) 
L ±(8) 

where the integration path L +(15) is applicable for domain 
D l andL -(15) for D 8-' 

Iii) Define the functions R ± :Rd X Rd X D l ~C'x r by 
the integral 

R ± (x,y;Z) = i ePzU (x,y;{3 )dp. 
L ±(8) 

(4.30) 

For each fixed coordinate pair x,y (x#y), R +(x,y;Z) is an 
analytic function of Z in D 8+ and R -(x,y;Z) is an analytic 
function in D;- . The functions R ± satisfy for all ZED l 
the pointwise estimate 

IR ± (x,y;z) I < (Fr/(sin 15 )(dI2) - IlIRo(x,y; - IZolsin2 15 )1, 
(4.31) 

where Zo = Z + 1I,uIl(sin 15 )-1. 
(iii) For Z in either D l or D 8- , then r(z) is an integral 

operator with a kernel given by R +(x,y;Z) or R -(x,y;Z), re­
spectively. For each fE L 2(Rd ,Cr

) and Z in the appropriate 
domain D l or D 8- , then 

(r(z)f)(x) = f dy R ± (x,y;z)f(Y), a.a. x. (4.32) 

(iv) R ± (x,y;Z) are analytic continuations of R (x,y;Z) 
from domain Cf' to the domains D l. Specifically, for x#Y, 

R +(x,y;Z) = R (x,y;Z), Z E Cf'nD 8+ , (4.33) 

R -(x,y;Z) = R (x,y;Z), Z E Cf'nD 8- . (4.34) 

Proot (i) Define u:Rd ~cr by the integral 

u(x) = r ePz(e- PH f)(x)dP. (4.35) 
JL+(81 

By employing the Schwartz inequality it is easily shown that 
the L 2(Rd ,Cr

) norm of u has the bound 

(4.36) 

In order to establish the finiteness of the L + (15) integral in 
(4.36) it suffices to find an IdP I integrable bound. To this end, 
introduce the following polar coordinates: P = t exp[i(1TI 
2-15)], t=IPI, PEL+(c5); Zo=z+II,uIl(sinc5)-1 
= IZolexp(iO). If Zo E V+(c5), then 0 E (2c5,1T). Thus for all 

zED 8+ one has 

lePzl <exp( - t IZolsin(O - 15) - t 11J.t11). (4.37) 

Furthermore, inequality (4.23) provides the bound 
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lie-PH fll<e'Ilf'lIsin8I1fll, peL +(15). (4.38) 

Taken together, (4.37) and (4.38) give the estimate 

lePzllle -PH fll<exp( - t IZolsin 15 - t 1I,u1l(1 - sin 15 ))lIfll, 

(4.39) 

where we have used the fact that sin(O - 15 »sin 15 for 
Zo E V+(c5). So (4.36) acquires the bound 

lIull<lIfll/(II,uIl(I-sinc5)+ IZolsinc5)<oo. (4.40) 

Letg be an arbitrary L 2(Rd ,Cr
) element. Form the inner 

product 

(g,u) = fdXg(X)*{i efh(e-PHf)(X)dP }. (4.41) 
L+(8) 

Inversion of integral order is permitted here since bound 
(4.40) together with the Schwartz inequality shows that the 
dxldP I integral is absolutely convergent. Introducing the 
spectral representation for ( g,e - PH f) gives 

(g,u) = r ePz {J"" e-P)..d (g,E)./)} dp. (4.42) 
1+(8) -1If'1I 

Upon utilizing 

r eP(z-)..)dP= _1_ 
1+(8) A.-z 

(4.43) 

and a final inversion of integral order [valid because the mea­
sure d (g,E).. f) is of finite total variation and lePzl has esti­
mate (4.37)] one obtains 

J"" 1 
(g,u) = -l-d(g,E)..f) = (g,r(z}f), 

-1If'1I /I,-Z 

or since g is arbitrary, 

u = r(zlf. 

(4.44) 

(4.45) 

This is (4.29) with contour L +(15) andz-domainD 8+' A simi­
lar argument applies to contour L - (15) and domain D 8- . 

(ii) Given relationship (3.15) and estimate (3.13) it fol­
lows for ZED 8± that the integral (4.30) is uniformly conver­
gent. Since the integrand is analytic the integral defines a 
holomorphic function of z. The convolution bound (4.31) 
results from majorizing the integral with estimate (3.13) and 
inequality (4.37). 

(iii) Combining identity (3.16) of Theorem 1 with Eq. 
(4.29) leads to 

(r(z}f)(x) 

= i ePz {f dy U (X,y;{3}f(Y)} dP, a.a. x. (4.46) 
L+(8) 

Inverting the order of integration gives (4.32). In view of 
estimate (4.37) for lePzl and the bound 

IF (x,y;{3}f(Y)1 <elP 11If'1I1 f(y)I, (4.47) 

the convolution argument given in (4.14) and (4.15) may be 
used to show that the integral order in (4.46) may be reversed 
except possibly on a set of x having zero measure. 

(iv) Consider the case with zED l . Let sand S be real 
parameters 0 < s < S < 00. Define a closed contour in the 
analytic semigroup domain D by joining the four segments: 
C I = {P Is<P<S J, C2 = {P IP = Sell/>, tP E [0,(1T12) - 15] J, 
C3 = (P IP = t e'l(1T/2) - 8), s<t<S J and C4 = (P IP = sell/> , 
tPE[0,(1T12)-c5]J. The kernel U(x,y;{3) is analytic in D. 
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Cauchy's theorem applied to the contour 
C I + C2 + C3 + C4 states 

f ePz U (x,y;!3 )dP = o. (4.48) 

We restrict z so that it lies in a subset of the union of D It and 
Cp ; specifically we take 

Re z < - 1I,ull/sin~, zED:. (4.49) 

Now estimate the contribution of the C2 integral as S---. 00. 

Let the variable Zo be that defined after (4.36). Assume E> 0 
and note that condition (4.49) is obeyed if 

Zo = IZolei(1T/2 + 11'1, (J' E (0,1T/2), IZol > E. (4.50) 

Employing estimate (3.13), a computation of the Euclidean 
norm shows that 

Ii ePzU(x,y;{3)dPI < r(1T-~)Se-EaS, (4.51) 
C

2 
2(41TqS)d 12 

where a > 0 and is the minimum value of the two numbers 
sin (J' and sin((J' + 1T/2 - ~). Thus the C2 contribution to 
(4.48) vanishes as S---'oo. For x#-y, similar reasoning and 
conclusions apply to the C4 contribution as s---+O. Thus after 
taking the limits S---.oo and s---+O, (4.48) becomes 

{ ePzU(x,y;!3)dP = roo ePzU(x,y;{3)dp. (4.52) 
~+~ Jo 

This is just equality (4.33) for the Z allowed by (4.49). For 
zED 6- the argument proceeds by taking the contour in D 
that is the conjugate image of CI + Cz + C3 + C4 • 0 

In view of the factthat R ± (x,y;Z) and R (x,y;Z) represent 
the same analytic function we will drop the ± superscripts. 
Furthermore, we denote by V(~) the z-plane sector 
V+(~)uV-(~). Observe that inequality (4.31) provides in 
V(~) + ( - 1I,u II (sin ~ )-1) an L I-convolution bound for 
the resolvent kernel R (x,y;Z). Convolution bounds common­
ly occur for resolvent kernels of elliptic differential opera­
tors. For a recent discussion of this topic see Gurarie. 38 

If the potential W(x) is set equal to zero, the the conclu­
sions of Proposition 4 specialize to the following corollary. 

Corollary 2: Let~ E (0,1T/2), then we have the following. 
(i) For z E V(~) the resolvent operator ro(z) has a kernel 

Ro:Rd XRd X V± ---.C'xr given by the integral representa­
tion 

Ro(x,y;Z) = r ePzUo(x,y;!3)dP, (4.53) 
~±(61 

where the path L + (~) is associated with domain V + (~ ), and 
L -(~) with V-(~). 

(ii) For all x,y with x#-y and positive integers n, 

(~)n Ro(x,y;Z) = { P nePUo(x,y;!3 )dP, (4.54) 
az JL ±(61 

for z in the appropriate V± (~) domain. 
(iii) Ifn + 1 >d 12 andz E V(~), 

I (!Y Ro(x,y;Z) I 
/-lir(n+l-(d/2)) ( 1. )n+I-(d/21 
.... (4.55) 

(41Tq)d/2 Izlsm ~ 

uniformly in Rd X ad . 
Proof: (i) This is the statement of Proposition 4 that re­

sults if W = o. 
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(ii) The absolute integrability of the integrand of (4.54) 
justifies passing the partial differentiation (a I az)n through 
the integral sign in (4.53). 

(iii) The right side of (4.55) is the outcome of taking the 
modulus of the integrand in (4.54) and completing the IdPI 
integration. Symbol r denotes the gamma function. 0 

In the following we set V6 = D 6+ uD 6- • This is the al­
lowed domain for the variation of z. Further it is convenient 
to denote the nth z-derivative of Ro(x,y;Z) by 

R hnl(x,y;Z) = (!Y Ro(x,y;Z). (4.56) 

The asymptotic expansion of the resolvent kernel of r(z) for 
large z is described by the following theorem. 

Theorem 3: Let W E Y~M + II and let K be the associat­
ed bound constant of potential W in space Y~M + II' Sup­
pose ~ E (0,1T/2).For z E V6 and all x,y (x#-y) the resolvent 
kernel of (H - z) -1 admits the expansion 

M ( l)n 
R (x,y;Z) = L --=, Pn (x,y)R hnl(x,y;Z) + T M(X,y;Z). 

n=O n. 
(4.57) 

Define the constant C = C (II,u II,M) by 

C = IIJt/lM+I [(1 M2K2)M+I 1]. 
(M + I)! + q 4/1,u/l + (4.58) 

(i) For Z E V6 and all integers M> 0 the error term has 
the x#-y nonuniform bound 

C(sin ~ )M+2-(d/21 

I TM(x,y;z) I < -Ii 

X IR &M+ II(x,y; - l(sin2 ~)z + (sin ~ JlIJt/lIlI. (4.59) 

(ii) If M + 2> d 12, then for z E Va the error term has 
the Rd X Rd uniform bound 

IT (x,' )1< Cr(M+2-(d/2)) 
M .v;z (41Tq)d 12 

X I (sin ~)z + 1~IIIM+2-(dl2l (4.60) 

Proof If z E 1'6' then either ZED: or zED 6- • Sup-
pose the first. In this case, the resolvent kernel R (x,y;Z) has 
the integral representation (4.30) with contour L +(~). Since 
W E Y~M + 11 the semigroup kernel U (x,y;Z) obeys the 
asymptotic expansion (3.38) of Theorem 2. Thus R (x,y;Z) 
may be written 

R (x,y;Z) = r ePzUo(x,y;!3) 
~+(6) 

X L~o (-:.t Pn(x,y) + EM (x,y;!3 I} dp. 

(4.61) 

The n series is finite and may be passed through the L +(~) 
integral. Furthermore the individual terms in n are exactly 
of the form (4.54), so 

M ( lIn 
R (x,y;z) = L --=,Pn(x,y)R &nl(x,y;Z) + TM(x,y;Z), 

n=O n. 
(4.62) 

where the remainder T M is defined by 

TM(x,y;Z) = i ePzUo(x,y;!3)EM(x,y;{3)dp. (4.63) 
L+(6) 
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If the upper bound (3.41) for EM is used in (4.63) we have 

ITM(X,Y;Z)I<cL lePzllh(x-y;P)1 
L +1<5) 

(4.64) 

where Cis (4.58). Formula (4.59) for IT M I results if lePzl is 
estimated by (4.37) and Ih I is bounded by 

Ih(x-y;P)I< 1 exp (- Ix-yl2 sin8). 
(41Tq 1,8 I)d 12 4q 1,81 

(4.65) 

Carrying out the Id,81 integration gives (4.59). Formula (4.60) 
follows from (4.59) and (4.55). This argument extends to 
ZED <5- provided that contour L - (8) is used to represent 
R~~~. 0 

A number of comments are in order. An examination of 
the union of all allowed Z domains V<5 shows that there is a 
strip in C parallel to the positive real axis that is forbidden to 
z. All z whose least distance to the positive real axis is less 
than 1I.u II are in the complement of all V<5' Thus Theorem 3 
does not allow one to take z arbitrarily close to the real z axis 
in spite of the fact that R (x~;Z) is analytic for all 
ZE;[ - llull, 00). This domain restriction appears in the analyt­
ic continuation technique of this section because of estimate 
(3.13) for F(x~;Z). An examination of the proof of Lemma 
2(see Ref. 1, Proposition 2) shows it has not used the fact that 
W(x) is Hermitian. Series (3.11) will construct representa­
tions of e - zH for non-self-adjoint operators H as well as self­
adjoint ones. In the case of non-self-adjoint H the spectrum 
is not confined to the real axis but may be any point in C not 
exceeding a distance 1I.u II from the positive real axis. Thus the 
analytic continuation based only on estimate (3.13) cannot 
penetrate the allowed spectrum of the non-Hermitian opera­
torsH. 

Consider briefly the behavior of identity (4.57). If 
n + 1 > d /2, (4.55) shows that the term R i;')(x~;z) has a 
ad x Rd uniform 0 (izi - n - 1 + Id 12») estimate. However, the 
terms with n + l<d /2 are singular at x = y. Since T M is 
bounded at x = y, one has the conclusion that the x = y sin­
gularities of R (x~;Z) and the singularities of the first n«d / 
2) - 1 terms of (4.57) must cancel. Finally, it should be re­
called that the asymptotic expansion (4.57) has been derived 
assuming no other information about the potential W (x) ex­
cept the smoothness properties implied by the condition 

WEY~M+l)' 
In the physics literature an asymptotic procedure simi­

lar to the one used in this section but applicable to quantum 
field theory in curved space-time may be found in DeWitt39 

and Christensen.4o In the r = 1 case, formula (4.57) is given 
in Ref. 30 and obtained heuristically. The treatment in Ref. 
30 gave no estimate of the remainder nor a determination of 
the allowed z domain. In the d = 3, r = 1 case, Buslaev9 

found a formula equivalent to (4.57). Specifically for a C"" 
rapidly decreasing potential Buslaev succeeded in finding a 
bound of IT M I for z lying on the spectral boundary 
(z = A ± iO). This bound decreases asA--+ + 00. Agmon and 
Kannai41 have obtained a somewhat related expansion for a 
general class of elliptic differential operators defined on a 
compact manifold. 
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The explicit expression of a Petrov type G solution to the Einstein-Maxwell equations is given. 
This new solution is endowed with eight arbitrary parameters; mass, Newman-Unti-Tamburino 
(NUT) parameter, angular momentum, acceleration, electric and magnetic charges, and electric 
and magnetic field parameters. 

I. INTRODUCTION 

In this paper we give the explicit form of a new station­
ary axially symmetric exact solution of the Einstein-Max­
well equations. This solution has been obtained by applying 
a Harrison transformation I to the most general type ~ elec­
trovac solution in the coordinate form given by Plebanski 
and Demianski.2 Since the electrovac ~ solution possesses 
six free parameters and the Harrison transformation incor­
porates to the seed metric additional electric and magnetic 
field parameters, the generated new metric is endowed with 
eight arbitrary continuous parameters corresponding to 
mass, Newman-Unti-Tamburino (NUT) parameter (mag­
netic mass), angular momentum (Kerr parameter), accelera­
tion, electric and magnetic charges, and electric and magnet­
ic field parameters. 

II. THE METRIC ELEMENT 

The metric can be expressed in the form 

g = 1J 2{ q2 + p2 (dP2 + dq2
) + /-1 PQ dr} 

(l_pq)2 P Q (l_pq)4 

-IJ -2[do- - W d1Y 

The basic structural functions P and Q are 

P= r-v+ 2np _ Kp2 + 2mp3 - (r+ V)p4, 
Q = r + v - 2mq + Kq2 - 2nq3 - (r - V)q4, 

(1) 

(2) 

where m is the mass, n is the NUT parameter, 2v: = e2 + gl, 
e is the electric charge, g is the magnetic charge, and K and r 
are related with the angular momentum and acceleration 
parameters (see Ref. 2). 

The secondary function/is determined by 

/= _(p2+ q2)-I(I_pq)-2(q4P_ p4Q). 

The factor function IJ is defined as 

IJ 2: = f/liiJ, 1/1 = 1 - Ziit/J - aa'e , 

(3) 

(4) 

where the complex parameter a = E + iB, with the con­
stants E and B representing the additional electric and mag­
netic field correspondingly. 

The functions t/J and 'e in formula (4) are the complex 
Ernst potentials3 of the seed ~ metric for the Killing direc­
tion au. They are given by 

aj Also at Secci6n de Graduados, Escuela Superior de Ingenieria Mecanica y 
Electrica, Instituto Politecnico Nacionai, Mexico D.F., Mexico. 

and 

'e =/ _ 2v p2q2/(p2 + q2) + i(p2 + q2)-I(1 _ pq)-I 

X [r(1 + pq)(p2 + q2) + 2vpq(p2 _ q2) 
+ 2p2q2(nq - mp)], (5) 

t/J = (e + ig)pq(p - iq)-I. (6) 
At this point it is convenient to introduce the symbol 8; 

8: =E2 +B2. 
The function W, whose determination entails consider­

able labor, is 

W = (q4p _ p4Q )-1 {(q2P + p2Q) + 4{Eg _ Be)p3Q 

_ 4{Ee + Bg)q3p + 6v8(q4p+ p4Q) 

+ 48(Eg -Be)[r~P+ (r+ V)P5Q 
+ (1 - pq)-2p3q2QP] 

+ 48{Ee + Bg) [rp3Q + (r - v)~ P 
+ (1 _ pq)-2q3p2PQ ] 

+ 152(1- pq)-3[MP+ NQ + S]j, (7) 

where the polynomials M, N, and S are given by 

M = q2 { - r - r(r + 4v)pq + 4nrq3 + 8mrpq2 
+ {r - V)q4 - 4Krpq3 + 3v{v + 2r)P2q2 

- 4nrpq4 - 6m(r + V)p2q3 + (r - v)(r - 3v)p~ 

+ 3K(r + V)p2q4 + [4mn - v(v + 2r)]p3q3 
- 4m2p4q2 + 6n(r - V)p2q5 + 2m(r + V)p3q4 

+ 2mKp4q3 + [4n2 -K(r+ V)]p3q5J, 

N = p2{ - r - r(r - 4v)qp - 4myp3 - 8rnqp2 

+ (r - V)p4 + 4Krqp3 + 3v{v - 2r)P2q2 + 4mrp4q 
+ 6n(r - V)q2p3 + (r + v)(r + 3V)qp5 - 3K(r _ V)q2p4 
+ [4mn - v{v - 2y) ]p3q3 - 4n2q~2 - 6m(r + V)q2p5 

- 2n(r- V)q3p4 + 2Knq~3 + [4m2 +K(r- V)]q3p5J, 

S = (r + v){2m(r - v) - 2mKp2 - 4mnp2q + 2n(r + V)p3q 
- 4m2p4q + 2nKp3q3 + 2mKp4q2jp4q3 

+ (r - v) { - 2n(r + v) - 2nKq2 - 4mnq2p 
- 2m(r - V)q3p - 4n2q~ + 2mKp3q3 + 2nKq~2Jq~3 
+ 4m2[2n + 2mp2 _ Kp2q]p5q4 

- 4n2[2m + 2nq2 - Kpq2]~p4. (8) 

The electromagnetic field is given by the two-form 0), 

0) = M/J'" + fl'v)dxl' Adxv 

= [do- - Wdr] Ad [1/I-l[t/J + (E + iB )'e]) 
+ • {[do- - WdT] Ad[1/I-l[t/J + (E + iB )'e]]], (9) 
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where * denotes the duality Hodge operator (see Ref. 3). 
Alternatively, the electromagnetic field tensor can be deter­
mined according to the formula (2.3) of Ref. 4, or by using 
the vector potential. S 

The curvature quantities can be evaluated from the re­
lations given in Ref. 6. Because of their length we do not 
include them in this report. 
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The application of the Belinsky-Zakharov solution-generating technique, i.e., the inverse 
scattering method, to generate stationary axially symmetric solutions to the vacuum Einstein 
equations is reduced to a single quadrature when the seed solution is diagonal. The possibility of 
having real odd-number soliton solutions is investigated. These solutions represent soli tonic 
perturbations of Euclidean metrics. The possibility of using instantons as seed solutions is also 
investigated. The one- and two-soliton solutions generated from a diagonal seed solution are 
studied. As an application, a unified derivation of some well-known static solutions, like the 
Schwarzschild metric and the Chazy-Curzon metric, as well as other new metrics is presented. By 
using these metrics as seed solutions, some known stationary solutions, like the Kerr-NUT 
metric, the double Kerr metric, and the rotating Weyl C-metric, as well as other new metrics are 
also derived in a unified way. 

I. INTRODUCTION 

Recently, the inverse scattering method 1-3 (ISM) as well 
as Backlund transformations4 (BT) have been applied with 
success to generate new stationary axially symmetric solu­
tions to the vacuum Einstein equations. An example of new 
metric generated using these techniques is the N Kerr met­
riC.5•

6 Also the ISM and the BT have been used to better 
understand some known solutions, e.g., the Tomimatsu­
Sato (TS) solution7 with distortion parameter 8 = 2 can be 
interpreted as the coalescence of two Kerr metrics.6,8 

The purpose of this paper is to use the Belinsky-Zak­
harov2 version of the ISM to present a unified derivation of 
some known stationary solutions, like the Kerr-NUT met­
ric,9-11 the double Kerr metric,6,S and the rotating Weyl C­
metric,II,12 as well as other new solutions. 13 To derive the 
above-mentioned metrics we study a particular case of a di­
agonal multisoliton solution. Specializations of this solution 
are some well-known metrics, like the Schwarzschild metric, 
the Weyl C_metric,I4-16 and the Chazy-Curzon metric, 17.18 
as well as other new metrics. Then, we use this diagonal N­
soliton solution as a seed solution to generate new stationary 
one- and two-soliton solutions. Specializations of these solu­
tions are the above-mentioned known stationary solutions. 

In the application of the ISM to generate stationary 
solutions one finds mainly two difficulties. First, the ISM 
requires the explicit integration of an overdetermined sys­
tem of linear partial differential equations. To find integrals 
that can be expressed in a closed form for the above-men­
tioned system of equations is not an easy task. Second, the 
algebraic complexity of the solutions seldom allows us to 
display their main features. In this paper we also study the 
overcoming of the above-mentioned difficulties for the spe­
cial class of diagonal seed solutions. 

In Sec. II we present a summary of the main formulas 
used in the ISM and we study the possibility of having odd­
number soliton solutions. We arrive to the conclusion that 
we can have real solutions that can be interpreted as arising 
from solitonic perturbations of Euclidean solutions. In Sec. 
III we study the "SchrOdinger equations" for the wave func­
tions "'0' and in the diagonal case we reduce the integration 
of these equations, along the poles' trajectories, to a single 

quadrature. And we point out, since the ISM requires only 
the knowledge of "'0 along the poles' trajectories, the prob­
lem of finding soliton solutions is reduced to this single qua­
drature. 19 

In Sees. IV and V we examine the one-and two-soliton 
solutions generated from a diagonal seed solution, respec­
tively. In particular we give compact formulas for these solu­
tions. 

In Sec. VI we study a particular case of diagonal N­
soliton solution that contains as special cases the above-men­
tioned static metrics. Also, we find that odd-number solitons 
can be used to represent accelerated metrics. In Sec. VII we 
present particular cases of one- and two-soliton solutions 
generated using a diagonal N-soliton as a seed solution. 
Among these particular cases are all the previously men­
tioned stationary solutions. In Sec. VIII we briefly discuss 
the asymptotic and the singular behavior of the solutions 
generated using the ISM. Finally in the Appendix we study 
the possibility of using self-dual or anti-self-dual solutions to 
the Einstein equations on Euclidean space as seed solu­
tions.20 

II. THE INVERSE SCATTERING METHOD 

In this section we present the main formulas of the ISM 
used to solve the vacuum Einstein equations for the metric 

ds2 = eU(dr + dr) + rab dxa dxb
, (2.1) 

where the indices a and b take the values 3 and 4. Here, r ab 

and 0' are functions ofz and r only (O,t )=(X3,x4). The Einstein 
equations for the metric (2.1) tell us that if the determinant of 
rab is different from a constant, without losing generality, it 
can be set equal to ± r, i.e., 

det r = - Er , (2.2) 

where r is the 2 X 2 matrix associated to rab' and E takes the 
value + 1 for the usual axially symmetric metric with Lor­
entzian signature (+ + + -) and - 1 for the axially sym­
metric metric with Euclidean signature (+ + + +). 
When (2.2) is satisfied, the rest of the Einstein equations can 
be cast in the form 

(2.3) 
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(Tr = - r- I + (4r)-I tr(U2 - V 2), 

(T. = (2r)-I tr(UV) , 

(2.4a) 

(2.4b) 

U=ryrr- I , V==ryzr- I , (2.5) 

where the subscripts rand z denote partial differentiation. 
The condition of integrability of (T, i.e., (Tn = (Tzr' is exactly 
Eq. (2.3), thus any solution to (2.3) will give us a(Tthat can be 
obtained as a simple quadrature ofEqs. (2.4). Note that Eqs. 
(2.3)-(2.5) are completely equivalent to the corresponding 
equations of Ref. 2. 

Soliton solutions to (2.3) are obtained by solving the 
"Schrodinger equations" 

DrrPo= [(rUo+AVo)/(A 2+r)]rPo, 

DzrPo = [(rVo - AUo)/(A 2 + r)]rPo' 

rPol,,=o = ro, 

Dr=ar + [Ur/(A 2 + r)]a" , 

Dz =a. - [U2/(A 2 +r)]a" , 

(2.6a) 

(2.6b) 

(2.6c) 

(2.7a) 

(2.7b) 

for the wave function rPo. This wave function is a 2 X 2 com­
plex matrix function of z, r, and the spectral parameter A. 
Here, Uo and Vo are obtained by replacing r in (2.5) by a 
known solution to (2.3), roo The solution ro is called the 
"seed" or "background" solution. The knowledge of rPo al­
lows us to find the new solution r to Eq. (2.3), given by2 

N~)(r-I)lkN!f) 
rab = (rO)ab - ) , 

tt I'-kl'-I 
r kl = m~k)(ro)abm~)/(r + I'-kl'-I) , 

N~k) = m~k)(rO)bO , 

m~k) = m~)M!fa) , 

M(k) = .,.- 11 

'1'0 "=1'.' 
I'-k = ak - z + €k I [(ak - Z)2 + r] 1/21 , 

(2.8) 

(2.9) 
(2.10) 

(2.11) 

(2.12) 

(2.13) 

where the sum convention on the indices a and b has been 
adopted. The indices k and / run from 1 to N, N being the 
number of solitons, i.e., the number of simple poles that ap­
pears in the "scattering matrix" used to find2 (2.8)-(2.13). 
Here, mbk,,l and a k are sets of arbitrary constants and €k 
= ± 1. The only restrictions on ro used to find (2.8) are2 

ro = r'{; and det ro#O. Equation (2.8) tells us that r = rT 
and 

N 

det r = ( - I)Nr N II I'-k- 2 det ro . 
k=1 

(2.14) 

Since the actual space-time metric satisfies the condition 
det r = - r, we can define a new matrix, 

yh = ry/( _ det r)I/2 , (2.15) 

that is also a solution of (2.3) and satisfies the conditions yh 
= (yh)Tand 

det yh = - r, (2.16) 

whenever det r<O. From (2.14) and the condition (2.2) for 
ro, we get 

N 

det r = €( - I)N+ Ir(N+ 1) II I'-k- 2. 
k=I 

(2.17) 

Thus, we can fulfill the reality condition (2.16) by taking 
eitheranoddNwith€= -loranevenNwith€= 1 (usual 
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case). Hence, the odd-number soliton solutions can be inter­
preted as arising from solitonic perturbations of Euclidean 
metrics.21

,22 We shall return to this point in the next sections 
and in the Appendix. 

The integration of (2.4) can be performed in an explicit 
way. We get 

where eN is an arbitrary constant and the expression 
N 

II (I'-k - 1'-1 )-2 
k,1= 1 

should be set equal to 1 for N = 1. 

III. THE FUNCTION rPo 

In this section we study the function rPo solution to Eqs. 
(2.6) associated with the special class of diagonal metrics 

ds2 = eUO(dr + dz2
) + re-t/J d0 2 

- €e'" dt 2
, (3.1) 

where (To and t/J are functions of z and r only, and obey the 
equations 

(3.2) 

(To[t/J] = -t/J+ ~ J r[(t/J;-t/J;}dr+2t/Jrt/Jz dz ]. 

(3.3) 

Note that (2.3) and (2.4) for the metric (3.1) are equivalent to 
(3.2) and (3.3). When € = 1, these solutions to the vacuum 
Einstein equations are known in the literature as Weyl solu­
tions or Weyl metrics. 14 

Since the metric (3.1) is diagonal, one may assume that 
its associated function rPo is also a diagonal matrix. With 
these assumptions, Eqs. (2.6) give us 

(rar -A az + U a,,)det rPo = 2 det rPo, 

(r az + A ar)det rPo = 0, 

det rPol.l.=o = - €r. 

A solution to (3.4) is 

det rPo = €( - r + A 2 + Uz) . 

(3.4a) 

(3.4b) 

(3.4c) 

(3.5) 

A more general solution to (3.4) can be obtained adding €CA 
to the rhs of (3.5), where C is an arbitrary constant. We have 
omitted such a term because in the final results it will only 
introduce a redefinition of arbitrary constants. 

From the fact that (rPOh4 = (rPO)43 = 0 and Eq. (3.5), we 
conclude that there is not loss of generality in setting 

(rPOh3 = (r - A 2 - Uz)exp F, 

(rPO)44 = - € exp( - F). 

(3.6a) 

(3.6b) 

With this parametrization of rPo the matrix equations (2.6) 
for the metric (3.1) reduce to the scalar equations 

(rar -Aaz +ua,,)F=rt/J,r, 

(raz +A ar)F= rt/J,z , 

Pa~ricio S. Letelier 

(3.7a) 

(3.7b) 

(3.7c) 
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The integrability condition of F is just Eq. (3.2). Equations 
(3.7) are invariant under the transformation z-z + c and 
they are also linear. These two facts can be used to generate 
new solutions from known ones. 23 

In the final formulas (2.8)-(2.12) and (2.18) the matrix 
t/Jo appears in the form t/Jo Lt = 1'0' Thus, to construct the soli­
ton solutions we only need 

Fk ==F I ... =,uk ' (3.8) 

i.e., the function F along the poles' trajectories. These trajec­
tories obey the equations2 

I1-k,r = 2rl1-kl( 11-~ + r), I1-k,z = - 2J.tV( 11-~ + r) . 
(3.9) 

From (3.7)-(3.9) we get 

r arFk - I1-k azFk = rrP,r , 

I1-k arFk + r azFk = rrP.z . 

(3.lOa) 

(3.lOb) 

Thus 

Fk [rP ] = ~ f :k [( I1-k,rrP.r - I1-k.zrP,z )dr 

+ (l1-k,rrP,z + I1-k.zrP.r)dz] . (3.11) 

The existence of (3.11) is guaranteed by Eq. (3.2) and the fact 
that In I1-k is also a solution to (3.2). Note that 

I1-k,r I = ~ , I1-k,z I = 0 . (3.12) 
11-k 1'0-<1 r 11-k I' k--oO 

Thus, (3.11) is compatible with the initial condition (3. 7c). In 
other words, the overdetermined system of equations (2.6) 
for diagonal matrices Uo, Vo, and t/Jo is completely deter­
mined along the poles' trajectories; its solution reduces to a 
single quadrature. 19 Hence, in principle to any Weyl metric 
we can associate an N-soliton solution that, in general, will 
be stationary. 

In the closely related method of BT we have a similar 
result, i.e., the application of this method, in the case of diag­
onal seed solutions, reduces to the finding of a single func­
tion.24-26 

IV. ONE-SOLITON SOLUTION 

One-soliton solutions are defined as those solutions ob­
tained using the ISM with a "scattering matrix" with one 
simple real pole at A = 11-1' When the seed solution is (3.1), 
the one-soliton solutions can be written in a simple form; 
from (2.8)-(2.13), (2.15), (2.17), (2.18), (3.1), (3.6), and (3.8), we 
find 

(4.1b) 

(4.1c) 

(4.2) 
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where 

Yk ==(rll1-k )1/2 exp(Fk - rP 12) (4.3) 

and C., PI' and ql are arbitrary constants. These last two 
constants are related to m1:J and a I by 

Pk= - m~W(2ak)' qk=m~). (4.4) 
Equations (4.1) and (4.2) can be written in the more ap­

pealing form 

rf~ = - [sinh(y-x+8)/cosh(y+8)](re-~), 
(4.5a) 

rf~ = -17lr cosh xlcosh(y + 8), (4.5b) 

rr: = - [sinh(y + x + 8)/cosh(y + 8)]( - e.p), (4.5c) 

0'1 = 0'0 + In [r- 1/2 cosh( y + 8)1cosh x] + In C1 , 

(4.6) 

where the variables x and y are defined as 

x=ln(l1- l /r) , (4.7a) 

y=2F1 - rP -In(l1-llr) , (4.7b) 

and the constant 8 and the sign function 17 I as 

tanh 8 = (1 - Ki)/(l + Ki), (4.8) 

Kk==qklPk , (4.9) 

17k PkqkllPkqk I . (4.10) 

Also we have denoted the "renormalized" integration con­
stant by the same symbol used in (4.2), a practice that we 
shall follow in this paper. 

Note that the structure ofthe solution does not depend 
on the special form of the seed solution r 0' as long as 
(rO)43 = (rOh4 = O. In this case the ISM produces new solu­
tions that, in general, will have two new essential param­
eters,8 (or K I ) and al' Let me analyze the behavior of (4.5) 
for the special case of the Euclidean vacuum. In this case we 
have rP = FI = X + y = O. Thus rr: is the only component of 
ra~ that presents a localized behavior, i.e., it looks like a 
"bump." The name soliton used to describe these solutions 
can be only justified due to the method used in finding these 
solutions, i.e., the ISM. It is interesting to point out that the 
cylindrically symmetric solutions generated using the ISM 
present a clear soliton behavior.27 

V. TWO-SOLITON SOLUTIONS 

Two-soliton solutions are defined as those solutions ob­
tained using the ISM with a "scattering matrix" with two 
simple poles. In this case the poles are either real or complex 
conjugated. From (2.8)-(2.13), (2.17), (2.18), (3.1), (3.6), and 
(3.8) we find, after some algebra, 

rfh = [r( 11-2 - I1-tlPd 2 
- [(r + 11-1 11-2)P2]

2 
(re -.p) 

33 [r(11-2 -11-1)S1]2 + [(r +11-1 11-2)S2] 2 ' 

(5.1a) 
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r:,h= [r(,u2-,uI)Q.J
2

- [(r+,u1,u2)Q2]2 (-e"') PI 'P1P2(rl,uI,u2)1/2YIY2 
44 [ 2 [r 2 ' + qlq2(,u1 ,u2/r )I/2(yl y2)-I, r(,u2 -,uI)S.] + ( +,ul,u2)S2] (505a) 

(50lc) P2 'PlqZ(,u21,u1)1IZ(YIIY2) 
0"2 = 0"0 -In{ (r +,ui )(r + ,ui)(r +,ul ,u2f - q1P2( ,u ll,u2)1/2(Y2IY1) , (505b) 

X (l/,ul - l/,u2)2] + 0"2 + In C2, (502) TI = (P1YI)2 - (qIYI- I)2, (506a) 
where T2==(P2Y2)2 - (Q2Y2 -1)2, (506b) 

0"2 ==In{[r(,uz - ,u1)SIF + [(r +,ul ,uz)S2F] , (503) QI 'PlPz( ,u!llzlr)I/2YI Y2 

SI 'P1P2 YIYZ - QIQZ(yl y2)-1 , 
+ QIQ2(r l,ul ,uZ)IIZ(YI y2)-1 , (507a) 

(5.4a) 
Q2 'PIQz(,u1/,uz)I/Z(Y1/Yz) 

Sz 'PIQz(YIIYz) - QlPz(YzIYI), (5.4b) - QIPZ(,uZI,uI)I/Z(YzIYIl. (507b) 

The fact that the poles,ul and,uz are either real or complex conjugated can be used to simplify the previous formulaso For 
real,ul and,uz and real constants PI' QI,P2' and Qz such that 

PlPzqlqz > 0, (508) 

we find 

• .Ph _ [r(,uz - ,u l)cosh(S I + <5 + IF - [(r + ,u I ,uz)sinh(Sz + <5 - W (_2 - "') 
{33 - ,e , 

[r(,u2 - ,u1)Sinh(XI + <5+W + [(r +,ul ,u2)sinh(x2 + <5_W 
rf.h _ r(r +,uI,uZ)(,uZ -,ull lIz,ul(r +,ui)sinh(YI +tVI) -1I1,u2(r +,ui)sinh(yz +tVz) 
34- - 2p.1,uZ [r(,uz-,uI)sinh(xl +<5+W+[(r+,u1,u2)sinh(xz+<5_W' 

r:,h = [(r(,u2 - ,u1)cosh(:1 + <5+W - [(r +,ul ,u2)sinh(:2 + <5_W ( _ e"') 
44 [r(,u2 - ,u1)Sinh(XI + <5+W + [(r +,ul ,uz)sinh(x2 + <5_W ' 

0"2 = In{[r(,u2 - ,u1)Sinh(XI + <5+W + [(r +,ul ,u2)sinh(x2 + <5_)]), 

where the variables Xk, $k' gk' and:k are defined as 

XI==:I - pn(,u1,u2/r), 

X2==:2 +! In(,u2/ ,utl, 

$1 =:1 -In(,ul ,u2Ir), 

$2 =:2 + In(,u2/ ,u1)' 

YI =:1 +:2 -In(,ul/r) , 

Y2 =:1 -:2 -In(,u2Ir), 

:1 =F1 +F2-t/J, 
:2=F1 -F2, 

and the constants <5 ± and tVl and tV2 as 

tanh <5± = (K II - KIl/(K2 +KI)' 

tanh tVk=(l - Ki)/{l + Ki) 0 

In the complementary case of (508), ioeo, 

(509a) 

(509b) 

(509c) 

(5010) 

(50 11 a) 

(50IIb) 

(50l2a) 

(50l2b) 

(5.13a) 

(5.13b) 

(5.14a) 

(5. 14b) 

(5015) 

(5.16) 

PIPZQlq2 < 0, (5017) 

we find that the relations (509a), (509c), (5010), and (5015) keep the same form, but changing the hyperbolic functions by their 
respective cofunctionso The relations (50lIH50l4) and (5016) remain the sameo And the component 11: now reads 

• .Ph __ r(r +,ul ,u2)(,u2 - ,ul) 112 ,ul(r +,ui )sinh( YI + tVI) -111 ,uz(r +,ui )sinh( Y2 + tV2) 
fl' (5018) 

34 - 2p.1,u2 [r(,uz - ,ul)cosh(x1 + <5+W + [(r +,ul ,u2)cosh{xz + <5_W 0 

In the case that,ul and,u2 are complex conjugated, to end up with a real metric, we ought to choose constantsPI,P2' Ql' 
and Q2 as follows: 

P 'PI =pt. q==ql =qt 0 
(5019) 

It is also convenient to introduce the following notations: 

,u iJl=,ut, F'==F1=Fto (5.20) 
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From (S.20). (S.21), and (S.IHS.7) we find 

• .Ph _ [2rl ,u 1 sin Y2 cosh(sl + 8+W - [(r- + I ,u12)sin!S2 + 8_W (_2 -"') ru- ~ , 
[2rl ,u I sin Y2 sinh(x) + 8+W + [(r- + I ,u12)sin(x2 + 8_W 

(S.2Ia) 

• .Ph _ 21'(_2 1 12)' (r- + I ,u12)siny) COSh cosh(x) + 8+) + (r- - I ,u12)COSYl SinY2 sinh(xt + 8_) 
Y34 - r + ,u smY2 ., 2 _2 2 . 2 ' 

[2rl plsmY2 smh(xl + 8+)] + [{r + l,ul )sm(x2 + 8_)] 
(S.2Ib) 

r:,h = [2rl ,u I sin Y2 cosh(;) + 8+W - [(r- + I pI2)sin(;2 + 8_W (_ e"') 
44 [2rl ,u I sin Y2 sinh(xI + 8+W + [(r- + I ,u12)sin(x2 + 8_W ' 

(S.2Ic) 

(S.22) 

(S.23) 

U2 = Uo + u' - 21n{ Ir- + p21(r- + I pI2)(sinY2)/1 pi 1 + In C2 , 

u'==:ln{ [2rl ,ulsinY2 sinh(x) + 8+W + [(r- + I pI2)sin(x2 + 8-Wl ' 
where 

and 

XI =;, -In(1 pi/r), 

X2 =;2 - Y2' 

YI =X2 +8_, 

Y2 = arg,u, 

;, = 2 Re F' - ¢, 

;2=2ImF' , 

8+ = (J pl2 _ IqI2)/(1 pI2 + IqI2), 

8_ = arg(pq·) . 

Note that X)' X2.Y"Y2, ;), and;2 are real variables and that 
8 + and 8 _ are real constants. 

As in the one-soliton case the structure of the two-soli­
ton solutions does not depend on the seed solution ro parti­
cular form, as long as (rOb4 = (rO)43 = O. 

Letting ,ul =,u2 in (S.I)-(S.3), in the general case 
Plq1P2q2#0 we find yh = ro and U2 = Uo + In C2, Le., the 
two poles cancel out and we end up with the original seed 
solution ro. This result can be easily proved for a nondia­
gonal ro using the formalism of Ref. 2. In the closely related 
method of Backlund transformations we have exactly the 
opposite behavior, i.e., the coincidence of "poles" can always 
be used to generate new solutions.28 The case rf: = 0 will be 
studied in the next section. 

The two-soliton solutions generated by the ISM will 
have, in general, four independent new real parameters; a I, 
a2 and any two of Ct)1' Ct)2' 8+, and 8_, because among these 
last four parameters there are only two independent ones, as 
a close examination of relations (S.lS) and (S.16) indicates. 
And in the case of complex poles the new parameters are 
1m aI' Re a]o 8+. and 8_. 

VI. DIAGONAL N-SOLITON SOLUTIONS 

TakingeitherpI = Oorql = Oin (4.1) wegetthe degen-
erate one-soliton solution 

• .Ph i: (P I) -8,..2 _ ¢ 
(33 = - ul -;: re , (6.1) 

11': = 0 , rr: = - r-/rJJ • (6.2) 

where 15k = ± 1. We introduce the term degenerate soliton 
solution for the diagonal solutions (rf: = 0) to indicate that 
these solutions obey a linear differential equation. Similarly 
choosing constants Pk and qk such that rf: = 0 for the two-
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I 

(S.24a) 

(S.24b) 

(S.2Sa) 

(S.2Sb) 

(S.26a) 

(S.26b) 

(5.27) 

(5.28) 

soliton solution (S.2), we get the degenerate two-soliton solu­
tion 

(
,u ) -8,(,u ) -82 

r33 = 8182 -; / r-e - t/> , (6.3) 

where rr: is given by (6.2). A close examination of (S.I) 
shows that after doing rf: = 0, we can have, as a limit. 
p, = ,u2' i.e., the coalescence of two one-soliton solutions. 
Hence 

• .Ph ( I )-2IJ'_2 -t/> T33 = ,u) r re . (6.4) 

The above-mentioned limit is studied for a special class of 
stationary four-soliton solutions in Ref. 8. 

The solution (6.3) can also be obtained by considering 
(6.1) as a seed solution for the same one-soliton solution (6.1). 
After repeating this procedure N times we get 

N (P )-8k 
rf~ = II (-;8k ) _k re-'" , 

k=1 r 
(6.5) 

where 11': and r:.: are obtained as before. 
The metric associated to this solution can be written as 

(3.1) with € = I and a function ~ defined by 

¢N = -In(rf~/r). (6.6) 

Thus 

(6.7) 

The function ¢N satisfies (3.2) for any value of the constants 
15k , Strictly speaking, ¢ N can only be considered as a degen­
erate soliton solution when 15k = ± 1 but if one allows co­
alescence of solutions 15k can be taken as an integer number. 

Many well-known metrics are special cases of degener­
ate N~soliton solutions generated by the particular seed solu­
tion29 
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N 

¢ = b In r + 2: In 15k , (6.8) 
k=1 

where b is an arbitrary constant. In this case we find 

¢N = + 15k In(Jl;) + b In r. (6.9) 

The computation of the metric function 0"0 associated to 
(6.9) can be performed directly; from (3.3) we get 

0"0 [ ¢N] + ¢N 

= In{ Co'P212 i'II [Jl~Ui + P),s'(r + Jlt) -,s~ 

(6.10) 

where 
N 

/3=b- 2: 15k • (6.11) 
k 

For N = 1 the factor (Jli - Jl/Pj that appears in (6.10) is 
taken to be 1. In computing (6.10) we have made use of the 
relations (3.9). 

Since the metric associated to (6.8) is the Levi-Civita 
metric,30 also known as the Kasner cylindrical metric,30 the 
metric associated to (6.9) can be considered as a solitonic 
perturbation of this metric. A physical image of the solution 
associated to (6.9) can be obtained considering that the func­
tion ¢ can be related to the Newtonian potential Uby31 

(6.12) 

and that the Newtonian potential of an infinite wire oflinear 
mass density A located on the z axis is 

U = U In r . (6.13) 

Also, the Newtonian potential of semi-infinite wires oflinear 
mass density A lying on the z axis and located along 
[a I' + 00 [ and [a I' - 00 [ are, respectively, 

U =A InJlt , 

U=AlnJli, 

(6.14) 

(6.15) 

where we have introduced the notation 

Jll =Jlkl£k= ±I . (6.16) 
Thus, the solution (6.9) can be interpreted as arising from the 
superposition of N semi-infinite wires of linear mass densi­
ties 151/2, c52/2, ... ,c5N I21ocated on thez axis along [a» OOEI [, 

[a2,ooE2 [, ••• ,[aN,ooEN[' respectively, and another infinite 
wire of linear mass density /3 = b - ~k8k lying along the 
complete z axis. The identity 

Jlk+ Jlk- = - r (6.17) 
can be used to represent a given distribution of wires in many 
different ways, e.g., an infinite wire can be represented as the 
superposition of two semi-infinite ones of the same linear 
mass density. Specific examples of solutions represented in 
terms of wires can be found in Refs. 31-33. Note that this 
interpretation is not without pitfalls since it is notorious that 
the spherically symmetric Schwarzschild solution trans­
forms to the field of a rod in the cylindrical coordinates of the 
metric (3.1) with E = 1, as we shall see later in this section. 
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Now we shall study some particular cases of the diag­
onal metric (3.1) with E = 1 when the metric functions ¢ and 
0"0 are given by (6.9) and (6.10), respectively. The special 
cases are obtained by assigning particular values to the pa­
rametersc5k, ak, Ek, andb that appear in the definition of ¢N 
andO"o[¢N]' 

Minkowski metric: The specializations b = 0 and 
15k = 0 (k = 1, ... ,N) yield the Minkowski metric in cylindri­
cal coordinates. 

Accelerated metrics: Either one of the specializations 15k 
= 0 (k = 1, ... ,N) and b = 2 or 151 = b = 1 and 15k = 0 

(k = 2, ... ,N) give uniformly accelerated fiat metrics. The first 
case corresponds to the metric studied by Rindle~4 and the 
second is studied in Refs. 16 and 35. Note that in this last 
case the acceleration is represented by a semi-infinite wire of 
density A = !. 

Weyl 8-metric: Either one of the specializations 
151 = - 152 = 8, 15k = 0 (k = 3, ... ,N), EI = E2, and b = 0 or 
151 = 82 = 15, 15k = 0 (k = 3, ... ,N), EI = - E2, and b = 0 pro­
duces the Weyl8-metric36 also known as the Weyl r-met­
ric,37 the Zipoy metric,38 or the Zipoy-Voorhees metric. 39,40 
This metric is the static limit of the TS solution41 with distor­
tion parameter 8, that in the case 8 = 1 reduces to the 
Schwarzschild solution. The different "representations" of a 
given solution are a consequence of (6.17); from now on we 
shall indicate only one of such representations. Multiple 15-
metrics can be obtained choosing the parameters in the fol­
lowing way: 15k = 15k + I = c5(k), Ek = - Ek+ I 

(k = 1,3,5,N - 1; even N) and b = O. The particular case of 
n = N 12 Schwarzschild masses, i.e., 8k = 1 (k = 1, ... ,N) has 
been studied by many authors.2,29,31,32 In this case the mass 
of each particle is given by mk = (ak+ I - ad/2 
(k = 1,3,5, ... ,N - I). 

Chazy-Curzon metric: The specialization 151 = - 82 
= mIla, EI=EI = E2, a l = a l 

- a, a 2 = a l + a, where m l 

and a l are new constants, b = 15k = 0 (k = 3, ... ,N), and the 
limit32,3S a-o give the Chazy-Curzon metric that repre­
sents a single "particle" of mass EI m I located on the z axis at 
z = a l

• The potential ¢N in this case reduces to 

(6.18) 

A metric representing n = N 12 Chazy-Curzon particles of 
masses ~mk located on the z axis at z = a k can be obtained 
by choosing the parameters that characterize ¢ N as ~=E k 

=Ek+ l , ak =ak-a, a k+ 1 =ak +a, 8k = -8k+ 1 
= m k la (k = 1,3,5,N - 1, even N), and b = 0, and letting 
a-o. The case of multiple Chazy-Curzon metrics generat­
ed by particles of positive and negative masses (~= ± 1) 
has been widely studied. 17,32,42-44 Metrics representing 
n = N 13 accelerated Chazy-Curzon particles can be ob­
tained doing the specialization ~=E k = E k + I , E k + 2 

= ± 1, ak = a k - a, ak + I = a k + a, a k + 2 = 0, 15k 

= - 8k + I = m k la, 8k + 2 = 1 (k = 1,4,7, ... ,N - 2; N 13 
integer), and b = n, and letting a-o in ¢N' The case n = 2 
was first studied by Bonnor and Swaminarayan3S (BS). The 
accelerated Chazy-Curzon metric can be generalized by the 
inclusion of a "distortion" parameter in the acceleration 
term, i.e., taking 15k + 2 arbitrary and b = ~Z = I 8k + 2 in­
stead of8k + 2 = 1 and b = n. 
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Weyl C-metric: The specialization 8 1 = 82 = 83 = 1, 
8k = 0 (k = 4, ... ,N), b = 1 yields the Weyl C-metric in the 
Bonnor3-Godfrey45 coordinates whenever the parameters 
ai' a2' and a 3 satisfy the cubic equation 

2A 4X 3 -A 2X 2 + m2 = O. (6.19) 
The new parameters m and A are identified as the particle 
mass and acceleration, respectively. Note that we have iden­
tified the Weyl C-metric as a three-soliton perturbation of 
the Euclidean version of the Weyl-Levi-Civita metric with 
ifJ = In r. A two-soliton identification, however an indirect 
one, can be found in the paper quoted in Ref. 13. Metrics 
representing n = N /3 uniformly accelerated particles of 
mass mk and acceleration Ak (k = 1,4,7, ... ,N - 2; N /3 in­
teger) can be obtained letting 8k = 8k+ I = 8k +2 = 1 and 
b = n inifJN' and choosingak , a k+ I' andak+ 2 as the roots 
of the cubic equation 

2A tx 3 -A ~X2 + m~ = O. (6.20) 
These metrics can be generalized by the inclusion of a distor­
tion parameter 8 k in the following way: take 8k = 8k + I 

=8k+ 2 =8(k) b=l:k=l 8k and ak' ak+\1 and ak+2 as 
before. The case of integer 8 k can be thOUght of as arising 
from the coalescence of 8 k equal accelerated particles. Re­
cently Plebanski and Garcia D.46 discussed a metric that 
contains a distorted Weyl C-metric as a particular case, alas 
the coordinates used by the above-mentioned authors are 
completely different to ours. Thus the relation between the 
above-mentioned particular case with our n = 1 case cannot 
be easily established. We have not been able to find in the 
literature multiple Weyl C-metrics. 

New metrics can be also obtained doing the above-men­
tioned specializations at once, i.e., we can have a metric rep­
resenting the superposition of n[; Weyl 8-metrics, nee 
Chazy-Curzon metrics, and so on. Also, we have not been 
able to find in the literature such a mixed system of "parti­
cles." Furthermore, taking an arbitrary b we can superim­
pose an infinite wire on the z axis. Finally, we want to point 
out that we have not included in our analysis of particular 
cases the constant Co that appears in (6.10). In general, for 
each particular metric this constant has a particular form 
that depends on the values of 8k , a k • etc. This is a conse­
quence of the fact that almost all the metrics presented here 
were first obtained in completely different systems of coordi­
nates. A discussion of this point can be found in Refs. 32 and 
33 and in the paper quoted in Ref. 13. 

VII. STATIONARY MULTIPLE-SOLITON SOLUTIONS 
The degenerate N-soliton solution studied in the pre­

ceding section can again be used as a seed solution to gener­
ate new one- and two-soliton solutions to the vacuum Ein­
stein equations. To generate these new solutions we only 
need to compute the functions Yk associated to t/J N as the 
expressions (4.1)-(4.3) and (5.1)-(5.7) indicate. 

Equations (6.8) and (6.11) tell us that the seed solution 
t/J N can be written as 

N 

t/JN = 2: 8k In,uk +/3lnr. (7.1) 
k=l 

From (7.1) and (3.11), with the help of (3.9), we obtain 
1 N 

FJ ='2/3ln/J-j + k~1 8k In(/J-j -/J-k). (7.2) 
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where the indexj takes the values I for the one-soliton solu­
tion and I and II for the two-soliton solution. In computing 
(7.2) we assume /J-j =I=/J-k' Finally (7.1), (7.2), and (4.3) yield 

(7.3) 

Thus, changing the index 1 by I and the function ifJ by ifJN in 
(4.1)-(4.3) we get a one-soliton solution associated to (7.1). 
Similarly, replacing 1 by 1,2 by II, and¢> bY¢>N in (5.1)-(5.7), 
we obtain the two-soliton solution associated to (7.1). Of 
course, in both cases the function 0'0 that appears in (4.2) and 
(5.2) is the one associated to (7.1), i.e., the function 0'0 [ ¢>N] 

given by (6.10). The one- and two-soliton solutions con­
structed with (7.1) actually are an (N + 1)- and an (N + 2)­
soliton solution, respectively. Let me introduce the notation 
(N + I)-soliton and (N + I1)-soliton to indicate solitons that 
are formed by the superposition of a degenerate (diagonal) N­
soliton and either a I or a II nondiagonal soliton. We shall 
study special cases of (N + 1)- and (N + I1)-soliton solutions 
that are obtained by particularizing the function ifJ N' 

(0 + I)-soliton solutions: The one-soliton solution con­
structed from (7.1)-(7.3) with 8k = 0 (k = 1, ... ,N) is a one­
solitonic perturbation of the Euclidean version, of the 
Kasner cylindrical metric. This (0 + I)-soliton can be also 
considered as the elliptic version of a metric studied in Ref. 1. 
Three special cases are particularly interesting, the cases 
b = 2, b = 1, and b = O. In the first case, we have a solitonic 
perturbation to the Euclidean version of the Rindler metric, 
in the second a solitonic perturbation of the other acceler­
ated metric described in Sec. VI, and in the third a solitonic 
perturbation to the Euclidean metric. This last particular 
case may be called a half-Kerr-NUT since the Kerr-NUT 
metric is a (0 + I1)-soliton with b = 0 as we shall see later in 
this section. In the general case the (0 + I)-soliton solution 
has only one new parameter KI (the parameter a l can be 
eliminated by a z-axis translation). From the discussion of 
Sec. VI we can say that in the general case (b =1= 0) the (0 + 1)­
soliton solution represents an infinite rotating wire formed 
by two semi-infinite wires of different constant linear mass 
densities lying on thez axis along [aJ> ~ [and [ai, - ~ [. The 
static limit of this metric was studied by Godfrey45 in the 
search of Weyl metrics with homothetic motions. 

(1 + I)-soliton solutions: The one-soliton solution con­
structed from (7.1)-(7.3) with 8 1 = 1, 8k = 0 (k = 2, ... ,N), 
E I = - E1 , and b = 0 is the Kerr metric. This identification 
is studied in some detail in Ref. 2. The present case admits 
the simple generalization 8+=8 (arbitrary) and b = 8 - 1. 
Note that this solution is not simple related to the TS class of 
solutions since the distortion parameter enters only in "half" 
of the solution. 

(2 + I)-soliton solutions: The one-soliton solutions con­
structed from (7.1)-(7.3) admit three important particular 
cases that are obtained by the following specializations of the 
parameters that define ifJ N' 

(a) Take 8 1 = 82 = 1,8k = O(k = 3, ... ,N),b = I,andal' 
a 2, and a l as the roots of the cubic equation (6.19). This case 
represents the rotating version ofthe Weyl C-metric studied 
by Kinnersley. 1o.12 

(b) Take 8 1 = 82 = 8, 8k = 0 (k = 3, ... ,N), El = - E2. 
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and b = 1. This case represents a rotating Weyl l5-metric 
with acceleration parameter. Note that this Qletric is not 
simple related to the TS family of solutions sinCe letting the 
parameter a, --+0 and K, --+0 we do not end up with the Weyl 
8-metric. Also it can be considered as a generalization of the 
precedent case. A similar metric was studied by Hoense­
laers, Kinnersley, and Xanthopoulos24 (HKS) using a HKS 
transformation.47 

(c) Take a 1=a1-a, a2=a1+a, E1=E2' 
151 = -152 = mila, b = 1, and 15k = 0 (k = 3, ... ,N), and let 
a--+o. This case represents a rotating Chazy-Curzon metric 
with acceleration parameter, i.e., a rotating version of a one­
center BS metric. By the addition of two more degenerate 
solitons and doing a similar specialization of the parameters 
a3, a4 , 83, 84, etc., we shall have a rotating version of the 
usual two-center BS metric. 

(0 + II)-soliton solutions: The two-soliton solution 
(5.1H5.3) constructed from (7.1H7.3) with 8k = 0 
(k = 1, ... ,N) is a two-soliton perturbation of the Kasner cy­
lindrical metric. In the case b = 0 (Minkowski background) 
this metric is equivalent with the Kerr-NUT metric. This 
equivalence can be proved directly, i.e., by change of varia­
bles.2 

(1 + II)-soliton solutions: The two-soliton solution con­
structed from (7.1H7.3) with 151 = 1, 152 = 0 (k = 2, ... ,N), 
b = 1, and constants ai' aI' and au solutions to Eq. (6.19) 
represents a rotating uniformly accelerated particle with 
usual "electric" mass as well as "magnetic" mass48 (NUT 
parameter), i.e .• the generalization of the Weyl C-metric 
studied by Kinnersly in a different system of coordinates. 
This rotating "Weyl-NUT C-metric" can be generalized by 
the addition of a "distortion" parameter in the acceleration 
term, i.e .• taking 8 1 = b = 8 instead of 151 = b = 1. 

(2 + II)-soliton solutions: The two-soliton solution con­
structed from (7.1H7.3) with 8k = 0 (k = 3, ... ,N) admits 
three significant particular cases. Two of them can be de­
scribed as the superposition of a Kerr-NUT metric with ei­
ther a Weyll5-metric or a Chazy-Curzon metric and the 
third as a double Kerr metric, i.e., as a (1 + I) + (1 + 1)­
soliton solution. The parameters in the first two cases are 
taken as indicated in Sec. VI. Due to the relation that exists 
between the double rank-zero HKX transformation and the 
Belinsky-Zakharov two-soliton transformation49 we con­
clude that the two-soliton solution generated from the Weyl 
8-metric is closely related to metrics studied by Cosgrove50 

and Dietz and Hoenselaers.51
•
52 Similarly the two-soliton so­

lution generated from the Chazy-Curzon metric is closely 
related to another solution studied in Ref. 52. We shall re­
turn to this point at the end of this section. 

(3 + II)-soliton solutions: The two-soliton solution con­
structed from (7.1H7.3) with 8k = 0 (k = 4 .... ,N) admits a 
relevant particular case that can be described as the superpo­
sition of a "distorted" Weyl C-metric46 and a Kerr-NUT 
metric. When the distortioJl parameter 15 is taken to be 1, we 
have the superposition of a usual Weyl C-metric and a Kerr­
NUT metric. In this last case we can think of the (3 + 11)­
soliton solution as a (2 + I) + (1 + I)-soliton solution, i.e., 
we have the superposition of a Kerr metric with a rotating 
Weyl C-metric. To have such particular cases we ought to 
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specialize the parameters a" 8 11 etc., as indicated in the 
(2 + 1)- and the (1 + I)-soliton solutions already studied. 

(4 + II}-soliton solutions: The two-soliton solution con­
structed from (4.1H4.3) with 8k = 0 (k = 5, ... ,N) admits 
three significant special cases that can be characterized as, a 
(2 + 2 + II)-soliton, a 3 + (1 + II)-soliton, and a 
(2 + I) + (2 + I)-soliton. The first case can represent the su­
perposition of the Kerr-NUT metric with any two of the 
degenerate two-soliton solutions described in Sec. III, i.e., 
the Weyll5-metric and the Chazy-Curzon metric, depending 
on the particular values assigned to the different parameters 
that characterize each particular solution. Similarly by 
choosing the sets of parameters (a1,a2,a3) and (a4,a"aU) 
satisfying Eq. (6.19); 8 1 = 82 = 83 = 8 and b = 8 we have 
that the 3 + (1 + II)-soliton case represents the superposi­
tion of a distorted Weyl C-metric with the rotating Weyl­
NUT C-metric mentioned before. The last and more inter­
esting case is the (2 + I) + (2 + I)-soliton solution. Specializ­
ing the parameters that characterize the function t/JN as the 
(2 + I)-soliton case we have that this metric can describe the 
superposition of two equal or different metrics as the rotat­
ing Weyl C-metric, the rotating Weyll5-metric with accel­
eration, and the one-center rotating BS metric. A space-time 
described as the superposition of two one-center rotating BS 
metrics, i.e., a two-center BS metric, was studied by Dietz 
and Hoenselaers.51 using HKX transformations. 

Any of the above-mentioned metrics can be easily gen­
eralized by considering an arbitrary b, i.e., we can superim­
pose an infinite wire lying on the z axis. By choosing the 
parameters that define t/J N as indicated in Sec. VI, we can also 
perform a superposition of n6 Weyll5-metrics, nee Chazy­
Curzon metrics, and nc Weyl C-metrics with any of the sta­
tionary metrics described in this section. 

The solutions generated using the ISM and HKH trans­
formations are closely related, since the space of solutions 
generated by these two soliton generating techniques are 
equivalent.49 U nbappily, this relation does not give informa­
tion about particular solutions. The actual identification of 
solutions obtained using the ISM and the HKX transforma­
tion is performed in the usual way, i.e., finding a coordinate 
transformation that shows the desired equivalence. In gen­
eral to find this coordinate transformation is not an easy 
task, since in the actual applications of the ISM and HKX 
transformations one takes advantage of a completely differ­
ent system of coordinates. 

Finally, we want to point out that in this paper we have 
focused our attention only on solutions generated using the 
ISM with (7.1) as a seed solution. For solutions obtained 
using either a different soliton-solution-generating tech­
nique or a different seed solution or both, see Refs. 23, 25, 
and 53. 

VIII. DISCUSSION 

Two important aspects of the solutions presented in the 
paper are the asymptotic behavior and the existence of singu­
larities on the symmetry axis that do not appear in the poten­
tial t/JN' 

In general, the even-number soliton ISM maps asymp-

Patricio S. Letelier 474 



                                                                                                                                    

totically flat diagonal solutions into asymptotically flat solu­
tions. Cosgrove proved the following theorem49: If the seed 
solution is such that 

(S.l) 

whereM and K are constants and R 2 = r + z'l-, then the new 
solution obtained using the ISM is asymptotically flat (pro­
vided that certain weak conditions are satisfied). Unhappily 
the condition (S.I) is too restrictive to include many of the 
metrics studied in the present paper. In general, the acceler­
ated metrics do not satisfy (S.I), e.g., the Weyl C-metric, 
which is also an odd soliton. Of course, there exist in the 
literature more sophisticated definitions of asymptotic flat­
nessS4,ss that are satisfied by accelerated metrics, e.g., the 
Weyl C-metric satisfies the Ashtekar AEFANSI defini­
tion.56 Due to the peculiarities of these definitions and the 
ISM a great amount of work needs to be done before we can 
formulate a theorem that relates the ISM with a definition of 
asymptotic flatness like AEF ANSI. 

Usually, metrics with an infinite wire type singularity 
are not considered as asymptotically flat metrics, although 
some of them present asymptotically flat behavior at r_ 00 • 

See, for instance, the first citation in Ref. 53. In general, if 
one takes a seed solution that is "asymptotically flat" at 
r_oo, the metrics obtained using the ISM also have the 
same behavior at r_ 00 • For the metrics studied in this paper 
we can always remove an infinite line of singularities by add­
ing a wire of opposite mass density, i.e., by choosing a suit­
able h. Studying the odd-number soliton solution presented 
in this paper we see that an odd-number soliton ISM will 
generate an infinite line of singularities and in consequence 
will produce a nonasymptotically flat solution. In the me­
tries presented in Secs. VI and VII these infinite lines of 
singularities were eliminated using the already described 
method, otherwise we noticed the presence of such wires. 

The problem of the existence of singularities on the 
symmetry axis that do not appear in <PN goes back to 1936 
when Silverstein42 criticized, erroneously, the general rela­
tivity for allowing a solution representing two Chazy-Cur­
ron masses in equilibrium. Einstein and Rosen43 found that 
the metric is singular on the line that joins both masses, i.e., 
there is a strut keeping both masses apart. The condition of 
regularity on the axis of symmetry, also known as the ele­
mentary flatness condition, has been studied by many au­
thors.32,35,57 In particular, Bondi considered masses of both 
signs in order to eliminate the struts.44 

Recently, the problem of regularity on the symmetry 
axis was examined for metrics representing twci58,59 and N 
Kerr particles,6O and two rotating Chazy-Curzon-like parti­
cles.5 I In the last case it was found that the spin-spin interac­
tion can keep apart two positive masses rotating in the same 
direction.51 For the case of two positive Kerr particles it 
seems that the spin-spin interaction is not enough to balance 
the gravitational attraction. 59 

Due to the simple functional form of the one- and two­
soliton solutions presented in Secs. IV and V one may use 
these expressions to compute the curvature invariants and 
study their singular behavior. We believe that computing 
these invariants could present an interesting example in 
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checking the practical efficiency of the algebraic computer 
programs for the Einstein equations.61 

APPENDIX: INSTANTONS WITH AXIAL SYMMETRY 

In this appendix we study the possibility of using self­
dual or anti-self-dual solutions to the vacuum Einstein equa­
tions as seed solutions. The metric 

dr- = (WO)2 + (W I)2 + (W2)2 + (W3)4 , (AI) 

w0==.(Rf) I 12(dt + W dO), wl=(R /f)1/2 dO , (A2) 

w2==.ek dr , w3==.ek dz , 

where k, R,f, and Ware functions of rand z, represents a 
"stationary" axially symmetric Euclidean metric. The con­
dition that the Riemann Christoffel tensor be self-dual or 
anti-self-dual, as well as one that the Ricci tensor be zero, is 
implemented by20 

WOI = 7JW 23 , W02 = 7JW31' W03 = 7JW12 , (A3) 

where WOI, W23' etc., are the connection one-forms and 
7J = + 1 for self-dual solutions (instantons) and 7J = - 1 for 
anti-self-dual solutions (anti-instantons). From (A2) and 
(A3) we get 

kz = -! 7JfW" k, =! 7JfWz , (A4) 

R,/R+f'/f= -7JfWzo Rz/R-fz/f= -7JfW" 

(AS) 

R,/R - I,/f= 7JfWz ' RJR + fz/f= 7JfW, . (A6) 

From (AS) and (A6) we get 

R = I, (A7) 

W = 7J f f-2(fz dr - I, dz), (AS) 

and from (AS) and (A4) we have 

k = - pnf, (A9) 

(f-I)" + (f-I)zz = O. (AW) 

Note thatf- I and Ware harmonic conjugated functions, 
i.e., f- I = ReH(1') and W= ImH(1') or f- I = ImH(1') 
and W = Re H (1'), where H is an arbitrary function of 
l' = r + iz. In (AS) and (A9) we have omitted the integration 
constants, because in the metric they can be eliminated by a 
trivial change of variables, by the same reason we have set 
R = 1. Thus, 

dr-=f(dt+ WdO)2+(dr+dz'l-+dO)2/f. (All) 

First we note that this is a special case of the Hawking met­
ric,62 

ds2 = V-I(x)(d1' + CI). dX)2 + V(x)dx· dx, (AI2) 

since (AI2) reduces to (All) letting 

V(x) = l/f(X I,x2) , (A13) 

w(x) = [O,O,W(X I,x2)] . (AI4) 

From (All) and (AS) we conclude that the only diag-
onal axisymmetric instanton is the Euclidean vacuum. One 
can easily generalize the previous result by considering the 
metric 

dr- = (AodxO)2 + (AI dX I )2 + (A2 dX2)2 + (A3 dX3)2, 
(AIS) 
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withAo, A I' A 2, andA3 functions of xo, xl, x2
, and x 3

• Also, in 
this case the only metric that is a solution to (A3) is the 
Euclidean metric. Since the axisymmetric instantons cannot 
be cast as (3.1) we cannot use them as seed solutions in the 
context of the present paper. The nondiagonal metric (All) 
can be used to generate an odd number of soliton solutions in 
the general case (nondiagonal case), since (All) also obeys 
the key equation used in the ISM, i.e., Eq. (2.3). The instan­
tons characterized by (A 11) have the following "anomalies": 
det r = 1 and the equations for k cannot be cast as (2.4). 
These two "anomalies" will force us to change Eqs. (2.17) 
and (2.18). 
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Starting from a particular metric of the Kerr-Schild form, we find solutions to the Einstein 
equations coupled to a Weyl field, to an electromagnetic field, to a nonlinear (Bom-Infeld) 
electromagnetic field, to a Yang-Mills field, and to a cosmological constant. These solutions can 
be superposed to construct others with any combination of the sources considered. 

I. INTRODUCTION 

This paper is concerned with exact solutions, of the 
Kerr-Schild form, to the Einstein field equations with 
sources. Some ofthe solutions presented here have been pre­
viously known; however, our main purpose is to show that, 
in a certain sense, these solutions can be superposed. All the 
solutions given here are of type D and have four Killing vec­
tors and a Killing-Yano tensor; they reduce in the case of 
vacuum to one of the Newman-Unti-Tamburino (NUT) 
metrics. 

Another contribution of this paper is to show that the 
proposed metric can be considered as produced by a nonlin­
ear electromagnetic field of the Bom-Infeld type. It may be 
remarked that there are quite few known exact solutions to 
the Einstein-Bom-Infeld equations and that, even in flat 
space-time, the solutions to the Bom-Infeld equations are 
rather scarce. 

Most of this paper uses the null tetrad formalism as 
described in Ref. 1. In the discussion of the Weyl equation 
we also employ the spinorial formalism; a brief exposition of 
the necessary background is given here with the purpose of 
stating the notation and conventions to be used. For a review 
concerning the general properties of the Einstein-Weyl 
equations the reader is referred to the article by Kuchowicz.2 

We also give a very concise exposition of the basic facts about 
the Born-Infeld nonlinear electrodynamics. A more general 
and detailed discussion on nonlinear electrodynamics in 
general relativity can be found in Alarcon Gutierrez et al.3 

and the references cited therein. 
We shall consider space-times whose metric is of the 

Kerr-Schild form, that is, space-times whose metric can be 
written in the form 

g = 2 d~ d~ + 2 du dv + 2hk 2, (1.1) 

where u and v are real coordinates, ~is a complex coordinate, 
~ denotes its complex conjugate, h is a real function, and 
k = kp dx'"' is null (t'Y kp ky = 0). Since k is also null with 
respect to the flat metric 11 = 2d~ d~ + 2 du dv, it can be 
expressed as 

-IOn leave of absence from the University of Warsaw, Warsaw, Poland. 

k=du + Yd~+ Yd~- ITdv, (1.2) 

where Y is a complex function. 
The metric (1.1) can be written as g = 2ete2 + 2e3e\ 

with 

e1 = d~ - Y dv, e2 = el, e3 = k, e4 = dv + hk. (1.3) 

The tangent tetrad a Q' defined through eQ(ab ) = 8"", is then 
given by 

at = a, - yau, a2 = a;, a3 = au - ha4, 

a --
a4=k P -=a + yaJo + Ya" - yya . ax'"' v ~ ~ u 

We will restrict ourselves to the case in which 

Y = ~ I(v + ia), 

(1.4) 

(1.5) 

where a is a real constant and h is a function of v only. With 
this choice for Y the curves which havea4 as tangents form a 
shear-free congruence of null geodesics (with respect to both 
metrics, g and 11). This congruence, for a#O, is what has 
been called a Robinson congruence; a geometrical descrip­
tion of it has been given by Penrose.4 This twisting con­
gruence can be considered as a geometrical representation of 
a twistor. 

The connection one-forms for the tetrad (1.2H1.4) are 
then given byl 

r'2 + r 34 = [h.v + (i - Z)h ]e3, 

r 3, =Zhe2
, 

where 

Z = - r42t = (v + ia)-'. 

(1.6) 

(1.7) 

The nonvanishing components of the curvature are deter­
mined by 

R'2 = - (Z + i) 2[h I(Z + i)].v, 
R34 = - Z 2( [h.v + (i - Z)h ]/Z 2).v, 

C(3) = R 16 + 2Z [h.v + (i - Z)h ], 

(1.8) 
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whereR = 2(R12 + R34)isthescalarcurvatureandC(3l char­
acterizes the conformal curvature. If C (3l i= 0, then the metric 
is of type D. The vector fields a3 and a4 are geodesic and 
shear-free and, when C(3l i=0, they point along the two dou­
ble principal null directions of the Weyl tensor. 

From the contracted Bianchi identities we find 

R34 = ZZ_ (R~) . 
Z+Z ZZ,4 

(1.9) 

Similarly, if Tl2 and T34 are the only nonvanishing indepen­
dent components of the energy-momentum tensor, then 
from the identities Tab;a = 0, it follows that 

T _ ZZ (T34) 
12 - Z +Z ZZ,/ (1.10) 

thus, the equation R 12 = 81TT34 implies R34 = 81TTI2. There­
fore, the Einstein equations reduce to a single ordinary dif­
ferential equation. 

In the cases considered below, it turns out that the com­
ponents of the energy-momentum tensor of the matter fields 
are independent of h; therefore, h is determined by an ordi­
nary linear differential equation. Furthermore, the field 
equations of the sources happen to be solvable without speci­
fying h (v), even though h appears in them. This fact, together 
with the linearity of the Ricci tensor on h, implies that by 
adding the h corresponding to each source we obtain a solu­
tion to the Einstein field equations coupled to any combina­
tion of that matter fields considered here (neglecting any 
interaction between the various matter fields). In the general 
case of the Kerr-Schild geometry, Giirses and Giirsey5 have 
shown that, in an appropriate coordinate system, the Ein­
stein tensor takes a linear form in g,...v' 

Under the present assumptions, independent of the ex-
plicit form of h (v), the metric has the four Killing vectors 

KI =au , 

K2 = v(a, + a~) - (c + t)au + ia(a~ - a~), (1.11) 

K3 = iv(a, - a~) + it; - t)au - a(a~ + a~), 
K4 = i(ca~ - ta~). 

Furthermore, the skew-symmetric tensor field lab whose 
only non vanishing independent components are 112 = - iv 
and.h4 = a is a Killing-Yano tensor6

; hence, Qab = 1aJ;, C is 
a Killing tensor. 

II. INTEGRATION OF THE FIELD EQUATIONS 

In this section we solve the equations. for the gravita­
tional field coupled to various matter fields. 

A. Elnsteln-Weyl equations 

The Weyl equation for the (two-component) neutrino 
field is given by 

VAil'PA = 0, (2.1) 

where 'PA (A = 1,2) are complex functions which represent 
the neutrino field and VAB is the covariant derivative along 
the vector field VAB = ~Baa (A = 1,2; iJ = i,i), with 
~B.acb = _ 2~c~b, where ~c and ~b are Levi-Civita 

symbols, and aAB = ~A. The covariant derivative of a 
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spinor field l/> AB... can be obtained from 
Va</JAB ... = tPAB ... ,a - (()cA (aa)tPCB ... - (()cB(aa)tPAc", - .... 
where (()cA and (()c il = (()c B denote the spinorial connection 
one-forms. We shall choose the functions ~B as 
g.li = g2zi = g,li _ g<zi =,fi and all others equal to zero. 
Then, the spinorial connection one-forms are given by 

((()AB) = . (
!(r12 + F 34) F31 ) 

- F42 - ~(r12 + r34) 
(2.2) 

The gravitational field equations for interacting gravi­
tational and matter fields are 

Rab - !Rgab = - 81TTab , (2.3) 

where Tab is the energy-momentum tensor of the matter. In 
the case of the neutrino field 

Tab = (i'/i/S)[ga AB('PB Vb 'PA - 'PA Vb 'Pil ) 

+gbAB('PilVa'PA -'PAVa'PiI)], (2.4) 

where 'PA = 'PA. 
Using Eqs. (1.6) and (2.2) we obtain the Weyl equation 

in explicit form 

(a4 + Z )'P2 - al'Pl = 0, 

aZ 'P2 + [a3 - !(h,v + (Z + Z)h)] 'PI = O. (2.5) 

In order to have T 44 = T42 = T22 = 0, as required by (2.3) 
and (1.8), we shall take 'PI = O. Then, from (2.5) it follows 
that 

'P2 = AZ, (2.6) 

where A is a complex function such that A,4 = A,2 = O. 
Computing the remaining components Tab. we find that 
when A is a complex constant Ao, the only non vanishing 
components are given by 

TI2 = - T34 = - (a/i12v1)JAoZ2J 2. (2.7) 

Solving now for h, from the field equation RI2 = 81TT34 
we obtain 

(2.8) 

where m is a real constant. 
Setting Ao = 0, the metric defined by (2.S) becomes a 

solution of the Einstein vacuum field equations which is one 
of the NUT solutions. In fact. the coordinate transformation 

Xl = _ U - Ctv/(v2 + a2), 

x 2 = II. (2.9) 

x 3 + iX4 = v2 C I(v + ia), 

brings the metric derived above to the form given by New­
man et al.7 for their metric with p,0 = O. 

The constant a is related to the NUT parameter; how­
ever, in the present case. by rescaling the coordinates u and v 
and the constants m and Ao, a can be reduced to one of the 
three values - 1,0,1. When a = 0 but Aoi=O, the neutrino 
field becomes a ghost field [see Eq. (2.7)] and the metric is a 
vacuum solution. which is a limiting case of the Schwarzs­
child metric corresponding to infinite mass. 8 In this case 
there exists a homothetic Killing vector given by 

H = 2vav + 4uau + 3Ca, + 3tar; (2.10) 
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and there is a singularity for the metric and the neutrino field 
along v = O. 

The solution (2.6), (2.8) was found by oiaz9 while 
searching for solutions to the Einstein-Weyl equations of the 
Kerr-Schild form. The branch with a = 1 was obtained by 
Kolassis 10 who was searching for stationary axially symmet­
ric solutions. In the form given by him, it is not clear how to 
make the neutrino field amplitude to vanish. 

Due to the symmetry between the two principal null 
directions, one can expect to have an analogous solution 
with 1f/2 = O. Indeed, assuming 1f/2 = 0, from (2.5) it follows 
that 

If/I =A (ZZ/h )1/2, (2.11) 

where A is a complex function such that A,3 = A,I = 0, is a 
solution ofWeyl's equation. If we restrict the function A to 
be a complex constant Ao then the only nonvanishing com­
ponents of the energy-momentum tensor are given by Eq. 
(2.7) and, therefore, the solution of the gravitational field 
equations is that given by (2.8). 

B. Einstein-Maxwell equations 

The energy-momentum tensor of the electromagnetic 
field is given by 

4rrTab = FacFb e - ! Fed F cdgab , (2.12) 

where Fab = - F ba represents the electromagnetic field 
which must fulfill the Maxwell equations. In order to satisfy 
the gravitational field equations with Rab given in (1.8), FJ2 
and F34 must be the only nonvanishing independent compo­
nents of the Maxwell field. Then, the nonzero components of 
Tab are determined by 

TJ2 = - T34 = (l/8rr)IFJ2 + F3412, (2.13) 

and the solution of Maxwell's equations is found to be 

F12 +F34 = CoZ 2
, (2.14) 

where Co is a complex constant. 
Then, from the equation R 12 = 8rrT34 we find that 

h=!m(Z+Z)-! ICoZI 2
, (2.15) 

where m is a real constant. This solution is implicit in the 
results obtained by Debney et al. I 

When a < 0, the solution (2.15) is identical to (2.8). 
Thus, when a < 0, the gravitational field represented by 
(2.15) can be thought of as produced by a neutrino field [(2.6) 
or (2.11)] or by an electromagnetic field [(2,14)]. 

C. Cosmological constant 

A cosmological constant A can also be easily included. 
A straightforward integration of R 12 = - A yields 

h = ! m(Z + Z) + ! AZZ (v4/3 + 2a2v2 - a4). (2.16) 
This solution to the Einstein vacuum field equations with 
cosmological constant was previously obtained by Kowalc­
zynski and Plebanski. II 

D. Elnstein-Born-Infeld equations 

In the Born-Infeld nonlinear electrodynamics the elec­
tromagnetic field is described by two skew-symmetric tensor 
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fields Fab and Pab which, in absence of sources, must fulfill 
the equations 

F ab -0 pab -0 ;a -, ;a - , (2.17) 

where F ab denotes the dual of Fab . We shall use the conven­
tion Fab = !EabcdFCd, where Eabcd is the Levi.Civita symbol 
with E1234 = 1. Then, the dual of a real tensoris pure imagi­
nary. The fields Fab and Pab are related by the "constitutive 
equations" 

(aK) (aK)v Fab = ap Pab + aQ" Pab , (2.18) 

where 

K= b 2 _ (b 4 _ 2b 2p+ Q)1/2 (2.19) 

is the Born-Infeld structural function, b is a positive real 
constant, and 

P =! Pabpab, Q = !Pabpab, (2.20) 

are the invariants of P ab ; P is real and Q is pure imaginary. In 
the limit when hoo one recovers the linear theory. 

The energy-momentum tensor ofthe nonlinear electro­
magnetic field is given by 

41TTab = (a;:)(PacPb e - Pgab ) 

+ (K - (a;:) - Q(~))gab' (2.21) 

Thus, in order to satisfy the gravitational field equations 
with the Ricci tensor given by (1.8), P I2 and P34 must be the 
only nonzero independent components of Pab . Expressing 
these components in the form 

. sin¢ cos¢ 
PI2 = zb ---, P34 = b -, --; 

cosh t/J smh t/J 
O<¢ < 2rr, O<t/J < 00, (2.22) 

from Eq. (2.18) it follows that 

F = ib sin ¢ F = b cos ¢ (2.23) 
12 sinh t/J ' 34 cosh t/J . 

Substituting (2.22) and (2.23) into (2.17) we obtain that ¢ 
and t/J are functions of v only which must satisfy the condi­
tions 

(ZZ sinh t/J),v = 0, ¢,v = i(Z - Z )tanh t/J. (2.24) 

Hence, 

sinh t/J = b / PoZZ, (2.25) 

where Po is a real constant and 

(V (( )2 ] - 1/2 
¢ = ¢o + 2a Jo ~ + (S2 + a2f ds, (2.26) 

with ¢o = const. 
The fields Fab and Pab can be expressed in a simple and 

invariant way through the (complex) two-form 

li) = ! (Fab - Pab lea /\ eb. (2.27) 

The real and imaginary parts of li) correspond, respectively, 
to Fab and (minus) Pab and Eqs. (2.17) amount to 

dli) = O. (2.28) 

Thus, there exists, locally, a potential one-form a such that 
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(() = - da. When a#O, from (2.24) and (2.25) we find 

(() = - d ((Poe;'" /2ia)e3) (2.29) 

while in the case where a = 0, we get 

(() = - poe~d { ! [: d ( ~ ) - ~ d ( : ) ] 

_ fO [(~or +S4]-1/2 dse3}. (2.30) 

In the limit when h 00 the fields Fab and Pab are equal and 
they coincide with the solution to the Maxwell equations 
given in (2.14). 

Turning now to the integration of the gravitational field 
equations we find 

RI2=2b 2{l-[1 + (PoZZ/b)2j1/21, (2.31) 

then, by a straightforward computation, we get 

h=!m(Z+Z) 

- 2ZZV 100 

ds/~ (2 32) 
Po v 1 + {l + (Polb (S2 + a2WI I / 2' . 

E. Einsteln-Yang-Mills equations 

A Yang-Mills field can also be considered as a source 
for the Ricci tensor (1.8). In fact, taking SU(2) as the gauge 
group, assuming that the gauge fields depend on v only and 
theA ~ (i = 1,2,3) are the only nonvanishing components of 
the potential [cf., Eq. (2.29)], we find that the solution to the 
Einstein-Yang-Mills equations is found by multiplying the 
respective expressions for A 3, F 12, andF34 found in the Ein­
stein-Maxwell case above by a constant element of the Lie 
algebra of the gauge group, while h is of the form (2.15). This 
solution to the Yang-Mills equations is rather trivial since, 
in a sense, the nonabelian features of the gauge field have 
been lost. 

III. DISCUSSION 

In all cases considered in Sec. II, after each matter field 
is suitably restricted so as to satisfy the gravitational field 
equations, the equations for the matter field can be integrat­
ed without knowing the explicit form of the function h. 
Thus, since the Ricci tensor depends linearly on h, by adding 
the h corresponding to each source one can get solutions to 
the Einstein field equations coupled, e.g., to several neutrino 
fields of the form (2.6) and/or (2.11), to an electromagnetic 
field, linear or nonlinear, to a Yang-Mills field and to a cos­
mological constant. The form of the matter field is unaltered 
by this superposition. 

Except for the neutrino field (2.11), the solutions to the 
matter field equations obtained above do not involve the 
function h; hence, setting h = 0, those expressions are solu­
tions to the corresponding equations in flat space-time, 
where an interpretation of the solutions can be more easily 
given. For example, making the identification, t = (x + iy)/ 
Y1, u = (z + t )/Y1, v = (z - t )/Y1, where x, y, z, tare Min­
kowskian coordinates, one finds that the neutrino field (2.6) 
corresponds to a "wave packet," whose thickness depends 
on a, extending in the x and y directions and which travels 
with the speed of light in the z direction. As in the case of a 
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soliton, the shape of this wave does not change as it propa­
gates. It may also be noticed that in the limit when a tends to 
zero, the second term in (2.8) has a Dirac's <5-behavior. 12 

In the auxiliary Minkowski metric, the Killing vector 
K4 given in (1.11) corresponds to rotations around the z axis. 
Hence, if TI2 and T34 are the only nonvanishing independent 
components of the energy-momentum tensor, then, assum­
ing h = 0, the density of the z component of the angular 
momentum of the matter field is given by 

,fiatt (T34 - Td/(v2 + a2), which vanishes when a does. In 
the case of the electromagnetic field, linear or nonlinear, 
found in Sec. II, this density has the opposite sign to that of a. 
For the Weyl field [(2.6)] this density is always non-negative. 

The result obtained in the case of the Weyl field, namely 
that the expression (2.6) represents a solution to the Weyl 
equation in the metric g and in the auxiliary Minkowski met­
ric, is part of a more general result. For a metric g of the 
Kerr-Schild form, given by (1.1), a massless spinor field of 
arbitrary spin, I/IAB ... D' whose only nonvanishing component 
with respect to the tetrad (1.3 H 1.4) is 1/122 ... 2 (hence, the field 
has only one principal null direction, coincident with a4 ) is a 
solution to the massless spinor field equations if it is a solu­
tion of these equations in the flat metric TJ [obtained by mak­
ing h = ° in (1.1H1.4)], provided that a4 is tangent to a geo­
desic null congruence. The validity of this proposition, and 
of the similar facts for other fields found in Sec. II, depends 
on the use of appropriately related bases for each metric, in 
which the solution has the same form, even though, due to 
the difference of the corresponding geometries, the field it­
self may be quite different. It may be noticed, for example, 
that the electromagnetic field of the Kerr-Newman solution 
(which is of the Kerr-Schild form) can be expressed in a form 
which is also a solution to Maxwell's equations in flat space­
time [see, e.g., Ref. 1, (7.15)]. It remains as an open question, 
in the general case of the Kerr-Schild metrics, which condi­
tions are necessary in order to integrate the matter field 
equations without specifying h and under which conditions 
the energy-momentum tensor does not depend on h. 

The metric (1.1 H 1.2) with Y given by (1.5) and h = h (v) 
can be written as 

g = 2(v2 + a2)dY dY _ (dV)2 
2h 

+ 2h [d1' + ia(Y dY - Y dYW, (3.1) 

where l' = - u - ITv - Sdv/2h. Considering now Yand Y 
as two real (independent) coordinates and replacing l' by iO', 
with 0' real, (3.1) represents another type D metric whose 
principal null directions, being geodesic and shear-free, have 
vanishing complex expansion. Except for the neutrino fields 
(2.6) and (2.11), by performing this complex substitution in 
the expression found in Sec. II we obtain real solutions to the 
coupled field equations. [Some minor modifications are nec­
essary, e.g., the sign of the last term in Eq. (2.15) must be 
changed. For a more detailed discussion on this point as well 
as more general solutions to the Einstein equations with non­
linear electromagnetic sources see Ref. 13.] 

The complex substitution given above amounts, essen­
tially, to interchange the spinorial indices i and i, leaving 
invariant the undotted ones. In order to obtain another real 
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field, after executing this process, the dotted components 
must be the complex conjugates of the undotted ones. Since 
only one of the components of the neutrino fields (2.6) and 
(2.11) does not vanish, this process can not lead to another 
real solution. 
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The infinitesimal canonical transformations are considered as gauge transformations. Using a 
method similar to that of Yang and Mills, one deduces, from a general formalism on phase space, 
the evolution equations of an infinite sequence of long-range fields sized by order of decreasing 
force. Special attention is given to the electromagnetic and gravitational fields which can be 
isolated by means of a restricted theory. In this last case, a comparison is done with the usual 
equations. An interpretation of the general formalism in terms of a vacuum is suggested in 
conclusion. 

I. INTRODUCTION 

It is well known that gauge theories are extremely pow­
erful tools in quantum field theory. The generality and ele­
gance of the principles used lead to an attempt to expand the 
minimal coupling principle to other scopes, especially that of 
Hamiltonian mechanics. Sternberg,l generalizing a result of 
Souriau2 concerning the electromagnetic field, has intro­
duced in the symplectic form a connection associated to an 
arbitrary Lie group, thus defining the motion of a particle in 
the gauge field of an internal space. 

This paper proceeds in an entirely different manner. 
Previous works3

•
4 have shown the possibility of considering 

the infinitesimal canonical transformations as gauge trans­
formations. Even so, these transformations do not form a Lie 
group; it is, however, possible to adapt in a natural way the 
Yang-MillsS initial manner to the Hamiltonian mechanics 
of a particle (in a relativistic form). 

The formal invariance of the Hamiltonian, under any 
infinitesimal canonical transformation, is obtained by intro­
ducing "phase space gauge potentials" Ka (p,x), according to 
a process similar to the usual minimal coupling principle. 
The variance of these potentials, consequently determined, 
is similar to that of Yang and Mills. 

Expanding Ka (p,x) in powers of p, we define a sequence 
of interaction potentials among which the first two are the 
potentials of the electromagnetic and gravitational fields. 

It is possible to neglect the upper-order potentials, ei­
ther by doing an additional hypothesis of approximation, or 
by using a theory restricted to the subgroup of infinitesimal 
canonical transformations associated to space-time changes. 
In this last case, the equations of motion of a particle are 
identical to the usual equations in the presence of electro­
magnetic and gravitational fields. 

The results so presented are incomplete, from a gauge 
theory point of view, since there are no field equations. In the 
present paper, we propose, continuing the analogy with 
Yang-Mills theory, to define "phase space gauge fields" and 
to give their evolution equations. From these general equa­
tions we deduce the evolution equations of the electromag­
netic and gravitational fields as well as those of the other 
hypothetical long-range fields introduced by the theory. We 
thus obtain an unification oflong-range fields. 

In order to make this paper self-consistent a summary 
of the results obtained in Refs. 3 and 4 is given in Sec. II. This 
will allow us, beyond the introduction of notation, to bring 
some precision and some small modifications. In Sec. III we 
introduce the "phase space gauge fields" and their evolution 
equations. We then indicate how to deduce from them the 
evolution equations of the long-range fields and give explicit­
ly the electromagnetic and gravitational field equations in 
the limit of the theory restricted to the canonical transforma­
tions associated to the space-time change. Incidentally, ap­
plying the approximation hypothesis, we give, to the lowest 
order, the equations of the field coming immediately after 
the gravitational field. The two next sections are an applica­
tion of the restricted theory. In Sec. IV it is deduced, from 
the electromagnetic field equations, that the light rays in the 
gravitational field are null geodesics. In Sec. Va static iso­
tropic solution of the gravitational equations is obtained. Its 
ability to represent the solar system is examined by compar­
ing it with the Schwarzschild solution. In Sec. VI, at last, we 
try to find an interpretation for the "phase space fields" and 
for their propagation, by transposing the notion of quantum 
vacuum to the Hamiltonian mechanics. 

II. EQUATIONS OF MOTION OF A PARTICLE 

A. Gauge transformation In relativistic Hamiltonian 
classical mechanics (c = 1) 

Let us consider a Minkowski space (xa),7Ja.8 
= (1, - 1, - 1, - 1), to which is associated an eight-dimen­

sional phase space (xa,Pa)' We can describe the motion of a 

free particle by means of the Hamiltonian6 Ho = .jPaPP7JatJ 

and an evolution parameter T independent of the phase 
space. 

The Hamiltonian Ho is a constant ofthe motion whose 
value m, determined by intitial conditions, is identified with 
the mass of the particle. So, each value of Ho yields a particle 
of mass m whose proper time s is automatically equal to the 
evolution parameter. Indeed 

dxa aHo pa dxa dxP 7Ja.8 
-=-=-=> = 1. (2.1) 
dT apa m d? 
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The independence of r in relation to the phase space 
enables us to consider the usual theory of canonical transfor­
mations. If we perform any infinitesimal canonical transfor­
mation (this transformation being independent of r), the Ha­
miltonian behaves like a scalar and is expressed in the new 
coordinate system as 

Ho = [( (p~ - E ;~a(P',x'))( (Pil - E :x~I1(P',x'))7JafJ r2

, 

(2.2) 

where E and G (P,x) are, respectively, the infinitesimal param­
eter and the generating function of the transformation. It is 
obvious that the Hamiltonian of a free particle is not form­
invariant. 

If we consider this transformation as a gauge transfor­
mation, we are going to replace in the Hamiltonian (2.2) the 
derivatives coming from the transformation by functions 
Ka (P' ,x') according to 

E ;: (p',x'}-Ka (p',x'). (2.3) 

This process is similar to the minimal coupling principle. 
Thus we obtain, after dropping the primes, the new Hamil­
tonian 

H= [(Pa -Ka(P,x))(PI1-KI1(P,x))]1/2. 

It will be convenient to introduce the quantity 

ha = Pa - Ka(P,x); 

the Hamiltonian (2.4) is then written in the form 

H = ~hahl17Jap. 

(2.4) 

(2.5) 

(2.6) 

Now if we perform any infinitesimal canonical transfor­
mations of the generating function G (p,x), this new Hamil­
tonian is transformed like a scalar and, (P' ,x') meaning the 
new coordinates, the quantities 

h ~ (P' ,x') = ha [P(P' ,x'),x(P' ,x')] 

can be written in the form 

h~ =p~ -K~(P',x'), 

provided that 

K'~)(x') =K~)(x) + G~~(x) - EK~lu(x)G~~(x), 

K ,~'luI"'I'I(X') = K ~""I'I(X) + EG ~~I"'I"(x) 

(2.7) 

(2.8) 

where 

K G - aKa aG aKa aG (2 10) 
[ a' ]x',p' - ax'l' ap~ - ap~ ax'l' . 

is a Poisson bracket. Thus the Hamiltonian (2.4) is form in­
variant on condition that the functions Ka should be trans­
formed jointly according to (2.9). 

Let us remark that the transformation (2.9) is exactly 
similar to those of gauge potentials in the usual Yang-Mills 
theory; the Lie bracket is simply replaced by the Poisson 
bracket. 

Moreover, Ka and ha can be considered as the covar­
iant components of two vectors under constant Lorentz 
transformations; this is a consequence of the Lorentz invar-

iance of the free Hamiltonian Ho = ~Papa with which we 
started. The quantitiesKa will be named "phase space gauge 
potentials. " 

Let us suppose that we can expandKa (x,p) and G (x,p) in 
powers ofp: 

XPI'I "'PI'I + "', (2.11) 

Ka =K~)(x) +K~lu(x)P1' + ... + !K~"luI"'I"(X) 

(2.12) 

[ G ('"lu,"'I', and K ~"luI"'1'1 are symmetrical.] The different quan­

tities K ~(x) will be interpreted as potentials of the long-range 
fields, K ~) for the electromagnetic field, K ~lu for the gravita­
tional field, etc. 

The variance of these potentials is obtained by inserting 
expansions (2.11) and (2.12) in the formula of gauge transfor­
mation (2.9) and by identifying the same powers ofp' in each 
member: 

- E [ K ~lu(x)G ~''''I''(X) + C]K ~lull'(x)G ~~ - llu, .. ·I',(x) 

+ C~K~lI'II'2I'(X)G~~-2lu3"'I"(X) + ... + C~i I)K~"luI"'I'I-II'(X)G~lul(X) 

+ K~+ llul .. ·I' .... (x)G~~(x)] [oil = al']' (2.13) 

B. Canonical transformations associated with a change 
of space-time coordinates: Electromagnetic and 
gravitational Interaction 

We started this study by performing any infinitesimal 
canonical transformation on a coordinate system (xa,Pa) of 
the phase space in which ~ are space-time coordinates. The 
physical meaning of such a transformation is not obvious 
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since it mixes the space-time coordinates and the momentum 
coordinates whose physical nature is different. This incites 
us, before carrying on the general case, to restrict this study 
to the subgroup of canonical transformations associated 
with a change of space-time coordinates, according to 

(2.14) 
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Generating functions of such transformations are in the 
form 

G(p,x) = G(O)(x) + G(l)p(xlPp' (2.15) 

The substitution (2.3) becomes in this case 

aG aG (0) aG (J)p 

E- = E~X) + E (xlPp 
axa axa axa 

_K~)(x) + K~lJ.L(xlPw (2.16) 

Hence the "phase space gauge potential" is reduced to 

Ka =K~)(x) +K~lP(xlPw (2.17) 

Let us consider 

YaP=~ -K~lJ.L, 

where yap is the inverse matrix of YaP, 

eAp = yapK~1 (e = const). 

(2.18) 

(2.19) 

The variance of these new quantities is deduced from Eqs. 
(2.13): 

(2.20) 

a. 'I' 
y~p(x') = ~Ya V(x). 

axv 
(2.21) 

Equation (2.20) points out that AI' is transformed, up to a 
gradient, as a covariant vector under a general transforma­
tion of space-time, which agrees exactly with the properties 
of electromagnetic potentials. Equation (2.21) shows that 
Ya I' constitute four contravariant vector fields, and val' four 
covariant vector fields. 

We can construct the symmetrical tensor fields of order 
2: 

tt'V = Ya I' Yp v 1JaP, 

gpv = yap yPv1JaP' 

verifying 

tt"'gPV =&:,. 

(2.22) 

(2.23) 

(2.24) 

Thengpv can be considered as a pseudo-Riemannian metric 
tensor associated with tetrad fields yap(x). 

Let us determine now the motion of a particle. The 
quantity ha is given by 

ha = (PI' - eAp)Ya p, 

hence 

(2.25) 

(2.26) 

The Hamiltonian H is a constant of the motion m which is 
identified with the mass of the particle. We have 

dx" = aH = pi' - eA I' dx" dxv = 1 
dr app m ~ dr gpv . 

The proper time identifies itself with the evolution param­
eter. By eliminating PI' from Hamilton's equations, we ob­
tain the usual equations of a charged particle in electromag­
netic and gravitational fields: 

m(~: + {~}upuv) =gAPeFpuuu, (2.27) 
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where u.l. = d~ /dr, Fpv = apAv - avAp, {:J = Chris­

toffel's symbols, and e is the electric charge. 

C. General Infinitesimal canonical transformations and 
approximations 

If we consider any infinitesimal canonical transforma­
tion, we must look at the infinite series of potentials 
K~I, K~I, ... , K<:, ... . However, by restricting the study to the 
transformations associated with a change of space-time co­
ordinates, we have been able to recognize in the first two, 
sized by order of decreasing force, the electromagnetic field 
and the gravitational field, the only two known long-range 
fields. 

This suggests that the following fields, not being detect­
ed, must be much weaker. This hypothesis can be fulfilled, 
for example, by assuming 

IK(i+ III < IK(I)I, (2.28) 

IK(I)I·IK V1 1_IK(i+J1 1. (2.29) 

We will say that we do an approximation of the nth order if 
we neglect the potentials K(I) as well as all equivalent pro­
ducts for i> n. 

(1) Zeroth-order approximation. The Hamiltonian 

H = ~(Pa - eAa)(Pp - eAp)1JaP (2.30) 

yields the usual equations of a charged particle in an electro­
magnetic field: 

(2.31) 

(2) First-order approximation. We find again the results 
of Sec. II B in the approximation of weak gravitational 
fields. Indeed tt'v contains the products K ~ lJ.L K ~ Iv 1Jap which 
are neglected in this approximation. 

(3) Second-order approximation. It is interesting to exa­
mine the approximation coming immediately after the 
known physics by introducing the potential K ~Ipv. 

In order to simplify computations, we exclude the electro­
magnetic fields (we suppose the particle is not charged). The 
Hamiltonian 

H = /r,l"",p p _ 1e"p:zJ.L,p P P )1/2 
\6 It v '] PI 1-'2 Jt3 ' 

with 

e'lp:zJ.L, =tt',vyavK~lJ.L:zJ.L' + permut (1,2,3), 

yields the equations 

(2.32) 

(2.33) 

du
P + { J-L }UV1UV2 + m{ J-L }UVIUV2UV' = 0, (2.34) 

dr V IV2 V I V 2V 3 

with 

+ permut (1,2,3) - arEv,v,v,). (2.35) 

Let us observe that this second-order field has an influence 
proportional to the mass of the particle. This leads to a 
search for an eventual illustration of this field among the 
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celestial objects. In Ref. 4 we considered the Keplerian mo­
tion in the Newtonian approximation. 

Finally, let us notice that the proper time cannot be 
identified exactly with the evolution parameter anymore: 

(2.36) 

III. FIELD EQUATIONS 

Problems of interpretation are carried forward in Sec. 
VI. 

A. Phase space gauge field 

First we must specify what we call covariance under 
infinitesimal canonical transformations considered as gauge 
transformations. We observed in Sec. II the perfect simili­
tude betwen the variance of phase space gauge potentials 
given by 

K ~ (P' ,x') = Ka (P' ,x') + e (~c: )(pl,x') + e[ Ka ,G 1 X.p· 

(3.1) 
and that of the usual gauge potentials. However, in the 
Yang-Mills theory, the variance of gauge potentials differs 
from the covariance by the gradient term. [The gradient 
term is here E(aG / ax,a).] This leads us to define the covar­
iance of a quantity A (p,x) by 

A '(P',X') =A (P',x') + E[A,G ]x·,p" (3.2) 

The transformation is the infinitesimal expression of 

A '(P' ,x') = A (p(p' ,x'), x(p' ,x')). (3.3) 

So, the quantity A is a scalar. 
Now we can introduce, following the analogy with 

Yang-Mills theory, the covariant derivative 

DaA = (t:a)(P,x) + [Ka.A ]x.P' (3.4) 

and the gauge field 

(
aKp) (aKa) RafJ = axa (P,x) - axfJ (P,x) + [K",.Kp] x,p' (3.5) 

If we remember, according to Eq. (2.7), that ha are scalar 
(covariant) quantities and that Poisson brackets are con­
served by canonical transformations, it is easy to verify that 
DaA and RafJ are covariant as is immediately proved by the 
following identities: 

D",A = [A,h", ]x,p (3.6) 
and 

Rap = [ha,hp ]x,p (= Dph",). 

The gauge field verifies the Bianchi identities, 

DaRpy + DpRya + DyRafJ = 0, 

(3.7) 

(3.8) 
which are simply the expression of the Jacobi identities 

[[ hp,hy ] X,p,h", ]x,p + permut (a,p,r) = O. 

All these analogies are reasons to write the equations of the 
free field as 

(3.9) 

Remark: The quantities R afJ , DyRafJ are the compo­
nents of tensors under a constant Lorentz transformation. 

By inserting the expansion (2.12) in the first member of 
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Eq. (3.9) and by identifying the coefficients of each power ofp 
with zero (since the second member is null), we obtain an 
infinite sequence of second-order partial differential equa­
tions. These are the evolution equations of the long-range 
fields among which we find the equations of the electromag­
netic and gravitational fields. 

B. Theory restricted to canonical transformations 
associated with a change of space-time coordinates 

Since the beginning we have implicitly used the indices 
a, p, r, 1>, E to mark the Lorentz variables and r, p, v, p, q to 
mark any others. In order not to complicate some formulas, 
we have not made it an absolute rule. So, for example, Eq. 
(2.5) would be more correctly written ha = I> ':JJ,.. - Ka(P,x). 
This convention is going to be particularly useful in the se­
quel of this paper:So, it will systematically be used except 
where otherwise stated. 

In order to facilitate the subsequent exposition, let us 
next consider the tetrad fields 

e", = va"'a",. 

The Lie bracket of ea and ep satisfies 

[ea,ep] = Ca~ey, 

where 

(3.10) 

(3.11) 

Ca~ = (ea Vp" - ep Va ")vY,, (3.12) 

(ea and ep stand for Pfaff derivatives). The electromagnetic 
potentials A", = V"'",K~)/e can be expressed in the base ea : 

Ap = Vi'A", =K'gVe. (3.13) 

In the same way the components of the electromagnetic field 
F,.." = a",A v - a"A", become 

FafJ = Va"'Vp"F,.." =eaAp -epAa -AyCa~' (3.14) 

With this preliminary out of the way, let us now turn to the 
fundamental equations obtained in the preceding section. 
This study is restricted to the case considered in Sec. II B, 
where only the electromagnetic and gravitational fields are 
occurring. Equations (2.17), (2.18), and (3.13) yield immedi­
ately 

h", = - eAa +za' 

where 
za = Va"'p",· 

The Poisson bracket of Za and zp yields 

[za,zp ]x,p = Ta~zy, 

where 

(3.15) 

(3.16) 

(3.17) 

Ta~ = - Ca~ (3.18) 

will be interpreted as the gravitational field. 7 

The equations (3.1SH3.17) allow us to obtain the gauge 
field (3.7) in the form 

RafJ = e(eaAp - epAa} + Ta~zy, (3.19) 

or, furthermore, by using Eqs. (3.14) and (3.18), 

RafJ = eFafJ - eAyTa~ + Ta~zy, (3.20) 

setting off the electromagnetic field F afJ' the gravitational 
field Ta~' and a coupling term eAr Ta~ between the two. The 
gauge field equations are obtained by inserting Eq. (3.20) into 
Eq.(3.9): 
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e('1t"e"FafJ + '1t"Ta~Fr") - eAs(1t"e"Ta~ + '1rTa~Tr~) 
+ (1]a"e"Ta~ + 1]a"Ta~Tr~)zs = 0 (3.21) 

(e" = v/'aJ.' is a Pfaff derivative). These equations must be 
verified for any p or, which is equivalent, for any z. Since 
(3.21) is a binomial, we deduce two systems of differential 
equations by equating to zero, respectively, the coefficients 
of the zeroth and the first powers ofz. 

Observing in Eq. (3.21) that the coefficient of Zs is the 
same as the factor of - e As, we obtain finally the evolution 
equations 

1]a"e"F afJ + 1]a"Ta~Fr" = O. (3.22) 

For the electromagnetic field, and 

a" T S + aliT rT s - 0 1] eli ap 1] ap r" - . (3.23) 

for the gravitational field. 
Let us examine quickly these equations by comparing 

them with the usual ones. The usual Maxwell's free equa­
tions in presence of gravitation (expressed in the basis ea for 
comparisonS) 

e"F"P - Ta':FSP - !Ta~Fa" = 0 (3.24) 

are different from the just proposed equations (3.22). But if 
the gravitational field Ta~ is null, Eqs. (3.22) and (3.24) be­
come identical. Then, both of them are reduced to Maxwell's 
equations in Minkowski space, 

aaFafJ = O. (3.25) 

Indeed, in this case the Lie brackets [ea ,ep] are null, hence 
the basis {ea I is a coordinate basis9

: e a = a a and Va J.' are 
the components of a Cartesian frame {ea I expressed in a 
curvilinear system (.xJ.&):VaJ.' = a.xJ.&laxa. 

At last let us notice that the principle of equivalence is 
applied in the same way to Eq. (3.22) as to Eq. (3.24). 

Equations (3.23) are different from Einstein's equa­
tions. However we can point out that they are nonlinear. We 
will solve them in the case of spherical symmetry. We shall 
discuss at that time their ability to represent the gravitation. 

C. General case 

As we pointed out at the end of Sec. III A, it is possible, 
by inserting the expansions (2.12) in the equations (3.9), to 
obtain an infinite sequence of second-order partial differen­
tial equations that we can limit by using the postulates of 
approximation (2.28) and (2.29). We will not write explicitly 
the generic equation, having no use of this in this paper. We 
give only the following results. 

To the zeroth-order approximation we find only Max­
well's equations in Minkowski space. 

To the first-order approximation we find Eq. (3.22) for 
the electromagnetic field and the linearized equation (3.23) 

1]a"e" Ta~ = 0 (3.26) 

for the gravitational field. (In this approximation the gravita­
tional field is weak: we neglect in T the products K(l).K(l).) 

To the approximation of second order, we find more 
complicated equations than (3.22) and (3.23) for the electro­
magnetic and gravitational fields (since these can contain, 
moreover, the second-order potentials K ~lJ.'1. Moreover the 
potential K ~lJ.'V satisfies the linear equations 
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aa(aaK~lJ.'JJl.2 - apK~).uJJl.2) = 0, 

which can be also written 

(3.27) 

DK~lJ.'JJl.2 - apaaK~).uJJi.2 = O. (3.28) 

[In Eqs. (3.27) and (3.28) we do not apply the convention of 
indices.] These last equations justify a posteriori the use of 
the Newtonian potential that we introduced,IO by heuristic 
arguments, for the study of the Keplerian motion in the 
Newtonian approximation. 

We stop here the evocation of the general case and will 
come back to it later on. 

IV. GEOMETRICAL OPTICS 

In the Einstein theory, light rays are null geodesics. 
These are naturally the trajectories of photons (massless par­
ticles). But this property is also a consequence of Maxwell's 
equation. Let us summarize the principles of such a deduc­
tion. II In the geometrical optics limit, the wavelength A is 
small compared both to the scale LI over which the ampli­
tude of wave changes and to L2 , the scale over which the 
gravitation changes, i.e., 

E=AIL<I, L=min(LI.L2 ). (4.1) 

The electromagnetic vector potential can be written in terms 
of rapidly varying phase and slowly varying amplitude in the 
form of the expansion 

(4.2) 

where (J is a real phase, aJ.' and hJ.' are complex, and E, given 
by (4.1), is the expansion parameter. In fact the electromag­
netic vector potential is the real part of (4.2). We define the 
wave vector 

(4.3) 

By inserting the potential vector (4.2) into the Lorentz gauge 
condition and keeping only the leading term (1/ E order), we 
obtain 

(4.4) 

Amplitude is perpendicular to wave vector. Next, inserting 
the potential vector (4.2) into the Maxwell's equations in the 
Lorentz gauge, retaining only the leading term (1/~ order), 
we obtain 

kJ.'kJ.' = O. (4~5) 

The wave vector is null. Taking the gradient of Eq. (4.5) we 
get the geodesic equation 

kJ.'VJ.'k v = O. (4.6) 

Equations (4.5) and (4.6) are the statement that light rays are 
null geodesics. 

Let us turn now to the electromagnetic equations ob­
tained in the last section: 

(4.7) 

Weare going to show that, in this case also, light rays are null 
geodesics in the Riemannian space of metric 

gJ.'V = VaJ.&VPv 1]afJ· (4.8) 

In the basis {ea J we have the identity 

V F "P - e F"P - T aFSP - IT PFa" 
E - E a8 2 ae , (4.9) 
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where V is the Riemanian connection associated with the 
metric (4.8). [The expression (4.9) was already mentioned in 
Eq. (3.24).] 

By using the identity (4.9), Eq. (4.7) is now written 

V F"fJ + T aF~fJ + IT fJFa" + ...iJI)'YJa"T y F = 0 
E a {; 2 a E ·'f·, a {; tE , 

(4.10) 
where the electromagnetic field can be expressed in the form 

VaAfJ - VfJAa. (4.11) 

Because of the gauge transformation (2.20), it is always possi­
ble to choose the Lorentz gauge 

VaA a = O. (4.12) 

Therefore, the first term in the left member of Eq. (4.10) 
becomes 

V"F"fJ = V" V"A fJ + RafJA a, (4.l3) 

. where RafJ is the Ricci tensor. Finally, the equation of an 
electromagnetic field in the Lorentz gauge can be written 

V" V"A fJ + RafJA a + Ta'f,F6{J 

+ !Ta~Fa" + rf6'TJa"Ta!Fy" = O. (4.14) 

In the conditions where geometric optics is valid we can 
use the potential vector (4.2) expressed in the basis {ea 1, 

Aa = (Oa + Eba + ... )ei81", 

where 

(4.15) 

Oa = Val'0l" ba = Val'bl" (4.16) 

A covariant derivative of the potential vector (4.15) gives 

VfJAa = [VfJoa + EVfJba + (i/E)(Oa + Eba)efJO ]ei81". 
(4.17) 

Equations (4.17) yield, writing only leading terms, 

VaAa= [(i/E)aaeaO+ ... ]ei81", (4.18) 

FafJ = [(i/E)(ofJea 0 - oaefJO) + ... ] ei81", (4.19) 

and, performing another derivative, 

V" V"A a = [(i/E)2 oa~YefJOeyO + ... ]ei81". (4.20) 

We can now obtain the equations of geometrical optics. 
From the Lorentz condition (4.12) and Eq. (4.18), setting the 
coefficient of each power of E equal to zero, we obtain, for the 
leading term (liE order), 

(4.21) 

or 
(4.22) 

Amplitude is perpendicular to wave vector. In the same way, 
form the field equations (4.14) combined with Eqs. (4.15), 
(4.19), and (4.20), for the leading term (lie order), we obtain 

oa~YefJOeyO = 0 (4.23) 

and consequently 

gl'vkl'kv = O. (4.24) 

The wave vector is null. 
Taking the gradient of (4.24) and noticing that 

Vl'kv = Vvkl' (sincekl' = al'0)' we getthe geodesic equation 

k I'V I' k v = O. (4.25) 

Thus let us emphasize that, for the electromagnetic equation 
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(4.7) in the geometrical optics limit, light rays are null geo­
desics as usual. 

V. "STATIC ISOTROPIC" SOLUTION OF 
GRAVITATIONAL FIELD EQUATIONS 

A static isotropic metric can be reduced to the following 
form: 

dr =B 2(r)dt-A -2(r)dr - rd0 2 - r 
X sin2 0 drp 2. (5.1) 

We propose to determine a static solution of the gravita­
tional field equations obtained in Sec. III, 

S~='TJa"e"Ta~ + 'TJa"Ta~T~" = 0, 

such that the associated metric 

(5.2) 

gl'v = val'VfJv'TJafJ (5.3) 

is the static isotropic metric 

gl'v = (B 2(r), - A -2(r), - r, - r sin2 0). (5.4) 

That is what we call briefly a static isotropic solution. 
The problem is to find the two unknown functions A (r) 

andB (r). At first we must determine, by means of the symme­
try conditions (5.3) and (5.4), the expression of Val' and val' 
in terms of A and B. We are going to use, as an intermediate, 
the diagonal tetrad kal', k a'l' such that 

-k a ' k fJ ' - (0 ) gl'v - I' v 'TJa'fJ , r, ,rp , (5.5) 

where 

TJa'fJ' = (1, - 1, - r, - r sin2 0) (5.6) 

is the Lorentz metric in spherical coordinates. So, the diag­
onal tetrad is 

{k a'l' 1 = {koo=B(r), k11=A-1(r), k 2
2=1, k\=l}. 

(5.7) 

By inserting 

_ axa axfl 
'TJa'fJ' = axa' axfl' 'TJafJ (5.8) 

in Eq. (5.5) and by identifying with Eq. (5.3), we obtain imme­
diately 

va = ax
a 

k a' 
I' axa ' 1" 

(5.9) 

i.e., explicitly, 

VOo =B, VOl = 0, V0
2 = 0, V0

3 = 0, 

V 10 = 0, V 11 = sin 0 cos rpA -1, V 12 = r cos 0 cos rp, 

V 13 = - r sin 0 sin rp, 

V2
0 = 0, V 2

1 = sin 0 sin rpA -1, V 2
2 = r cos 0 sin rp, 

V23 = r sin 0 cos rp, 

V3
0 = 0, V\ = cos OA -1, V 3

2 = rsin 0, V 3
3 = O. 

(5.10) 

We deduce the inverse matrix Val': 

Voo = B -1, V1
0 = 0, V2

0 = 0, V3
0 = 0, 

VOl = 0, V1
1 = sin 0 COS rpA, 
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V2
1 = sin (J sin tpA, V3 1 = cos (JA, 

V0
2 = 0, V/ = cos (J cos tp/r, 

V2
2 = COS (J sin tp/r, 

V/ = - sin (J/r, 

V0
3 = 0, VI

3 = - sin tp/(r sin (J ), 

V/ = cos tp/(r sin (J), V33 = 0. (5.11) 

We can now proceed to the resolution of the differential 
equations (5.2). For that we have to insert the expressions 
(5.10) and (5.11) of vall and Vall in Eq. (5.2). The computa­
tion of 

Ta~ = (Vttall Va v - Vallall Vp 1V"v 

gives explicitly 

Ta~ = 0, Ta~ = - Tp~, 

Tgi = sin (J cos tpAB a,(B -I), 

T~ = sin (J sin tpAB a,(B -I), 

Tg3 = cos (JAB a,(B -I), 

T;J = ToJ = ° (iJ#O), 

(5.12) 

TI~ = sin (J sin tp(1 - A )/r, Tli = sin (J cos tp(1 - A )/r, 

TI~ = 0, TI~ = cos (J (1 - A )/r, TI ; = 0, 

TI~ = - sin (J cos tp(1 - A )/r, 

T2~ = 0, T2; = cos (J(I-A )fr, 

T2~ = - sin (J sin tp(1 - A )/r. 
Let us write 

and 

K =AB a,(B -I), 

H= (I-A )/r, 

N=Aa, H -H/R +H2. 

The equations of motion (5.2) are then written 

sg= +A a,K + 2K/r+K2 =0, 

S~~~=O (n#O); 

S: == - (sin2 (J cos2 tp - 1)N + 2H /r = 0, 

Si== - (sin2 (J sin2 tp - 1)N + 2H /r = 0, 

S~= + sin2 (IN + 2H /r = 0; 

S t ~ ~ = - sin2 (J sin tp cos tpN = 0, 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

S~ ==S ~ == - cos (J sin (J cos tpN = 0, (5.18) 

S ~ ~; = - cos (J sin (J sin tpN = 0. 

Equations (5.17) and (5.18) are verified only for H = 0, hence 
Eq. (5.15) yields 

A=1. (5.19) 

Then Eq. (5.16) can be written 

dK +2K +K2=0, 
dr r 

(5.20) 

where 
d(B-I) 

K=B . 
dr 

(5.21) 

Noticing that 
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dK + 2K = (J.-)d(rK), 
dr r r dr 

We obtain immediately the solution ofEq. (5.20): 

K = l/r(ar - 1) (5.22) 

(a is the constant of integration). Then, the solution of(5.21) 
gives 

B = br/lar - 11 (5.23) 

(b is the constant of integration). So, the problem is solved 
and the static isotropic metric associated with the solution is 

dr = (b 2/a2)(1 - l/ar)-2 - dr - r d(J 2 - r 
X sin2 (J dtp 2. (5.24) 

Let us suppose that this gravitational field represents 
the solar system. Weare proceeding as in general relativity. 
At a great distance r from the sun, we must find again, in a 
first approximation, the Newtonian theory. So that 

goo-1 + 2tP, (5.25) 
where 

tP= -GM/r. (5.26) 
Hence, the constants of integration verify 

b 2/a2 = 1, a = -l/GM. (5.27) 
Then the metric (5.24), expanded as a power series in the 
small parameter MG /r, is written 

dr = [1 - 2GM /r + 3(GM /r)2 + ... ]dt 2 - dr-r d(J2 

- r sin2 (J dtp 2. (5.28) 

In order to test such a metric and to compare the results with 
those of the general relativity, we are going to use the expan­
sion of Eddington and Robertson (see Ref. 12) 

dr = [1 - 2aMG /r + 21/3 - ar)(MG /r)2 + ... ]dt 2 

- [1 + 2rMG /r+ ... ]dr - r d(J2 - r sin2 (Jdtp2. 
(5.29) 

This one is identical (at this approximation) with (5.28) for 

a= 1, p=~, r=O, (5.30) 

whereas the Schwarzschild solution of Einstein equations 
yields 

a =P= r= 1. (5.31) 

Let us examine the three classical tests. The gravitational red 
shift experiment which verifies the principle of equivalence 
gives a = 1, the deflection oflight by sun tests r~ 1, whereas 
the precession of perihelia verifies that 2r - P~1. SO the 
test on the red shift is verified but neither the deflection of 
light 

(J = 1.75"(1 + r)f2 

nor the precession of perihelia 

~tp = (67rMG /L )(2 - P + 2r)f3 rad/revolution 

(L is the semimatus rectum of the ellipse) are correctly ob­
tained. 

The test of the principle of equivalence is certainly the 
most important and its verification gives a certain confi­
dence in the equations of motion. Nevertheless, it is neces­
sary to find an explication at the deficiency of the two other 
tests. 
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It is evidently possible that the initial equations (3.9) are 
not absolutely correct, this deficiency can also proceed from 
the omission of the upper-order long-range fields. But, more 
simply, we can also suppose that the spherical symmetry 
does not represent perfectly the solar system. Indeed we 
know that the sidereal period of solar rotation is about twen­
ty-five days. This causes us to search for an axially symmet­
ric solution that represents the field of a rotating spherical 
body. We will reserve for later such a study. 

VI. DISCUSSION 

This work constitutes an attempt at unification of the 
long-range fields and, more particularly, ofthe gravitational 
and electromagnetic fields. By transposing the Yang-Mills 
method in Hamiltonian mechanics for the group of infinite­
simal canonical transformations we have been able to deduce 
these fields from the single quantities Ka (p,q). 

Behind this formalism is nevertheless set an interpreta­
tion problem that we are going to examine, and to which we 
will attempt to give some elements of answer. These will 
have to be considered only as suggestions. 

The geometrical frame of the theory is the cotangent 
bundle T *( V4 ) associated to tJte space-time manifold V4 • Let 
us consider a system of adapted coordinates, where r' repre­
sents local coordinates of V4 and PI'" the components of a 
covector in the associated natural frame. The motion of a 
particle is described by a trajectory of the Hamiltonian flow 

generated by H = ~ ha h a. In this case r' is the space-time 
position of the particle and PI" the conjugated momentum, is 
related to the motion and to the energy of the particle. 

Ifwe now consider the motion of the free fields, ruled by 
the equations DaR aP(p,x) = 0, the physical meaning is not 
so evident. The coordinates r' do represent the space-time 
position where the field is considered, but we are not able to 
give any meaning for PI" If it is still related to motion and to 
energy, which motion and which energy is it? 

Weare going to attempt to answer this question, inspir­
ing ourselves from the quantum theory in which the notions 
of vacuum and vacuum fluctuations have great importance. 

We can imagine, in the classical physics frame, that the 
vacuum is subject to random-looking fluctuations, whose 
motion and energy at a given point r' of the space-time are 
associated with a covector PI' called vacuum momentum at 
this point. 

In this way, the notion of a vacuum can enter in the 
same geometrical frame T *( V4 ) as the notion of motion of a 
particle. The fiber above r' represents the different possible 
momentum of the vacuum at r'. Thus in a part D of the 
space-time, a state of vacuum will be a section of the bundle. 
But a very "chaotic" section must certainly be imagined at 
the microscopic level, so that if a sufficiently large part is 
considered, the average (PI") is null. Indeed, an energy accu­
mulation cannot be considered on a macroscopic part be­
cause vacuum has no observable effects at the classical level. 

But the office of the vacuum momentum is essential 
here because it allows us to consider the gauge field RaP (p,x) 
and its propagation in the vacuum. This momentum is acting 
as a catalyzer, it is it which allows for example the coupling 
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of the gravitational field with itself. 
The presence of a particle in the part D is expressed by a 

trajectory on the section ofthe fiber, along which the PI' are 
not "chaotic" anymore but correlated by the Hamiltonian 
flow. 

The physics world described here is that of the ponctual 
particles flowing in free fields RaP(P,x), whose existence and 
propagation is realized by means of the vacuum previously 
described. Of course, when in x there is a particle of momen­
tum p(part.), the field takes the value RaP(p(part.),x). The 
particle is considered as a test particle. 

But particles are also sources of fields. The source oc­
curs then as a limit condition. Thus, in Sec. V the spherical 
symmetry is assigned in order to represent the sun, which is 
considered as the source of the gravitational field. 

There are no equations in the matter since it is consid­
ered as a discrete set of points. The field is indeed free almost 
everywhere. But from a practical point of view, it is certainly 
necessary to replace a discrete set by a continuum and, in this 
case, the equations must have sources. We can propose 

DaR aP(p,x) = JP(p,x), (6.1) 

with 

(6.2) 
(In the discrete model, the Dirac distributions occur, the 
field is then free almost everywhere except on the sources.) 

At last, let us mention another problem that the reader 
has certainly perceived. The electromagnetic field is intro­
duced in this theory by the term K~)(x) of the expansion of 
Ka (p,x). This term is in fact a potential energy rather than a 
potential. The charge e of the particle and the potential are 
then defined subsequently by K~)(x) = eAa(x). It is due to 
this construction that e cannot be eliminated from the equa­
tions of the fields (3.21). But what does e represent in vacu­
um? We can try to outline an answer similar to the former 
one and imagine that e is related to the vacuum polarization. 
It would be the vacuum polarization, null only on average, 
which would allow K ~)(x) to exist. 
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Hayashi and T. Shirafuji, Phys. Rev. D 19, 3524 (1979). 

8For the use of a noncoordinate basis in a Riemannian manifold see, for 
example, Y. Choquet-Bruhat, C. De Witt-Morette, and M. Dillard­
Bleick, Analysis, Manifolds and Physics (North-Holland, Amsterdam, 
1977), Chap. 5. 

9C. W. Misner, K. S. Thome, and J. A. Wheeler, Gravitation (Freeman, San 
Francisco, 1973), p. 239. 

'OSee Ref. 4. 
"C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge 

U. P., Cambridge, 1981), Chap. 3, pp. 74 and 75. 
'2S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972), Chap. 
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Recently an exact spectral solution was constructed by Sudarshan and Tata for the (Ne) Fermi 
version of the Lee model. We demonstrate that it provides a partial solution for the related pure 
Bose spectral problems. Moreover, the (Ne) Bose (Bolsterli-Nelson) version of the Lee model is 
shown to possess Fermi partners, both exhibiting the partial solubility interplay: finding solutions 
in the Fermi case would presumably be easier than in the original Bose model. Fermi states of the 
underlying Bose systems in three space dimensions are explicitly identified. 

Let us study a specialized version of the Lee model 1-4 as 
considered by Sudarshan and Tata. S The model consists of 
two fermions N, e interacting with a boson V. If compared 
with the original version of the Lie field theory model, the 
momentum dependence of V and N is lost due to their (as­
sumed) infinite mass, then V and N play the role of sources, 
while e is supposed to be massless. We have 

H = mo V* V + J d 2k.k·a*(k )a(k ) 

+ J d 3kf(k)[V*Na(k) +a*(k)N*V] (1) 

with the commutation rules of Ref. 5 

[N,N*] + = [V,V*L = 1, 

[a(k ),a*(p)] + = £53(k -1), 

[N,N] + = [V,VL = [a(k),a(p)] + =0, (2) 

[N,a(k)] + = [N,a*(k)] + = [N,vL = [N,V*L 

= [a(k),VL = [a(k),V*L =0. 

Let us observe that irrespective of whether quantum objects 
V, N, e . represent bosons or fermions, and irrespective of 
whether they mutually commute or anticommute, the fol­
lowing two operators are the constants of motion: 

N1=Nv+NN' 

N2=Ne -NN' 

where 

(3) 

N v = V*V, NN =N*N, Ne = J d 3ka*(k)a(k), 

(4) 

and upon assuming thatN v,N N,Ne commute with anyfunc­
tion of operators belonging to pairs of species 
(N,e ),(v,e ),(V ,N), respectively, we arrive at 

[NI,HL = J d 3kf(k){ V*[V,V*L Na(k) 

+a*(k)N*[V*,VL V 

+ V*[N*,NL Na(k) 

+a*(k)N*[N,N*LVj, (5a) 

-, Permanent address: Institute of Theoretical Physics. University of Wro­
daw. 50-205 WrocJaw. Poland. 

[N2,HL = J d 3k Jd 3Pf(p){V*N[a*(k),a(p)La(k) 

+ a*(k)[a(k),a*(p)]_ N*Vj 

-J d 3kf(k){V*[N*,NLNa(k) 

+a*(k)N*[N,N*LVj. (5b) 

If now to admit that each of the species obeys some canonical 
(commutation or anticommutation) rules, then the conserva­
tion laws 

(6) 

immediately follow. 
The standard ansatz about the form of eigenfunctions 

for H is 1.2 that they should be superpositions of the bare 
states, i.e., eigenstates of 

Ho=moV*V+ J d3k.k-a*(k)a(k't=?H=Ho+HiDt· 

Since we wish to solve a common (NI,N2,H) eigenvalue prob­
lem, it is natural to look for states la,b ) obeying 

Nlla,b) = ala,b), N2Ia,b) = b la,b), 

lab)= ~ 1 Jd 3k ... 
, a=~+n (m!n!l!)1/2 ' 

b=/-n 

x J d 3k/ t,6 (m.n·/)(kl,· .. ,k/) 

X v·ma*(kl) ···a*(k/)N*nIO) , (7) 

which in the Fermi case (1) are restricted to summations over 
n = 0,1 while (N, Vboson, e fermion) or (N, v,e bosons) al­
low n = 0,1,2,... . In case of e fermionic, the coefficient 
function t,6 (kl, ... ,k/) is antisymmetric with respect to the mo­
mentum variables, while in case of e bosonic, is symmetric. 
We demand la,b ) to be an eigenfunction of H, to be denoted 
IA ) = IA,a,b ), 

H IA ) = AlA), A = A(a.b) . (8) 

To distinguish between the pure Bose version of (1) and the 
(Ne ) Fermi case oft 1) we shall use the notationHB, IA )B and 
H, IA ), respectively. In the pure Bose case by applying H!t 
to IA )B' as given by (7) we arrive at 
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H:t 1A.,a,b )B 

= Q_~+" {~(m + l)n·/ f d 3k l ... f d 3kl _ 1 [f d 3kl(k) ;\;,,·"·/)(k,kl,· .. ,kl _ d] 1m + l,n - l,kl ,· .. ,kl _ I )B 

b=I-" 

+ ~m(n + 1)(/ + 1) f d 3k l ... f d 3kl+ I I(kl) ;\;".".1) (k2,· .. ,kl + dIm - l,n + l,k lt .. ·,kl + dB' (9) 

Im,n,kl, ... kl)B = 1 1/2 v*mb *(kl ) · .. b *(kl )N:"IO) . 
(mlntl!) 

In the case of(Ne ) fermionic, we must have n = 0,1, which implies that 1A.,a,b ) is a superposition of the two types of bare states 
only: 1m = a - l,n = 1,1 = b + 1) and 1m = a,n = 0,/ = b) at a fixed choice of a,b. Consequently, 

Hint 1A.,a,b) = f d 3kl(kW*Na(k) f d 3k l ... f d3kb+ 1 ;(a-l.l.b+ I)(kl, .. · ,kb+ l)-ia - 1,I,kl,· .. ,kb+ I) 

+ f d 3kl(k)a*(k)N*V f d 3k l ... f d3kb ; (a.o.b)(k lt .. • ,kb)-ia,O,kp '" ,kb) 

= (- W~a(b + 1) f d 3k l ... f d3kb [/(k) ;(a-l.I.b+ ll(k,kl,· .. ,kb)] la,O,k l, ... ,kb) 

+ ( - l)b± I~a(b + 1) f d 3k l ... f d3kb+ I I(kl); (a.O.b) (k2,· .. ,kb+ Ilia - 1,I,kl> ... ,kb+ I) . (10) 

The particular structure of the interaction term Hint of H as given by (1) has intriguing consequences in t\le Bose case. Namely, 
1A.,a,b )B for all b but with the value of a restricted not to exceed 1: a< 1, can always be composed as a superposition of vectors 
taken from pairwise orthogonal Hilbert space sectors, each sector being spanned by vectors of the (shorthand) form 

la-k,k,b+k), la-k+l,k-l,b+k-l), k<a<l. (11) 

In particular let us consider the following contribution to 1A.,a,b )B: 

1A.,a,b )~): = f d 3k, .. · f d3kb+ I ; ~-I.I.b+ 1)(k1,· .. ,kb+ l)-ia - 1,I,k l ,· .. ,kb+ I)B 

+ f d 3k1 .. · f d3kb ;~.O.b)(kl> ... ,kb)·la,O,k\t' .. ,kb)B . (12) 

The action of H:t on (12) reads as follows: 

H:t 1A.,a,b )~) = ~a(b + 1) f d 3k1 ... f d3kb [f d 3kl(k).; ~-I.I.b+ I)(k,kl, ... ,kb)] la,O,kl,· .. ,kb)B 

+ ~a(b + 1) f d 3k l ... f d3kb+ 1 I(kl); ~.O.b) (k2,· .. ,kb+ l)-ia - I,I,kl , ... ,kb+ I)B . (l3) 

Any domain spanned by vectors of the form (11) is in fact left 
invariant by H:t • 

Remark: Let us observe that if to abandon the restric­
tion a< 1, then the action of H:t on 1A.,a,b )~) would produce 
an additional additive term in (13) following from the appli­
cation of (a*N*V) to la - I,I,kl> ... ,kb+ I) . The resulting 
la - 2,2,k l , ... ,kb+ 2) contribution can be eliminated from 
further discussion, but the price paid is the modification of 
the pure Bose Hamiltonian to the form PH:. P with 
P= :exp( -N: NB): +N::exp( -N: NB):NB. 

It corresponds to the replacement in H:t of the pure 
Bose variable NB by the spin-! Pauli operator variable 
q- = PNB P, (q+ = PN: Pl. Hence, we in fact pass then 
from the pure Bose model to the (ve ) Bose, N Fermi version 
of the Lee model. It is worth emphasizing that though the 
whole subsequent analysis is made for the pure Bose model 
with the restriction a< 1 on state vectors, all the arguments 
apply without any change (up to minor modifications in 
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r H!.) to the above-mentioned (Ve) Bose N Fermi system, 
where a and b are completely arbitrary. It means that the 
spectral solution for the (Ne) Fermi case produces this as 
well for the (N) Fermi case. It is also instructive to mention 
that the interaction of two static fermions with the scalar 
boson was studied in Ref. 4 in the NI = N * N + V* V 
= a = 1 state (sub) space. The subsequent analysis estab-
lishes the e Fermi partner for this case. 

On the basis of Ref. 5 we know how to establish the 
eigenvalues and eigenvectors (i.e., ;(a-I.I.b+I), ; (a.O,b)) for 
the (Ne) Fermi problem. At this point we are guided by our 
earlier studies of the (1 + 1 )-dimensional models,6 and the 
joint Bose-Fermi spectral problems arising there. For the 
exactly soluble Fermi model of Ref. 5 we wish to establish its 
pure Bose partner, such as the joint spectral problem makes 
sense. 

Let us make use of Refs. 7-9, where relations between 
linear spaces of symmetric and antisymmetric functions 

Piotr Garbaczewski 491 



                                                                                                                                    

were investigated. In application to our problem, the formal 
realization of the isomorphism, invented in Ref. 7 by means 
of the Friedrichs-Klauder antisymmetric symbol, is best 
suited. The symbol reads 

(14) 

depending on even ( + ) or odd ( - ) permutations of mo­
menta, the value 0 occurring if any two momenta coincide. 
Then 

(15) 

and any symmetric functionJ. (k1, ... ,kn) allows 7 for a decom­
position 

J.(kl, ... ,kn) = [u 2J. + (1 - u 2)1. ] (kl, ... ,kn) 
I 2 

: = (f + f)(k»; .. ,kn) (16) 

with the property that 
1 

UJ. =uf= fa (17) 

is an antisymmetric function of n-momentum variables. The 
formula (17) establishes an isomorphism between symmetric 

1 

functionsfs (they respect the Pauli exclusion principle since 
t 

fs vanishes ifanytwo momenta coincide), and their antisym-

metric partners fa. 
The above isomorphism has been exploited in Ref. 8 to 

construct an embedding of the CAR algebra representation 
with generators [a(p),a*(q)] + = 83

( P - q), [a(k), 
a( p)] + = 0 in the representation of the CCR algebra gener­
ated by [b(p),b*(q)L =83(p_q), [b(k),b(p)L =0, 
provided the representation spaces are constructed about the 
same (generating in the GNS construction sense) Hilbert 
space vector. We refer to Ref. 8 for the explicit "bosoniza­
tion" formulas valid in the Fock case (see also Ref. 9). For 
our purposes the following identity resulting from the CAR­
= CAR(CCR) construction of Ref. 8 is necessary: 

Ikl,· .. ,kn)F = (lIv'1iT)a*(kd'" a*(kn)IO) 

= u(kl, ... , kn)(lIv'1iT)b *(kd'" b *(kn)IO) 

= u(kl, .. ·, kn)lk1, ... ,kn)B . (18) 

Since in (16) we deal with an object N * 
N*lkl, ... ,kn)F = ( - l)nll,k1,· .. , kn)F 

= (( - Itlv'1iT)a*(kl) ••. a*(kn)N*IO} , 
(19) 

an appropriate realization for N * = N -; is necessary. We 
define 

N~ = ( - Ij1d 'ka*(k lalk) N:: exp( - N: NB):, (20) 

which has all the necessary properties, i.e., N-;2 = 0 [notice 
that :exp( - N: NB ) : is a projection on the vacuum state for 
the boson [NB.N:] _ = 1], and anticommutes with the 
a*(k)'s in (19). Instead oft - tV d'ka*(klalk} one can obviously 
use exp hr S d 3 k a*(k lark ). 

A nice property of the realization (20) is that a Bose 
representation for (19) is immediate: 
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11,kl ,· .. , kn)F = (lIv'1iT)u(k» ... ,kn)b *(kl) ... b *(kn)· N: 10) 

= u(k1, ... ,kn)ll,kl, ... , kn)B . (21) 

The notion of Fermi states of the Bose system acquires thus a 
meaning in three space dimensions. 

A straightforward application of (18) and (21), if com­
bined with (15)-(17), allows us to rewrite formula (16) as fol­
lows: 

Hint 1A.,a,b) = ~a(b + 1) J d 3k l ... J d3kb {( - l)b 

X [J d 3kf(k) t/J (a - 1,I,b + I}(k,kl, ... , kb)] 

Xu(k l,· .. , kb)} la,O,kl,···, kb)B 

+ ~a(b + 1) J d 3k l ... J d3kb+ I 

X {( - l)b + 1(kl) t/J (a,O,b }(k2, ... , kb + d 

Xo1.kl,· .. ,kb+ tlHa - 1,1,kl,· .. ,kb+ I)B . (22) 

Since in (13) and (22) we deal with superpositions of the Bose 
(bare) basis vectors, the respective expansion coefficients 
(with respect to this basis system) can be compared. 

The formula (13) implies 

B (a,O,k}, ... , kb IH/!t 1A.,a,b )~} 

=~a(b+ 1) J d3kf(k)t/J~-I,},b+I}(k,k}, ... ,kb) (23) 

and 

B (a - 1, 1,kl•· .. ,kb + I IH 1:.t 1A.,a,b )~) 

=~a(b+ l)(syml[f(kl)t/J~,O,b}(k2, ... ,kb+d], (24) 

where 

1 
(sym) =Sb+ 1= "> Pb+ I 

(b+ I)! ., 

is a symbol of symmetrization with respect to all momentum 
variables, 1: p P stands for a sum over all permutations. 

Quite analogously, from (22) we arrive at 

B (a,O,k l,· ... kb IHint 1A.,a,b ) 

= ~a(b + 1)( - It J d 3kf(k) t/J (a-l,l,b+ I} 

X (k,kv· .. ,kb )o1.kv .. ·,kb) 

and 

B (a - 1,I,kl •• .. ,kb+ I )Hint 1A.,a,b ) 

= ~a(b + 1)( _ 1)b+ 1 

X (sym)[ f(k l ) t/J (a.o,b}(k2,· .. ,kb+ l) 

X o1.k}, ... ,kb + d] . 

(25) 

(26) 

In addition to (sym), let us introduce the antisymmetrization 
operation 

(asym) =Ab+ I = I L (- itPb + 1 • 
(b + 1)1 p 

Both S and A are examples of the Young's idempotent 
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operators Yn , allowing for a decomposition of any n-point 
function with respect to different types of symmetry 

In = 'LYnln. 
y 

We shall exploit a property (Ref. 7, Theorem 2.7), which 
connects Young's operators Yn with their duals Y~: 

Ynun = Un Y~ . (27) 

In particular S~ = An' A ~ = Sn' hence Snun = Un An' It 
means that (26) acquires the form of 

~a(b + 1)( - l)b+ Iu(kl, ... ,kb+ d 
X {(asym) [/(kl ) t/> (a,O,b l(k2,· .. ,kb + I )] } 

= ~a(b + 1)( - W+ lif(kl,. .. kb+ I) 

X {(sym) [/(kl ) t/> ~,O,b )(k2, ... ,kb + I )] } , (28) 

where 

t/> ~a,o,b)(k2, ... ,kb+ I) = u(k2, .. ·,kb+ I) .t/>(a,o,b)(k2,· .. ,kb+ I}' 

(29) 
Let us now make an identification, 

A. (m,n,1 )(k k ) - -Yik k ) A. (m,n,1 )(k k ) (30) 
'f'B I'"'' I -VI I'"'' I 'f' I'"'' I , 

relating the pure Bose and the (NO) Fermi expansion coeffi­
cients in the above. By virute of(18) and (21) it implies that 
the Bose vectors (12) upon (30) satisfy 

l-t,a,b )~) = l-t,a - I,l,b + 1)B + 1-t,a,O,b >B 

= l-t,a - l,l,b + 1) + 1-t,a,O,b> = l-t,a,b) , 
(31) 

i.e., coincide with the respective Fermi vectors in the Fock 
space. Furthermore, the pure Bose expression (23) reads 

~a(b+ 1) f d 3k/(k)t/>t-1.I.b+ II(k,kv ... ,kb } 

=~a(b+ 1) f d 3kl(k)t/>(a 1.I,b+l) 

X (k,kl, ... ,kb)· u(k,kl, ... ,kb) 

=~a(b+ 1) f d 3k/(k)t/>(a-I,b+ l ) 

X (k,kl, ... ,kb) .u(kl, ... ,kb), (32) 

which by a factor ( - l)b differs from the corresponding (NO) 
Fermi expression (- W(23) = (25). 

As a result of (30) and (28) the following formula holds 
true for the (NO) Fermi model expression (26): 

(-l)b+I~a(b+ l)(symH/(k l )t/>(a,O,b l 

X (k2,· .. ,kb + I )u(k., ... ,kb + I)] 

= ~a(b + 1)( - 1)b+ lif(kl, ... ,kb+ d 
x{(sym)[/(k.)¢>~,O,b)(k2, ... kb+d]1, (33) 

which upon dropping out a factor ( - l)b + I is exactly the 
ifF contribution to the decomposition formula 
[ifF + (1 - if)F] valid for the pure Bose expression 
(25) = F. By virtue of (15) the decomposition is orthogonal. 

Since, because of (31) we have 

Hgl-t,a,b) = Hol-t,a,b ) ; (34) 
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the relevant information about the relationships between the 
Bose and Fermi spectral problems comes from the interac­
tion terms. 

By virtue of(31) we arrive at 

H:!t l-t,a,b )~) 

= H:!t l-t,a,b ) 

= (- w f d 3k/(k)V*Na(k)l-t,a - 1,1,b + 1) 

+ ( - W+· f d 3k/(k )a*(k) 

xN*YI-t,a,O,b) + (- W+ IIR), (35) 
where 

IR) = f d 3k .... f d3kb+1 ~a(b+ 1) 

X [1 - if(k., ... ,kb+ .)] 

X {(sym) [/(k.) t/> t·O.b )(k2,· .. ,kb + I)] 1 
X 1-t,a,O,k., ... ,kb + I )B . (36) 

Let us however, recall that because of (30), ¢>B = U· t/> and 
that 

1 
(sym) = (b + 1)1 ~Pb+ I' 

so that in (36) we encounter products ofthe form 

[ 1 - if(kl, ... ,kb + .)] .u(ki, , ... ,k;.) (37) 

with k;'s taken from the set (k., ... ,k. + b)' But (37) either iden­
tically vanishes, or gives a nonzero contribution to (36) on 
the set of measure zero only. Hence, IR) = 0. 

If we introduce the notation 

H~ = f d3k/(k)[Y*Nb(k)+b*(k)N*Y], 

(38) 

H~ = f d 3k/(k)[Y*Na(k) +a*(k)N*Y], 

then (35) appears as an example of a few more relations 
between Bose and Fermi Hamiltonians 

H! l-t,a,b) = (- 1tH~ l-t,a,b) , 
(39) 

H~ l-t,a,b) = (- l)b H~ l-t,a,b), a<l. 

After accounting for the contribution of Ho, the complete 
Hamiltonians of the form Ho ± Hint become related as fol­
lows: N. < 1, N2 = b, 

beven, 

(Hg +H! )I-t,a,b) = (H~ +H~ )I-t,a,b) , 

(Hg + H~ )I-t,a,b) = (H~ +H~ )I-t,a,b), 

bodd, 

(Hg ± H! )I-t,a,b) = (H~ +H~ )I-t,a,b > , 

(Hg ± H~ )I-t,a,b ) = (H~ +H~ )I-t,a,b ) . 

(40) 

(41) 

In this number the pure Bose problem H B of Refs. 3 and 4 is 
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identified with H~ + H'!. and the (N6) Fermi problem of 
Ref. 5 with H~ + H~ . 

Relations (40) and (41) prove that for the family offour 
(N6) Fermi models, there is a corresponding family of pure 
Bose models, with the property that in the state space of the 
Bose system there exists a projection II such that the eigen­
value problem for hF can be solved in the range of ll, and 

[hB,ll] _ = 0, hp==flhB ll, 

hB =llhB II + (l-ll)hB(1-ll). (42) 

Here hB stands for the Bose, while hp stands for the respec­
tive Fermi Hamiltonian. Complementary studies of (1 + 1)­
dimensional field theory models sharing the property (42) 
can be found in Refs. 10, 11, and 6. 

The results (40) and (41) mean in particular that the pure 
Bose model 

hB =moV*V+ f d 3kk.b*(k)b(k) 

+ f d 3kf(k)[V*Nb(k)-b*(klN*V] (43) 

has eigenvectors and eigenvalues common with the (N6) 
Fermi model solved by Sudarshan and Tatas: all b even ei­
genvectors of hp of (1) are exact eigenvectors with the same 
eigenvalUes for the pure Bose Hamiltonian (43). The odd 
eigenvectors of hp are shared with 

h~ =mo V*V+ f d 3kk.b*(k)b(k) 

- f d 3kf(k)[V*Nb(k)-b*(klN*v]· (44) 

One should also notice that upon solving the eigenvalue 
problem for the Fermi Hamiltonians (H~ ± H~ ) we would 
have received a partial spectral solution for the pure Bose 
model of the Bolsterli-Lee type.1

-
3 Unfortunately the Bose 

Hamiltonian (H g ± H'!. ) is related to the Fermi Hamilton-
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ian (H ~ += H ~ ) and likewise (H ~ ± H ~ ) is related to (H ~ 
+= H ~ ). Thus, the spectral solutions ofSudarshan and Tata 
cannot be used to obtain the solution of the spectrum of the 
Bolsterli-Lee model: This entails the solution of the problem 
for (H ~ ± H ~ ). For this form of the fermion Hamiltonian, 
however, the simple form ofEq. (3.2b) in Ref. 5 does not arise 
since the right-hand side now entails the operator v*v 
-N*N instead of the eigenoperator V*V +N*N =N!. 
(It was the eigenoperator structure that led to the simple 
solution in Ref. 5.) This is exactly the structure for the corre­
sponding equation that would occur if one were directly 
dealing with the Hamiltonian for the Bolsterli-Lee model. 

One more problem arises in connection with the (for­
mal) non-self-adjointness of operators H ~p. However, since 
we relate them to self-adjoint operators via (42) it appears 
that projections II identify the appropriate (Hermicity) do­
mains. 
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High-temperature expansions for the density-independent part of the radial distribution function 
and the first-order density correction to it are obtained for a two-dimensional binary mixture of 
hard disks. The "excess" quantum corrections to the second and third virial coefficients and 
excess free energy are also discussed. It is found that the "excess" quantum effect depends on the 
concentration and the diameter ratio. 

I. INTRODUCTION 

Two-dimensional quantum fluids have been a subject of 
considerable interest in recent years. 1-5 Ideally a two-dimen­
sional system cannot be achieved. However, a strictly two­
dimensional picture has been used in predicting the proper­
ties of the adsorbed film. 6, 

7 Another reason for this interest is 
to study the effects of reduced dimensionality on the nature 
of the phase transition.8

,9 Most of the fluids found in the 
literature have been treated classically, because the quantum 
effects for them are so small as to be negligible. There are 
some fluids for which deviations from classical behavior are 
observed at low temperatures. There are two types of quan­
tum effects: (i) diffraction effects, which are linked to the 
wave nature of the particles in the fluid, and (ii) exchange 
effects due to the statistics (Bose-Einstein or Fermi-Dirac) 
obeyed by the particles. The exchange or symmetry effects 
are very small for all fluids, except for liquid helium below 
5 OK (Ref. 10). The diffraction effects, on the other hand, are 
appreciable even at high temperatures. 

At high temperatures, where quantum effects are small 
and can be treated as a correction to the classical system, the 
fluid is treated semiclassically. The usual way of studying the 
properties of the semiclassical system is to expand them in 
powers of Planck's constant Ii (see Refs. 11 and 12). The first 
term of the series is the classical value and other terms arise 
due to the quantum effects. We use the Wigner-Kirkwood 
(WK) expansion methodll for an analytic potential and the 
Hemmer-Jancovici (HJ) methodl2 for a hard-sphere (or 
hard-disk) potential. This approach has been extensively 
used for two-dimensional one-component fluids. 4

,5 However 
a two-dimensional quantum fluid mixture has not yet been 
investigated systematically. 

The classical hard-disk mixture has been studied over a 
wide range of densities. 13

,14 No work is available for the 
hard-disk mixture in the semiclassical limit. Recently Singh 
and Sinhal5

,16 have used their method to calculate the equi­
librium properties of the three-dimensional fluid mixture of 
hard spheres. 

In the present paper we study the equilibrium proper­
ties of the hard-disk mixture in the semiclassical limit. 

In Sec. II, we describe a basic theory for calculating the 
equilibrium properties of a two-dimensional binary mixture, 

0) Permanent address: Department of Physics, C.M. (Science) College, 
Darbhanga, India. 

the constituent particles of which interact via a hard-core 
potential. The explicit expressions for the free energy and the 
radial distribution function (RDF) are reported there. Using 
this expression for the RDF, we calculate the density-inde­
pendent RDF and first-order density correction to it for the 
hard-disk mixture in Sec. III. Section IV is devoted to calcu­
late the second and third virial coefficients for the hard-disk 
mixture. In Sec. V, we develop another method to calculate 
the thermodynamic properties of a dense fluid mixture of 
hard disks. 

The exchange effects that arise due to statistics are ig­
nored here. 

II. BASIC THEORY 

We consider a two-dimensional fluid mixture of NI 
hard-disk molecules of species 1 and N2 hard-disk molecules 
of species 2, such that the total number of molecules is 
N = NI + N 2• We assume that the constituent molecules of 
both species differ in size. In addition, the interaction 
between unlike molecules is also assumed to be hard-disk 
interaction. The Hamiltonian of the system is 

'" 1j221Ni 
HN= - - I-I v; 

2 j =lmj i=1 

2 

+ I I UafJ(i,k) . 
a,p= I i<k 

(2.1) 

Here, uafJ (i,k ) is the pair potential between particle i of spe­
cies a and particle k of species p. 

For the grand canonical ensemble, the density operator 
p for a fluid mixture is defined as 

p=exp[ -P(HN- jtIJLjNj)]E- 1
, (2.2) 

'" where P = (kT)-I, JLj and~ are,respectively, the chemical 
potential and number operator of species j, and E is the 
normalization factor, known as the quantum mechanical 
grand canonical partition function 

E=tr{exp[ -P(HN - ~JLjNj)]). (2.3) 

Let {J/lx} be a complete set of (properly symmetrized) 
orthogonal wave functions of the system, then 
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E= ) L r ~(TI, ... ,rN) 
"""'I x Jv 
xexp[ - {3 (lIN - ~Jlj Nj)] 

N 

X¢'x(TI,···,rN) II Ori • 
i=1 

It can be rewritten in the form 

(2.4) 

E=) (IT Z;'1)f···f WN(1,2, ... ,N) IT Ori , 

~l '=1 Nj! i=1 

where 
Z - 1 -2 ePP.j 

j -A} , 

Aj = (21rlf {3 1m) I 12 , 
2 

WN(1,2, .•. ,N) = II Np. ~j L ~(TI,···,rN) 
j=1 x 

A 

Xexp( -{3HN)¢,x(TI, ... ,rN) 

2 

= II NjU~j<1,2, ... ,NI 
}=I 

A 

Xexp( -{3HN lI1,2, ... ,N), 

(2.5) 

(2.6a) 

(2.6b) 

(2.7) 
Here z} and Aj are, respectively, the fugacity and thermal 
wavelength of species j, and WN , defined by Eq. (2.7), is the 
Slater sum for a two-dimensional fluid mixture. 

The quantum mechanical pair correlation function for 
a binary mixture in the grand canonical ensemble is 

Pa PfJ gafJ(1,2) 

- = -I L r IT z;'1 ] - - L= I (Nj - /)aj - /)fJj)! 

X f ... f WN(1,2, ... ,N) j~3 Or; . (2.S) 

In the semiclassical limit (i.e., at high temperature), 
when the deviation from the classical behavior is small, the 
Slater sum can be written as 12 

(2.9) 

where 

W~(1,2, ... ,N) = exp [ - {3 ± ~ Uay(i,k)] (2.10) 
a.y= I .<k 

Thus, is the Boltzmann factor and W';J is a function which 
measures the deviation from the classical behavior. We can 
express W';J in terms of the "modified" Ursell function 
U:p" ... c5(1,2, ... ,l). Thus, 

W;"(l;a) = U:'(l) = 1 , (2. 11 a) 

W~(1,2;a"B) = 1 + U;;'p(1,2), 

W3'(1,2,3;a"B,y) = 1 + U;;'p(1,2) + U:;'(1,3) 

+ U.B'r(2,3) + U;;'py(1,2,3) , 

W';J( 1,2, ... ,N;a, {3, ... ,/)) 
2 

= I + L L U;;'p(iJ1 
a.fJ= I i<j 
2 

+ L L U:'fJy(i,j,k) 
a. fJ.y = I i<j<k 

2 

+ L L U;;'p(ij)U';.s(k,l) 
a.fJ.y.c5= I i<j#kd 

+ .... 

(2.llb) 

(2.11c) 

(2.11d) 

The above equations can be solved successively for U;;'p, 
U;;'py .... : 

U;;'p(1,2) = W~(1,2;a"B) - I , (2. 12a) 

U:'fJy(1,2,3) = W3'(1,2,3;a,{3,y) - W~(1,2;a"B) 

- W~(1,3;a,y) - W~(2,3;{3,y) + 2. (2.12b) 

By solving the quantum mechanical I-body problem, one can 
obtain, in principle, the I-body "modified" Ursell function 
U;;'pY ... c5(1,2, ... ,l). Unfortunately actual evaluation is too in­
volved to be feasible. For the hard-disk mixture, U;;'p(r) is 
evaluated in the next section. 

From Eqs. (2.9) and (2.lld) we can obtain the expression for WN • This is used in Eq. (2.5) to obtain an expression for the 
free energy. The result is 

{3A {3Ac I 2 f m I 2 2 f m - = -- - -P L XaXfJ gcafJ(1,2)U afJ(I,2)Or2 - -P L XaXfJXy gcafJy(I,2,3)U afJy(I,2,3) Or2 Or3 
N N 2 a. fJ = I 6 a./3.y = I 

- l..p3 ± Xa XfJXyXc5 f [~fJYc5(1,2,3,4) - gcafJ(I,2~c5(3,4)] U;;'p(1,2)U;c5(3,4) Or2 Or3 Or4 
S a. fJ.y.c5 = I 

+ LKc ± XaXfJXy {f U;;'p(1,2) ~ [p2gcafJ(I,2)] Or2} {f U:'y(3,4) ~ [p2~y(3,4)] Or4 } 
S{3 a. fJ.y = I ap ap 

+ O(A~), (2.13) 

where 

KC=l..(.!L) 
p apc fJ 

(2.14) 

is the isothermal compressibility of the classical fluid mixture and is given by the relation IS 

(2.15) 
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Here A C andg'"aP ... 6(1,2, ... ,1) are, respectively, the free energy and I-particle distribution function ofthe classical two-dimen­
sional fluid mixture, p is the number density, andxa is the concentration of the species a which is defined as the ratio of the 
number of particles of species a and the total number of particles in the system, i.e., 

Xa =Na/N=Pa/P' 

From Eq. (2.8), we find the following expression for the radial distribution function: 

gaP(1,2) =g'"aP(1,2) [1 + U:'p(1,2)] +p ytl Xy f ~py(1,2,3) [U:'py(1,2,3) + U:'y(1,3) + Upy(2,3)] Qr3 

+ ~ [1 + UaP(1,2)] p2 y,~ I XyX6 f [g'"aPY6(1,2,3,4) - g'"aP(1,2) ~6(3,4)] U;'6(3,4) Qr3 Qr4 

- K
C 

[1 + Uap(1,2)] [~ [p2g'"aP(1,2)] (± Xy {f U:'y(3,4) ~ [p2~y(3,4)] Qr4 
4{3 ap y= I ap 

+ f Up,,(3,4) ~ [p2gpy(3,4)] Qr4})] + O(A~). (2.16) 

Equations (2.13) and (2.16) are similar in their functional forms to those obtained for a three-dimensional fluid mixture. IS 

III. RADIAL DISTRIBUTION FUNCTION OF A DILUTE 
HARD-DISK MIXTURE 

This section is concerned with the evaluation of the ra­
dial distribution function of a binary mixture of hard disks. 
For such a system the pair interaction is given by 

r
oo, 

uaP(r) = 0, 
r<dap , 

r>daP ' 
(3.1) 

where daP is the diameter between the hard disks of species a 
and p. For, unlike interaction, daP is given byl7 

d l2 =! (d l1 + d22)(1 +.J ), (3.2) 

where .J = 0 for an additive hard-disk mixture, whereas 
I.J I > 0 for a nonadditive hard-disk mixture. 

A. DenSity-Independent radial distribution function 

The density-independent radial distribution function 
(RDF) for a two-dimensional mixture is given by 

gl!aP(r) = 2A ~<rlexp( - p Brel)lr) , (3.3) 
" where Hrel is the relative Hamiltonian of two particles of 

species a and P, 

BreI = - (if/maP) v2 + uap(r), (3.4a) 

and AaP is the thermal wavelength associated with the parti­
cles of species a and p. Thus 

Aaa = (21TfilP /maa )1/2, 

AI2 = [(A ~I + A i2)/2r /2 . 

(3.4b) 

(3.4c) 

In Eq. (3.3) statistics are not taken into account. In the classi­
cal limit, Eq. (3.3) reduces to g'"..}(r), given by 

g'"..}(r) = exp [ - puaP(r)] . (3.5) 

At high temperature, the density-independent RDF 
can be written as 

gl!aP(r) = (1 + U:;'p(r)] , (3.6) 

where U:;'p(r) is the two-body "modified" Ursell function, 
which is given by4 

U:;'p(r) =s~ +S~p +s~ + ... , 

with 

s~ = - exp[ - Q~] , (3.8a) 

S ~ = (1/2 v'2)(Aap/daP)Q!p erfc(QaP)' (3.8b) 

s~ = (1/81T)(AaP/daP)2Q~ [Q~ exp( - Q~) 

- foQaP(2 + Q!p)erfc(QaP)] , (3.8c)-
where 

B. First-order density correction to the radial 
distribution function 

The I-particle distribution function for a fluid mixture 
can be expanded in powers of density p as l4

,18 

gaP ( 1,2, ... ,/) 

= exp[ - p ± l. UaP(i,}1] 
a,p= I .<} 

X Lt/n y,6*=1 xyx6 ... a!:.~.p(1,2, ... ,I)], (3.9) 

where the coefficient a~! .. p(1,2, ... ,I) is the cluster integral in-
volving n field points and I base points. Equation (3.9) is valid 
for both classical and quantum fluid mixtures. Substituting 
Eqs. (2.9) and (3.9) in Eq. (2.11), we get the following expan­
sion coefficients for gap(1,2): 

a~(1,2) = [1 + U:;'p(1,2)] a~(1,2), (3.10) 

a~~(1,2) 

= a~~ (1,2) [1 + U:;'p(1,2)] 

- [1 + U:;'p(1,2)] f {exp[ - pUay(1,3)] 

X U:'y(1,3) + exp[ - pUpy(2,3)] Upy(2,3)} Qr3 

+ f exp{ - p [uay(1,3) + upy(2,3)]} [U:'rP(1,2,3) 

+ U:'y(1,3) + Up,,(2,3)] Qr3' (3.11) 

(3.7) and so on. Here 
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a~(1,2) = 1, (3.12a) 

a:~(1,2) = J far(I,3)/Pr(2,3) Or3, (3. 12b) 

where 

f afJ(i,}1 = exp [ - pUafJ(i,}1] - 1 . 

We write the RDF in the fonn 

(3.13) 

gafJ(I,2) = g'lafJ(I,2) + pg~(1,2) + 0 (p 2) , (3.14) 

where g'lafJ(I,2) is the density-independent part of the RDF 
and g~(1,2) is the first-order density correction to it. 

For a hard-disk mixture, the first-order density correc­
tion to the RDF is given by 

2 

g~(1,2) = L xra~~(1,2). (3.15) 
r- I 

For such a system, a~~(1,2) is obtained from Eq. (3.11) as 

a~~(1,2) = a~~(1,2) [1 + U:',s(1,2)] + Aayp(I,2) , 

(3.16a) 

where 

Aarp(I,2) = J [U:yp(I,2,3) - U:',s(1,2)U:r(I,3) 

- U:',s(1,2)U;"(2,3)] Or3' (3. 16b) 

For a hard-disk mixture, Eq. (3.12b) is evaluated as 

a~~(1,2) = [(17"12) (d!r + d~r) - d!r {sin-I(cos Oa) 

+! sin(20a )} - d~r {sin-I(COS 0/:/) 

+ ! sin(20p)} ], for dafJ < r l2 < dar + dlJr ' 

=0, for r I2 >dar +dlJr, (3.17) 

where 

Oa = COS-I ((~2 + d!r - d~r)J2rI2 dar) , 

Op = COS-I((~2 + d~r - d~)/2r12dPr)' 

(3. 18a) 

(3.18b) 

For a one-component fluid, where dar = dpr=u:i, Eq. (3.17) 
reduces tol9 

= {d 2 [ 1T - 2 sin -I (;:;) - ;:; (4 - (d~) rll] , 
for d<r12<2d, 

0, for r I2 >2d. 
(3.19) 

In order to evaluate Aayp(I,2), we split the range of r12 
into a number of intervals and consider Aayp(I,2) in each 
interval. 

(11 At r12 = daIJ: U:'yp(1,2,3) can be written as4 

U:yp(I,2,3) = Wj(I,2,3;a,P,r) - 1 - U:',s(1,2) 

- U:r (I,3) - U;"(2,3) . (3.20) 

At r l2 = dafJ, U;:'p(1,2) = - 1 and Wj = O. Thus 

U:',sy(1,2,3) = - U:r (I,3) - U;"(2,3) . 

Substituting this in Eq. (3. 16b), we get 

Aayp(I,2) = 0 
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and 

d~~(1,2) = 0 . (3.21) 

(i11 For dafJ < r 12 < dafJ + A.afJ: In this configuration, the 
first-order contribution of U:',sr ( 1,2,3) comes only from that 
region in which either r13>dar +A.ar or r23 >dlJr +A.pr' 
Using the superposition approximation4,20 

U:',sr(I,2,3) 

= U:',s(1,2)U:'r(1,3) + U:',s(1,2)UPr(2,3) 

+ U:'r(1,3)UPr(2,3) + U:',s(1,2)U:r(I,3)UPr(2,3) , 

(3.22) 

Eq. (3.16b) can be written as 

Aayp(I,2) = [1 + U:',s(1,2)] 

X J U:r (I,3)U;"(2,3) Or3 . (3.23) 

For rlj > dafJ + A.afJ, U:',s(i,}1-0 and we get 

AarP(I,2) = 0 

and 

a~~(1,2) = [1 + U:',s(1,2)] a~~(1,2) . (3.24) 

(ii11 For r l 2 >dafJ + A.afJ: For this configuration, 
U:',s(1,2)-0 and Eq. (3. 16b) reduces to 

Aayp(I,2) = f U:'yp(1,2,3) Or3 . (3.25) 

Thus the leading contribution in the A.aIJ-expansion of 
Aayp(1,2) comes from the region for which r13 <dar +A.ar 
and r23 <dpr + A.Pr' Consequently, the contribution of Eq. 
(3.25) is of the order of A.ar A.1Jr. Thus 

Aayp(1,2) = o (A.aa A.pr ) 

and 

(3.26) 

Thus the first-order density correction to the RDF, correct 
to the first-order quantum correction, is 

2 

g~(1,2) = [1 + U;:'p(1,2)] L xr a~~(l,2), (3.27) 
r=1 

which leads to 

g~dr) = [1 + U;'j(r)] {XI dfl [1T- 2 sin-I (~I) 

- ~12 (4 - (:2rrll]), (3.28) 

g~2(2) = [1 + U;;(r)] {X2d~2 [1T - 2 sin-I (~2J 

- ~22 (4 - (~2rrll] 
+X1df2 [1T-2Sin-I(~IJ 
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- ~12 (4 - (;2rr12]), 
g~2(r) = [I + U~(r)] {Xl [; (d~1 + d~2) 

- d~1 (sin-I(cos ( 1) +.!.. sin(281}} 
2 

- d ~2 (sin -1(ooS ( 2) + ~ Sin(282))] 

+ X2 [ ; (d f2 + d ~2 ) - d f2 (sin -I(COS 8 ') 

+~ Sin(28'))-d~2 (sin-l(ooS8") 

+ ~ sin(28 If))]} , 

, -I (,-2 + d f2 - d ~2) 8 = cos , 
2rdl2 

8 " = cos -I (,-2 + d ~2 + d f2) . 
2rd22 

(3.29) 

(3.30) 

(3.3Ia) 

(3.3Ib) 

(3.3Ic) 

(3.3Id) 

We may evaluate the RDF of a binary mixture of hard 
disks using Eqs. (3.28H3.30). 

IV. EQUATION OF STATE OF A DILUTE HARD-DISK 
MIXTURE 

Substituting Eqs. (2.13) and (3.9) in the relationl8 

P=e:.. (aA) 
N ap , 

we obtain an expression for the equation of state in the virial 
form 

'" 
fJP=p + L B,.p", (4.1) 

,.=2 
where B,. is the nth virial coefficient for the fluid mixture in 
the semiclassical limit. The first few virial coefficients, which 
are required to give the equation of state of a dilute gas mix­
ture, can be written as 

B2=B2-.!.. ± XaXflJeXP[-fJUafI(I,2)] 
2 a,fI= I 

X U:P(1,2) ar2 , 

B3 =B~ - a'~=1 xaxyxfI J exp[ -fJuafI(I,2)] 

Xa~~(1,2)U:P(1,2) ar2 

(4.2) 

+ a,~= I xaxflxy J exp [ -fJ {uay(I,3) + ufIy(2,3)}] 
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where B 2 and B ~ are, respectively, the second and third 
virial coefficients for a two-dimensional binary mixture of 
classical fluid. They are given by21 

I 2 J B 2=-- '5" XaXp fafl(I,2)ar2' 
2 a,t"-I 

(4.4) 

(4.5) 

Substituting Eq. (3.7) in Eq. (4.3), we obtain the follow­
ing expression for the second virial coefficient for a hard­
disk mixture in the semiclassical limit: 

I 2 2 [ I (AafI) B2 = - fT '5" xaxp d afI I + ~ --
2 a,r..1 V~ dafl 

+_...::P... + __ ...::P... + ... , I (A.)2 I (A)3 ] 
3fT dafl 32 v'lfT dafl 

(4.6) 
where the first term on the right-hand side is the classical 
value. 

For the hard-disk mixture, Eq. (4.3) reduces to 
2 

B3 = B ~ + a,~= I XaXpXy [B f1af1y + 0 (Aafl Aay) , 

where 

[B f1af1y = - ! J [a~~(1,2)u:P(1,2) 
+ a~(1,2)U:y(I,2) 

+ a~y(I,2)U;y(I,2)] ar2' 

(4.7) 

(4.8) 

In order to calculate the classical third virial coefficient 
B ~, we rewrite Eq. (4.5) in the form22 

fT 2 
B ~ = - '5" XaXpXy 

6 a,l,:;'= I 

For hard disks, where 

afafl(I,2) 
-=..;.~= c5(rl2 - dafl ), arl2 

Eq. (4.9) can be evaluated as 
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2 

Bj =!!... } XaXpXr [d~a~~(da,8)+d~ra~r(dar) 
6 a.tf::1= I 

+d~a~r(dpr)] . (4.10) 

With the help ofEq. (3.17), Eq. (4.10) can be expressed as 

B j =!!... f xaxpxr [d ~d ~r {o ~ - ..!.. sin(2 0 ~)} 
3 a.tf::1= I 2 

+ d~d~r {o~ - ~ sin(2 o~)} 

+d~rd~r {o~ - ~ Sin(20~)}], (4.11) 

where 

o~ = cos- I ((d~ + d~r - d~r)/2dapdar)' 

o~ = cos- I ((d~ + d~r - d~r)l2da,8dpr)' 

o~ = cos- I ((d~r + d~r - d~)/2dardPr)' 

(4.12a) 

(4.12b) 

(4. 12c) 

Fora one-component fluid, whereda,8 = dar = dpr=d, Eq. 
(4.11) reduces t023 

Bj = 1 rd 4 (~- YJ/1r). (4.13) 

We now evaluate the leading quantum correction of the 
order of (Aa,8/da,8) to the third virial coefficient. Equation 
(4.8) can be evaluated substituting the values of U:'p(I,2) and 

cit) 
aarp(I,2) from Eqs. (3.7) and (3.17). Thus the final results for 
the third virial coefficient for the hard-disk mixture, correct 
to the first-order quantum correction, is 

B3=Bj+!!... f XaXpXr(.~ {(Aa,8) 
3 a.tf::1=1 V.i. da,8 

X [d~ d~r (o~ - ~ sin(2 o~)) 

+ d~ d~r (o~ - ~ sin(2 o~))] 

+ (~::) [d~ d~r (o~ - ~ sin(2 o~)) 

+ d ~r d ~r (0 ~ - ~ sin(2 0 ~)) ] 

+ (~:) [d~ d~r (o~ - ~ sin(2 o~)) 

+ d~r d~r (o~ - ~ sin(2 o~))]} 

For a one-component fluid, Eq. (4.14) reduces t04 

(4.14) 

B3=Bj [1 +v2(A/d) + O((A/d)2)] • (4.15) 

whereBj is given by Eq. (4.13). 
We are interested in estimating the excess properties of 

the hard-disk mixture (relative to the pure components). The 
"excess" second and third virial coefficients of a hard-disk 
mixture in the semiclassical limit may be obtained from Eqs. 
(4.6) and (4.14), respectively. Thus, 
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and 

iiB3 =iiBj +iiB l(A/d) + O((A/d)2) , (4.17) 

where 

iiBj=! rd4{xIX2[(d~2r(2 - ~e) 

+ ( d~2 r (4 - ~ - 2b ) - ! c]} , 
(4.18) 

iiB I = v21Td 4X I X2 [ ( d~2 r E (; - e) + ( d~2 r 
X (; -A+ ~E(1T-2a-b))-! D], 

(4.19) 

where 

d 2 = X I d ~ I + x2 d i2 , (4.20a) 

(4.2Oc) 

cd 4 = XI dil ..J4d~2 - d~1 + x2 d~2 ..J4d~2 - di2 , 

(4.2Od) 

e = XI sin- I (1 - ~) + X 2 sin- I (1 - 2d
di

: ), 
2d~2 12 

and 

1 d . -I (d22 ) + X 2 1'1.22 22 sm --, 
2d12 

E(A /d) = (A12/dd. 

(4.20e) 

(4.21a) 

(4.21b) 

(4.21c) 

(4.21d) 

In Eq. (4.16), the first term is the classical value. From Eqs. 
(4.20a) and (4.21a), we have 

~ = [XI + X 2 R (A22~All)] (61) 
d XI +x2 R d ll 

= [XI + X2 R (m ll/,:d
I/2

] (61) , (4.22) 
XI +x2R d ll 
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where R = d22/ d II' For additive hard disks, E is given by 

E = v'l (1 + m ll/m22)1/2 (XI + X2 R 2) 1/2' (4.23) 
(1 + R) (XI + X2 R (m ll /m 22) ) 

The equation for E is invariant to a labeling of species 1 and 
2. For a given mixture, the excess quantum correction can be 
calculated in term of (Aaa/daa) of one ofthe species. How­
ever, in the case of a hard-disk system, we may consider the 
atomic mass as some function ofthe diameter of hard disks. 
If we assume for simplicity that the atomic mass maa is pro­
portional to d!a' Eq. (4.23) reduces to 

E = v'l [(1 + R -2)1/2(XI + X2 R 2)1(1 + R)]. (4.24) 

Equations (4.16) and (4.17) are valid for both additive and 
nonadditive hard-disk mixtures. From these expressions, it 
is obvious that the excess virial coefficients depend on X I and 
R. 

V. THERMODYNAMIC PROPERTIES OF A DENSE 
HARD-DISK MIXTURE 

The free energy of a binary mixture of hard disks, cor­
rect to the first-order quantum correction, is obtained from 
Eq. (2.13): 

PA PAC 1 2 
-=-- - -p LXiX) 
N N 2 i.)=1 

x f Uij(r)gij(r)dr+O(A~). (5.1) 

Using Eq. (3.7), it can be evaluated as 

PA PA C 1T 
- = --+ --P LXiX) gij(di))di) Ai) . 
N N 2v'l i.) 

(5.2) 

This expression is valid for both additive and nonadditive 
hard-disk mixtures. 

The van der Waals one (vdWl) fluid theory of mixture, 
originally developed for the hard-sphere system,24 has been 
extended in the case of the classical hard-disk mixture. IS We 
adopt this theory to calculate the properties of the classical 
system. This theory approximates the properties of a mix­
ture by those of a fictitious pure hard-disk fluid with the 
diameter 14 

d ~ = L Xi X) d ~ . (5.3) 
i.) 

In the vdWI theory of mixture, the free energy and pressure 
of the classical mixture are written as 

A C = A ~ + NkT L Xi In Xi + second order term, 
i 

pC = p ~ + second order term, 

(5.4) 

(5.5) 

where A ~ and P ~ are, respectively, the free energy and pres­
sure for pure classical fluid containing N ( = NI + N2) mole­
cules in volume Vat temperature T. For a hard-disk model 
having diameter do given by Eq. (2.6), A ~ and p~ are given 
by2S 

PA~/N=~ [1/0/(1-1/0)] -Fn(I-1/o) (5.6) 
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and 

PP~/p = (1 + 0.1251/~)/(1 -1/0)2, 

where 

(5.7) 

710 = l1Tpd~ , (5.8) 

In the vdWI theory, it is assumed that 

gij(di)) =~(do)· (5.9) 

Further, we assume 

dcJ..o = L XI XI Ai) di) , (5.10) 
I,) 

for all j and j. Then Eq. (5.2) is written as 

~ = P~c + 2~ (pd~)~(do) e:). (5.11) 

Other thermodynamic properties can be derived from Eq. 
(5.11). Thus the equation of state of the hard-disk mixture in 
the semiclassical limit is given by 

pp = ppc + ~pd~) 
p p 2v'l 

X [ ~(do) + P a~~o)] e:) . (5.12) 

Thus the quantum corrections to the thermodynamic prop­
erties are expressed in terms of the classical RDF at the con­
tact ~(do), which can be obtained from the relationl4 

ppc 1 2 
--= 1 +-1TP LXiX) di)gij(di)) 

p 2 i,) 

= 1 + 2 71o~(do). (5.13) 

With the help ofEqs. (5.7) and (5.13), ~(do) is given by 

~(do) = (1 - ~ 710)/(1 - 710)2. (5.14) 

Using Eqs. (5.6H5.9) and (5.14), we obtain the follow­
ing expressions for the free energy and pressure correct to 
the first order in Ai): 

PA =[1+ ~",,"LXiX)Ai)~](PAC), 
N 2v.l. I,) adi) N 

(5.15) 

pp = [1 +_I-Lxi Xj Ai)~] (PPC). (5.16) 
p 2 v'l i,1 adi) p 

Thus the first-order quantum correction to the thermody­
namic properties of the hard-disk mixture can be found by 
replacing the actual diameter di) by an effective diameter 
(di) + 2-312 Ai))' Thus the effective diameter method works 
for the fluid mixture in the vdWI theory, where gij(di)) 
=~(do)· 

We use this theory to calculate the thermodynamic 
properties for both additive and nonadditive hard-disk mix­
tures. 

A. Binary mixture of additive hard disks 

We derive expressions for the thermodynamic proper­
ties of the binary mixture of additive hard disks. 

Using Eqs. (4.20a) and (4.21a) we get the following rela­
tions for the binary mixture of additive hard disks: 

710 = 71 [1 -! XIX2 (1 - R 2)/(XI + X2 R 2)] , (5.17) 
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where 

'1/ = (17/4)pd 2 = (17/4)p(xld~1 +X~~2) 
and 

).cPo = F)'d • 

where 

F= 1 +XIX2 

(5.18) 

(5.19) 

X [2- 1/2(1 + R )(1 +).22/).11)1/2 - (1 + R ).22/).11)] . 

(XI + X2 R ).22/).11) 
(5.20) 

Using Eq. (5.14) in Eq. (5.2). we obtain expressions for the 
free energy and pressure for the additive hard-disk mixture: 

~ =p~c +A1(~) + o((~r). (5.21) 

where 

A 1 = v'lF'I/ [(1 - -.\ '1/0)/(1 - '1/0)2] , (5.22) 

and 

~ = p;c +P1 (~) + o((~r), (5.23) 

where 

P1 = v'l F'I/ [(1 + I '1/0)/(1 - '1/0)2] . (5.24) 

In a theory of mixture the excess properties of the sys­
tem are of interest. From Eq. (5.2), the excess free energy for 
the hard-disk mixture is given by 

PAE PA c,; 17 ( d2) (d) ().12) --=--+~XIX2 p 128'{2 12 - . 
N N V~ d l2 

(5.25) 

With the help ofEqs. (5.7) and (5.13), 8'{2(dd for the addi­
tive hard-disk mixture can be given by 

8'{2(dd 

= [(1+0.125 7J ) _ ~ 7J(I+~7J) ]+O(XX), 
(1 - 7J)3 8 (1 _ 7J)3 P. I 2 

(5.26) 

p. = (XI d~1 + X2 d~2)(dl1 + dd2 

_ XI +x2R4 
- (XI +x2R 2)(1 +R)2 . 

(5.27) 

Thus the "excess" free energy is given by 

PAE = PA c,; +A iO (.!), 
N N d 

(5.28) 

where 

A JO = 2 v'lx X [1 + 0.125 7J _ ~ '1/(1 + ~ 7J) ] E 
E I 27Ja (1 _ 7J)3 8 (1 _ 7J)4 P. 

(5.29) 

with 
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concentration X I and diameter ratio R. 

B. Binary mixture of nonadditive hard disks 

This section is concerned with the evaluation of the ex­
cess properties of the binary mixture of nonadditive hard 
disks, for which Eq. (3.2) can be written as 

d l2 =d~2(1 +.::1), 

where 

d~2 = (dll + dd/2 

is the effective diameter for additive hard disks. Equation 
(5.2) can be rewritten in the form 

P (A - Aa) P (A C - A ~) 17 
N = N + 7iXIX2P [dI2 8'{2(d12) 

(5.31) 

where the SUbscript "a" refers to the properties of the addi­
tive hard-disk mixture. Other thermodynamic properties 
can be obtained from Eq. (5.31). Thus the equation of state 
for a binary mixture of nonadditive hard disks in the semi­
classical limit is given by 

PIP-Pal PIpe -P~) 17 
----= +-XIX2 

P P v'l 

X P { [dI2 8'{2(dd - d~2 8'{2(d~2)] 

+ P ~ [d12 8'{2(dd - d~2 8'{2(dd]} ).12. 

(5.32) 

For a classical binary mixture of nonadditive hard 
disks, the free energy and equation of state are given byl4 

p(Ae-A~) [1--.\7J] 
-----4xX 7J N - I 2 a (1 _ 7J)3 

X.::1 (2 +.::1) + O(X~ X~), (5.33) 

PIpe - P~) = 4x X [1 + 0.125 7J] 
P 127Ja (1-7J)3 

X.::1 (2 +.::1) + o (xi x~). (5.34) 

The quantum correction terms ofEqs. (5.31) and (5.32) 
are expressed in terms of 8'{2 (d d and 8'{2 (d ~2)' For additive 
hard-disk mixture, 8'{2 (d ~2) is given by Eq. (3.2), 8'{2 (dd is 
evaluated using Eq. (5.13), and 

P (P e - P ~ ) [d 2 ,,& (d) d a' ,,& (d a )] ----= l7X IX 2 P 12.512 12 - 12.512 12 . 
P 

(5.35) 

Expanding the right-hand side of Eq. (5.35) in the power of 
.::1, we find 

+2.::18'{2(d~2)+O(.::12)]. (5.36) 

Comparing Eq. (5.34) and Eq. (5.36) and using Eq. (3.2), we 
get 
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FIG. 1. The excess free energy per particle PIE of a binary mixture of hard 
disks as a function R for p* = 0.5, XI = X 2 = 0.5, and.d = 0.0. 

" 25 11(1 + fs 11) 2 
Kl2 (d d - Kl2 (d 12) = - p,.1 + 0 (.1 ). (5.37) 

4 (1-11) 

Substituting Eq. (5.36) in Eqs. (5.31) and (5.32) we can 
obtain the final results for the free energy and equation of 
state, correct to the first-order quantum correction. Thus, 

PtA ~A,,) = PtA C;A ~) +A ~(~) (5.38) 

and 

P(P-P,,) =P(PC -P~) +P~ (~). (5.39) 
P P d 

Here the quantum coefficients A ~ and P~ are given by 

A.I. = 2 v2x x ~ [ 1 + 0.125 1] 
E I 2"-"1]" (1 _1])3 

+ ~ 11(1 + fs 11) ].1 + 0 (.1 2) (5.40) 
8 (1 _ 1])4 P, 

r -0·4 

, 
............ _----" 

-06 

x,-
FIG. 2. The excess free energy per particle PIE of a binary mixture of hard 
disks as a function of X I for p* = 0.4, R = 1.1, and.d = 0.0. 
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FIG. 3. The excess free energy per particle PIE ofa binary mixture of hard 
disks as a function of p* for R = 1.1,.d = 0.0, ± 0.1, and XI = X2 = 0.5. 

and 

p.I. = 2 v2x X 1;" [ (1 - ~ 1] - i 1]2) 
E I 2"-" 1]" (1 _ 1])4 

(5.41) 

C. Results and Discussion 

We have used Eq. (5.28) to calculate the excess free en­
ergy per particle PIE(~AE/N) of the additive hard-disk 
mixture correct to the first order of quantum correction. 
Values of PIE at p* = 0.5 for XI = X2 = 0.5 are plotted as a 
function of diameter ratio R in Fig. 1 for A / d = 0.0,0.1, and 
0.2. The quantity p* =p(xld~1 +x2di2)' The excess free 
energy, both in classical and semiclassical limits, is maxi­
mum at R = 1.0 and decreases steadily as R moves away 
from 1.0. The value of A r, which is governed by E and p" is 
maximum at R = 1.0 and becomes - 00 at R = 0 and 00. So 
the quantum value of PIE decreases faster and becomes neg­
ative when R is far away from 1.0. 

Figure 2 demonstrate the variation of PIE of the addi­
tive hard-disk mixture for p* = 0.4 with the concentration 
XI for A /d = 0.0,0.1, and 0.2. It is found that the (excess) 
quantum effect is zero atxI = 0 andxI = 1.0 and finite in the 
intermediate range of X I' 

In Fig. 3, the values of PIE for a binary hard-disk mix­
ture with R = 1.0 and XI = X 2 = 0.5 are reported as a func­
tion of p* for.1 = 0.0, and ± 0.1 at A / d = 0.0 and 0.2. It is 
found that the quantum effect increases with the increase of 
p* and decrease of.1, the nonadditive parameter. 

Thus we come to the conclusion that the (excess) quan­
tum effect to the thermodynamic properties of the hard-disk 
mixture, which depends on the concentration XI and the di­
ameter ratio R, increases with p* and.1. 
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The phase-space generalization of the kinetic analog of Boltzmann's principle is derived. A 
kinetic criterion for the contraction of a second-order (Ornstein-Uhlenbeck) to a first-order 
(Einstein-Smoluchowski) stochastic process is advanced on the basis of an asymptotic expansion 
of the joint entropy in the limit of large resistance. The kinetic criterion is shown to be the 
stationary solution to the first velocity moment of the phase-space Fokker-Planck equation. The 
Stratonovich criterion for the validity of the Einstein-Smoluchowski description is corroborated 
from the asymptotic expansion of the joint entropy. Second-order Gaussian processes are used for 
illustration where it is shown that (i) the principles of least dissipation of energy and maximum 
joint entropy are equivalent, and (ii) the observed, local velocity arises from an exact balance 
between rates of growth and decay of velocity fluctuations. 

I. INTRODUCTION 
The analysis of dynamical systems is often simplified 

when their components, say X (t) and Y (t), evolve over two 
nonoverlapping time scales. Suppose that X (t ) is the rapid 
process and Y (t) is the slow one. The reduction principle I 
states essentially that the Y (t ) process can be studied alone by 
substituting X (t ) = 0 into the equation of motion for Y (t ). 

An analogous phenomenon often occurs for Brownian 
motion where the inertia and external noise evolve over a 
time scale much shorter than the variation in the external 
force. A typical case is that of the Ornstein-Uhlenbeck (OU) 
process2

: 

dY(t) = U(t)dt, (Ll) 

dU(t)= -{RU(t)-F[Y(t)])dt+~2kR dW(t), 

where Y (t) and U (t) are the displacement and velocity of the 
Brownian particle, respectively. Here, F denotes the external 
force and W(t) is a standard Brownian motion. The time 
scale is set by the magnitude ofthe resistance parameter R. 
The two well-known limiting cases are small and large resis­
tance.3 The thermodynamically interesting case is the latter 
where for a constant force, the system will tend to a limiting 
velocity, (1/ R )F over a time scale greater than the relaxation 
time (lIR ).4 In this case, over times greater than (lIR ), the 
second-order process (1.1) reduces effectively to the first-or­
der process 

dY(t) = (lIR )F[Y(t)] dt+ ~2k/R dW(t). (1.2) 

Even when the force is a slowly varying function of the dis­
placement, Eq. (1.2) is assumed to be a valid approximation 
to (1.1) for times t>(lIR ) and it is commonly referred to as 
the Einstein-Smoluchowski (ES) approximation.s 

There is a long history to the phase-space description of 
Brownian motion and its subsequent reduction to a configu­
ration space description. Klein6 generalized the configura­
tion space Fokker-Planck (FP) equation, which we shall re-

fer to as the Smoluchowski (S) equation, to the phase-space 
Fokker-Planck equation. He even gave an approximate re­
duction of the FP equation to the S equation which provided 
the stimulus for Kramers,3 study. Kramers offered a crite­
rion for the contraction which was later modified by Straton­
ovich. 7 Other asymptotic expansions have been proposed by 
Brinkman8 which was later rediscovered by Landauer and 
Swanson.9 Brinkman used a moment generating method 
which had the defect of choosing the initial velocity distribu­
tion as the Maxwell-Boltzmann (MB) distribution. To low­
est order, he obtained the Laplace transform of the telegraph 
equation which would correspond to Eq. (3.28) below, if the 
second moment were to be replaced by its asymptotic, equi­
librium value. However, it is known that the second mo­
ment, which is the kinetic contribution to momentum trans­
port, relaxes only slightly faster than the current, or first 
moment. 10 Chapman-Enskog procedures have also been de­
rived in which the entire time dependence resides in the con­
figuration space transition densityY Moreover, the Chap­
man-Enskog procedure has also been used to obtain a 
perturbation series for the diffusion operator on the S equa­
tion. 12 All these methods come under the heading of "adia­
batic elimination procedures" which are reviewed in Ref. 13. 
The validity of these methods has been questioned in Ref. 14 
and it is the purpose of the present paper to offer a thermody­
namic criterion for the contraction of a second-order sto­
chastic process to a first-order one, based on a generalization 
of the configuration space kinetic analog to Boltzmann's 
principle. 15 

The evolution toward equilibrium of nonequilibrium 
statistical thermodynamic processes is governed by the 
wearing off of the statistical correlations between nonequi­
librium states for increasing times. 16 In the phase-space de­
scription, our aim is to obtain a criterion for the statistical 
independence of velocity and displacement fluctuations in 
the large resistance limit for times greater than the relaxa-
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tion time (l/R ). We shall assume that the fast or "driving" 
process is ergodic and that there is a unique invariant prob­
ability distribution p"" which is determined in terms of the 
entropy S (y,u) according to Boltzmann's principle 

k lnp"" (y,u) = S(y,u) - S(O), (1.3) 

where k is Boltzmann's constant and S (0) is the equilibrium 
value of the entropy. Over long time intervals (i.e., assuming 
that the process is homogeneous), the driving process U(t) 
will have had ample time to decouple itself from the slow or 
"driven" process Y(t) so that the latter becomes a Markov 
process by itself. At this stage, a MB-distribution will have 
been established at every point in configuration space, im­
plying that the entropy has the form 

S(y,u) = S(O) -! u2 + J: F(x) dx. (1.4) 

On account of the fact that the entropy is invariant under 
time reversal, no cross term can appear in (1.4). The force F 
in Eq. (1.2) is thus identified as the space derivative of the 
entropy and tends to restore the system to thermodynamic 
equilibrium. In regard to Eq. (1.1), it behaves more like an 
"external" force: in an isolated system, Fwould vanish leav­
ing a pure diffusion process in velocity space, which is de­
scribed by the diffusion operator 

(W: = - Ru ( !) + D * (::2) (isolated process), 

(1.5) 

where D * is the velocity space diffusion coefficient which is 
given by the Einstein formulaD * = kR. However, if the sys­
tem is open thermodynamically in the sense that mechanical 
work can be done on it (even though it is still thermally iso­
lated), there is a nonvanishing external force Fwhich acts on 
the particle at each position y. Moreover, it induces a drift in 
velocity space and the diffusion operator now has the form 

@}o: = u (~) + b ( ! ) + D * (::2) (open process), 

(1.6) 

where b is the drift, viz., 

b (y,u): = F(y) - Ru . (1.7) 

Hence, for second-order processes, Facts more like an exter­
nal force rather than an internal force as for first-order sto­
chastic processes (1.2). From (1.6) and (1.7) it is clearthatFis 
responsible for the coupling of the driving process to the 
driven process. Since the phase-space process is Markov, the 
statistics are determined completely by the transition den­
sity and the invariant distribution (1.3). We shall now tum to 
the derivation of the former. 

II. PHASE-SPACE KINETIC ANALOG OF BOLTZMANN'S 
PRINCIPLE 

The mathematical technique which we use to generalize 
our configuration space, kinetic analog of Boltzmann's prin­
ciple to phase space is again based upon Girsanov's 
theorem, 17 relating the absolutely continuous substitution of 
different probability measures on the same probability space 
for diffusion processes with the same variance but with dif-
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ferent drifts. The only difference is that we will now be con­
sidering the transformation of the velocity space Wiener 
measure into a new measure for our nonequilibrium statisti­
cal thermodynamic process. Its configuration space analog 
has been used by Ezawa et a1. 18 to study the transformation 
properties of the Wiener measure for quantum mechanical 
processes. The original idea of transforming the configura­
tion space Wiener measure into a new measure, in which the 
Onsager-Macblup (OM) potential appeared, is due to Fal­
koffl9 and has been recently rediscovered in Ref. 20. 

The derivation of the transition density will occur in 
two stages. The first stage consists of the transformation of 
the isolated process 

with 

dU(t)= -RU(t)dt+~W*dW(t), U(O)=uo 
(2.1) 

Y(T)-yO= iT U(t)dt 

into the open thermodynamic process (1.1) which is caused 
by the application of the external field F on the system. The 
probability measure density for the transformation is given 
by the Girsanov formula 

Po[U(t),Y(t)] 

= exp {iT [_F_ dW(t) _ .!. (_F_)2 dt]} , 
° ~W* 2 ~W* 

(2.2) 

where the subscript "0" stands for open. Eliminating the 
Wiener process with the aid of (2.1) and noting that 

iT F(x)udt= J: F(x)dx=..::lS*(y) 

is the change in the configurational entropy S * over the in­
terval [O,T], the measure density (2.2) can be written as 

Po[U(t),Y(t)] =exp {(2~) [S*[Y(t)] -S*(yO)] 

+_I_iT [F[Y(t)] dU(t) 
W* ° 

- ~ F2[Y(t)] dt]}. 

(2.3) 
The conditional average of this expression over all paths in 
velocity space, with respect to the OU probability density, 
which begin at UO and terminate at u is 

Po(u, y,T luO, yO) = E~ {Po [U(t ),Y(t)] WO(T) = u} , 

(2.4) 
where UO(t ) is the solution to (2.1) and the conditional aver­
age is performed with respect to the OU or isolated "i" den­
sity 

p;(u,T luO) = {21Tk (1 - exp[ - 2RT]) -1/2 

Xexp { - (l/2k)(u - UO 

X exp[ - RT ])2/(1 - exp[ - 2RT])} . 

(2.5) 
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The relation between the isolated and open transition den­
sity is given by 

Po(u,y,TluO,yO) =Po(u,y, TluO,yO)p;(u,TluO) , (2.6) 

which on account of(2.3) can be written in the more instruc­
tive form 

Po (u, y,T I uO, yO) 

= exp {(l/2k)[S*(y) - S*(yO)]j K;(u,y,TluO,yO) , 

(2.7) 

where the kernel K; is 

=E~ {exp [(2~*) iT (F[Y(t)] dU(t) 

- ~ F2 [Y(t)] dt)]! UO(T) = u} p;(u,TluO). 

(2.8) 

The second stage of the derivation utilizes the fact that 
expectation values with respect to the velocity space OU, or 
isolated, process can be converted into expectation values 
with respect to the velocity space Wiener process whose den­
sity is 

The probability measure density which relates the two is 

p;[U(t)] 

= exp { - 2~ iT [U(t)] dU(t) + (~) U 2
(t)dt}. 

(2.10) 

The conditional expectation of this measure density relates 
the transition density of the Wiener process (2.9) to the tran­
sition density of the isolated process, viz., 

p;(u,TluO) =p;(u,TluO)Pw(u,TluO) , 

where 

p;(u,TluO) 

=E: {exp[ - (2~) iT (U(t)dU(t) 

+(~) U 2
(t)dt)]! UO(T)=U}. 

(2.11) 

(2.12) 

The averaging in (2.12) is performed with respect to the ve­
locity space Wiener measure whose density is (2.9). 

Expression (2.12) is in a somewhat inconvenient form 
due to the presence of the Ito stochastic integral. It can be 
replaced by the Fisk-Stratonovich integral, which enjoys all 
the properties of an ordinary integral, by introducing the 
symmetric "0" product 

U(t )odU(t) = U(t) dU(t) + D * dt 

into expression (2.12). We then obtain 
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p;(u,TluO) 

= exp{ - (l/4k )[u2 + U0
2]j 

XE:{exp [ -(2~)iT V[U(t)]dt]1 UO(t)=u}, 

(2.13) 

where 

V(u): = (R 12) u2 -D* 

is the velocity space OM-potential. Introducing (2.13) into 
(2.11) and the latter into (2.6), we come out with the final 
expression 

Po(u,y,T luO,yO) 

(2.14) 

for the transition density of the open thermodynamic pro­
cess. The new kernel is the conditional Wiener average 

Kw(u,y,TluO,yO) 

=E:{exp[_l_ rT 
(F[Y(t)] dU(t) 

2D* Jo 
- ~ F2 [Y(t)] dt)] 

Xexp [ - 2~ iT V[U(t)] dt] I UO(T) = u} 

XPw(u,TluO). (2.15) 

The kernel (2.15) contains information regarding the 
nature of the statistical correlations between the states 
(UO, yO) and (u, y) provided the time interval T is not very 
large. In the limit as T--+-oo , these states will become statisti­
cally independent: a long lapse in time ensures that the pro­
cess has had ample time to "forget" its past. Provided the 
invariant probability distribution exists, this means that 

independently of the initial conditions. The second equality 
is due to the time invariancy of the entropy (1.4), since the 
entropy determines the invariant probability distribution ac­
cording to (1.3). Taking the asymptotic time limit in (2.14) 
and using the asymptotic result (2.16), we find that 

lim 2k InKw(u,y,TluO,yO) = S(u,y) + S(UO,yO) - 2S(0) , 
TToo 

(2.17) 

where the constant has been chosen so as to satisfy Boltz­
mann's principle (1.3) in the asymptotic time limit. The 
limiting relation (2.17) may be taken as a definition of statis­
tical independence. However, if the time lapse is not long, we 
can expect that the nonequilibrium states will be correlated 
statistically. As a phase-space generalization of the configu­
ration space joint entropy,15 we have 

oAu,y,TluO,yO): = 2k In Kw(u,y,TluO,yO) . (2.18) 

Asymptotic independence (2.17) implies that the joint en­
tropy must reduce the sum of the entropy differences 

lim O"J(u, y,T luO, yO) =..1S(u,y) +..1S(u°,y°) , (2.19) 
TToo 
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where.1S (u, y) is the entropy decrease S (u, y) - S (0). 
To prove (2.19), we use the fact tht the transition density 

of the open process satisfies the pair of Kolmogorov equa­
tions 

(2.20) 

and 

(2.21) 

where ®Ot is the formal adjoint of the diffusion operator (1.6) 
and we have replaced the time interval T by [s,t] to distin­
guish between initial and final data. The backward equation 
(2.20) is to be solved subject to the end condition 

while the forward or FP equation (2.21) is to be solved with 
the initial condition 

lim Po(u, y,t I un, yO 08) = 8(u - uO)8( y _ yO) . 
lIs 

Fortunately enough, we will only need the stationary solu­
tion to the Kolmogorov equations (2.20) and (2.21) that 
arises in the asymptotic time limit. 

To facilitate matters, we use the representation (2.14) to 
convert the FP equation into the self-adjoint diffusion equa­
tion 

DKw (~Kw) (1) ---m- = D * au2 -"2 V(uJKw' (2.22) 

where D /Dt stands for the Stokes operator 

~=~ + u~+F~. 
Dt at ay au 

The definition of the joint entropy (2.18) affectuates a loga­
rithmic transformation on the diffusion equation (2.22) giv­
ing rise to the nonlinear, generalized Hamilton-Jacobi (HJ) 
equation 

dUJ (R) (aUJ )2 (~UJ) - -+ - - +D* - = V(u) , 
dt 2 au au2 

(2.23) 

where the total time derivative d /dt = a/at + {S,_} and 

{S,_} = ( ~~) (: ) - ( : ) (:~) 
are the Poisson brackets. For nonequilibrium statistical 
thermodynamic processes, the entropy behaves like a classi­
cal mechanical Hamiltonian as a generator of the motion. In 
an analogous way, we obtain 

dUJ + (li) (au~ )2 + D * (~:~) = V(UO
) (2.24) 

ds 2 au au 
by applying the transformations (2.14) and (2.18) to the back­
ward Kolmogorov equation (2.20). We now want to deter­
mine the common stationary solution to Eqs. (2.23) and 
(2.24). 

The stationary solution is dictated by the form of the 
velocity OM potential V(u). Setting the time deterivative 
equal to zero in Eq. (2.23), we find 

508 J. Math. Phys., Vol. 26, No.3, March 1985 

(!)UJ(u,y,T= 00 luO, yO) = -u, 

provided the Poisson brackets vanish. A similar result is ob­
tained for the backward HJ equation (2.24). Integrating, we 
obtain 

uAu,y,T= 00 luO, yO) = - m [u2 + U02
] + C(y,yO) , 

where the integration constant can depend on the coordi­
nates. If the Poisson brackets are to vanish, it must be a 
function of the configurational entropy. The simplest choice 
is 

C(y,y°) = S*(y) + S*(yO). 

This establishes the asymptotic time limit (2.19). We may 
thus consider 

2k In Po(u,y,T luo, yO) 

= S (u,y) - S (UO, yO) + uJ(u, y,T luo, yO) (2.25) 

as the phase-space kinetic analog to Boltzmann's principle. 
The transition density (2.25) together with Boltzmann's 
principle (1.3) for the invariant distribution determine com­
pletely the statistics of the open, second-order thermody­
namic process (1.1). Contained in joint entropy is informa­
tion regarding the velocity and configuration space 
statistical correlations which we shall investigate in the large 
resistance limit. 

III. THE ASYMPTOTIC LIMIT OF LARGE RESISTANCE 

To introduce the fact that there is a time scale separa­
tion between driving and driven processes, we apply the 
stretching transformation t * = ET, where E = (lIR) to the 
phase-space HJ equations (2.23) and (2.24). We then obtain 

-c ~:~ -E{U(;) + F(!)}UJ+(~)(~:r 
(a

2u) 
+k au: = V(u) (3.1) 

and 

We are going to search for an approximate, time-dependent 
solution to these equations in the form of an asymptotic ex­
pansion in the small relaxation parameter E, viz., 

00 

uJ(u,y,t *luO,yO) = L E"d;'(u,y,t *luO,yO). 
n=O 

Substituting this asymptotic expansion into the pair of 
phase-space HJ equations (3.1) and (3.2) and equating to zero 
terms in the same power of the relaxation time, we get an 
infinite set of coupled, nonlinear partial differential equa­
tions which are to be solved one after the other beginning 
with the first. The first three pairs in the infinite hierarchy 
are 

~ (adJ1 )2 + k (~dJI) = ~ u2 _ k, 
2 au au2 2 
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1 (adJ))2 (~dJ)) 1 02 - -- + k -- =-u -k 
2 auo au02 2 ' 

- adJ) {( a) ( a)} 1 (ad])) (adJ)) -----.:;-- u - +F - dJ )+ -- --
at* ~ au au au 

1 (adJl)2 (~di') +- - +k -- =0, 
2 au au2 

- adJ) + {uo (~) + F (~)} dJ) + (adi') (adJ)) 
at * ayo auo auo auo 

1 (adJl)2 (~di')_ +- --0 +k -----02 -0. 
2 au au 

The solution to the first set of equations is easily seen to 
be 

dJ)(u,y,t*luO,yO) = -! [U2+U02] +o1(y,(*l yO) , 
(3.3) 

where 01 is an (as yet) undetermined integration constant. If 
we break off the expansion at this order and substitute (3.3) 
into the phase-space analog of Boltzmann's principle (2.25) 
we find that the equilibrium MB distribution has been estab­
lished at every point in configuration space. The higher-or­
der terms in the asymptotic expansion of the joint entropy 
provide the correction terms. 

At next order we find 

which involves the spatial derivatives of the unknown inte­
gration constant in (3.3). The constant of integration can be 
determined by substituting in 

1 { [(~01) aF] di'(u,y,t*luO,yO)="2 u2 ~ - ay 

into the third set of equations. Our proposed solution will 
satisfy these equations provided 01 satisfies the following 
pair of configuration space HJ equations: 

- ~~ + ~ (a;r + k(a;;?) = (!) V(y) 

(3.6) 

and 
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(3.7) 

where V(y) is the configuration space OM potential1S
,l9 

V(y): = E {~ F2 + k (Z)}. 
By introducing the transformation 

o1(y,t *1 yO) = 2k lnp*(y,t *1 yO) - S*(y) + S*(yO) 
(3.8) 

into the forward HJ equation (3.6) we come out precisely 
with the configuration space FP or S equation 

ap* = _ a(Fp*) + D (~P*) , 
at * ay ~ (3.9) 

where D is the diffusion coefficient in configuration space 
which is given by the Einstein formula Ek. Obviously, the 
transformation (3.8) converts Eq. (3.7) into the backward, 
configuration space Kolmogorov equation. 

We can now see a pattern being formed in the successive 
approximations to the joint entropy. At next order, we are 
led to try 

d])(u,y,t*luO,yO) = -GJ {u3 [(~;) - (~~] 

_U03 [(~) _ (:~)]). 
(3.10) 

This is, however, only approximately valid provided the con­
dition 

(3.11) 

is satisfied. A variance of this criterion has been proposed by 
Kramers more than forty years ago.3 Kramers rewrote the 
phase-space FP equation (2.21) in the divergent form 

(3.12) 

For time t> E, the displacement and velocity of the Brow­
nian particle will be related by the approximate integral 
curve 

y + EU = y* = const. (3.13) 

Integrating Eq. (3.12) over lines of constant y*, from 
y = - 00 to Y = 00, the term in the curly brackets vanishes 
and what remains is an equation similar to the S equation 
(3.9). 

Kramers argued that the S approximation should be 
valid in the limit of large resistance since a MB distribution 
in velocity space will be established very soon at every point 
in configuration space. This implies that the transition den­
sity should approximately factor into 
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Po(u,y,t luO,yO) 

;::: p(y,t I yO) C21T~ )1/2) exp { - (2~) [u
2 + UO]} , 

(3.14) 

where 

p(y,tlyO)= iHU=yoPo(U,y,tluO,yO)dU. (3.15) 

It is evident that p( y,t I yO) will only approach the true con­
figuration space transition density 

p*(y,t I yO) = f: ./o(u,y,t I uO,yO) du (3.16) 

in the limit as E W. Whereas, (3.16) has a clear physical mean­
ing for all values of E, (3.15) is only valid in the limit oflarge 
resistance. As we have mentioned in Sec. I, if the external 
force is relatively constant over distances in which the dis­
placement of the Brownian particle is appreciable, the parti­
cle should tend to a limiting velocity EF. The approximate 
phase-space transition density (3.14) will then be significant­

ly different from zero only in the region where lul..;;,jk. 
Moreover, the variations in displacement and velocity are 
related by the approximate integral curve (3.13) so that the 
variation in the displacement of the Brownian particle is of 

o ( ,jk E) for constant y*. Kramers thus concluded that the 
ES approximation will be valid so long as the inequality 

E,jk I ~~ I < 1 (3.17) 

is satisfied. 
Conditions (3.11) and (3.17) differ merely by constant 

factors so, at first sight, it would not seem crucial to distin­
guish between the two. Yet, Boltzmann's constant, relative 
to the magnitude ofthe other physical parameters, is a mea­
sure of the intensity of random thermal ftuctuations21 so that 
merely by decreasing k, condition (3.17) could always be ful­
filled. In fact, condition (3.11) can be justified in the follow­
ing way.22 By a change of variables we have 

i {a[ F(y)Po] _ k (azp; )} du 
Y+EU=y" ay ay 

... 

= f:~ (~*) ([ F(Y*-EU)-k(a~*)] 
X Po(u,y* - EU,t lu°,y°) du. 

Developing F and p in a Taylor series about y* and using 
the approximate expression (3.14) for the latter, we get 

: = -E(~*){F(Y*)-k[I-~C~~)](~*)}P. 
Upon comparison with the S equation (3.9), we conclude that 
(3.11), and not (3.17), is the valid criterion for the validity of 
the ES approximation. 

Kramers' equation (3.12) can be written in the form 

a:; = _ {[(!) (:u) - (~)] [Jv +Jc]} _ (a:;) 
(3.18) 

by defining the transition current densities 
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( 
apo) 1 [ aUJ ] J v:= - upo+k- = - - u+-- Po=:VvPo 
au . 2 au 

(3.19) 

and 

( 
apo) 1 [ aUJ ] Jc:=E FPo-k ay =T E F--ay- Po=:vcPo' 

(3.20) 

On the strength of our asymptotic expansion of the joint 
entropy, we find that the rate balance condition 

Jv+Jc=O (3.21) 

is satisfied to all orders in the relaxation time E provided 
inequality (3.11) is fulfilled. It is precisely this condition 
which establishes a steady state between the transition cur­
rent densities in velocity and configuration spaces. 

This interpretation can be justified directly from the 
phase-space FP equation (2.21), which we write in the form 

aJv aJc 
=--= ---

ay ay 

Integration over the velocity gives precisely the S equation 
(3.9). 

The kinetic criterion (3.21) for the validity of the ES 
description, can further be substantiated from an analysis of 
the velocity moment equations, which are derived from the 
FP equation (2.21). Integrating it over the velocity variable u 
gives rise to the continuity equation 

ap* aJ* 
-= - -, (3.22) 

at ay 

where the configuration space current density J * is obtained 
by integrating the phase-space transition current density 
(3.19) over the velocity, viz., 

J*(y,t I yO) = - f~ ~ Jv(u,y,t luO,yO) du 

= f: ~ uPo(u,y,t luO,yO) du. 

The equation of motion for the first moment of the velocity 
J * is obtained by multiplying the FP equation by u and 
integrating. We then obtain 

aJ* = _ (~)J* +Fp* _ aM, (3.23) 
at E ay 

where M is the second velocity moment or the kinetic energy 
contribution to the momentum current density, i.e., 

M(y,t I yO): = f: ~ u2po(u,y,t luO,yO) du. 

Proceeding further, we find 

aM + aQ _ 2FJ * = _ (~) {M - kp* J 
at ay E 

(3.24) 

as the equation of motion for the second moment where Q is 

B. H. Lavenda and R. Serra 510 



                                                                                                                                    

the third velocity moment of the kinetic energy current den­
sity, i.e., 

Q(y,tlyO):= f:oo u3po(u,y,tluO,yO)du. 

Asymptotically, the second moment will tend to kp* in 
time so that to leading order in the relaxation time, we have 

M~kp*+{FJJ - (~)~; + (~)a::},(3.25) 
where JJ is the S current density 

J J = E [ Fp* _ k a:; ] 

= f: 00 Jc(u,y,t luO,yO) du . (3.26) 

Differentiating (3.25) with respect to y and using the conti­
nuity equation (3.22) we obtain 

aM ~k ap* _ aJJ 
ay ay at 

+ (.!..-) (i.) I3kJ * - Q j + E J J aF . 
2 ay ay 

Using this expression to evaluate the last term in Eq. (3.23) 
we get 

J* = E [FP* - k ap*] - c JJ aF 
ay ay 

=JJ{l-C(~;)}' (3.27) 

where we used the fact that the leading contribution to Q is 
3kJ* since (u3 ) = 3(u2)(u) + higher-order terms in E. 

Expression (3.27) agrees with our previous finding: The S 
equation (3.9) will be a good approximation to the phase­
space FP equation (2.21) when condition (3.11 )-and not 
(3. 17)-is satisfied. 

Finally, eliminating J * between the continuity equa­
tion (3.22) and the equation of motion of the first moment 
(3.23) results in 

E azp* + ap* _ E (i.) {aM _ FP*} = 0 . (3.28) 
at 2 at iJy ay 

Replacing Mby its asymptotic form kp*, Eq. (3.28) becomes 
the telegraph equation which gives the exact result for the 
average square of a free Brownian particle's displacement 
with an initial MB distribution. But as Wilemski 10 has point­
ed out, the second moment M relaxes only slightly faster 
than the first moment J * so that this can only be valid for 
long times where the inertial time has certainly had ample 
time to die out. Moreover, the rate balance condition (3.21) is 
simply the stationary solution to the equation of motion of 
the first moment (3.23) which should be valid for long times 
provided (3.11) holds. 

IV. THE ONSAGER-MACHLUP PRINCIPLE FOR 
SECOND-ORDER GAUSSIAN PROCESSES 

As an illustration of our kinetic criterion of the ES ap­
proximation and the asymptotic expansion of the joint en­
tropy, we treat the special case of Gaussian processes where 
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explicit calculations can be made. For Gaussian processes 
with inertial effects, the Taylor series expansion of the en­
tropy about the equilibrium state is 

S(u,y) = S(O) -! u2 -! kQ ~ 1 r, (4.1) 

where Qoo is the equilibrium second moment in configura­
tion space. 

By virtue of the equivalence of means and modes of a 
Gaussian process, the exact conditional Wiener average for 
the phase-space transition density (2.14) is equivalent to 

Po(u,y,t luO,yO) = max. 

Machlup and Onsager3 interpreted this maximum likeli­
hood for a transition in terms of the principle ofleast dissipa­
tion of energy. In terms of the phase-space kinetic analog to 
Boltzmann's principle (2.25), the principle of least dissipa­
tion of energy implies that 

uJ(u,y,t luO,yO) a: - f {tP (u) + W(y,u)j ds = max, 

(4.2) 

where tP (u) = m Ru2 is the Rayleigh-Onsager dissipation 
function and W(y,u) = (1/2 R )F*2(y,U) = (1/2 R)[u 
+ kQ ~ 1 y] 2 is the generating function. 24 The reason why 

the joint entropy is only proportional to the negative of the 
time integral of dissipation functions is due to the fact that 
we have neglected terms which are proportional to time. 
These terms arise from the stochastic correction terms to the 
entropy and joint entropy when they are considered as func­
tionals of the diffusion process and together these terms pro­
vide the correct normalization for the transition density. 25 

Denote by n the thermodynamic Lagrangian which is 
the integrand of (4.2). The condition for an extremum of the 
joint entropy is 

(.£...) (~) n - (!!-.) (~) n + an - 0 
dt 2 au dt au ay - , 

which is explicitly given by the Euler-Lagrange equation 

( d
4y

) _ {R 2 _ 2,8j (d
2y

) +/3 2y = 0, (4.3) 
dt 4 dt 2 

where /3 = k IQoo' Machlup and Onsager2 observed that 
Eq. (4.3) can be factored into 

[R (:J +/3+ (:t
22

)] [R (:J -/3- (:t
22

)]y=O, 

which they attributed to a "symmetry in past and future" for 
the growth and decay of nonequilibrium fluctuations. The 
average, or most probable, paths for growth and decay are 
mirror images in time of one another. 

After performing several integrations by parts, the joint 
entropy (4.2) can be written as 

a: (~) f { [ R 2 - 2,8] ( ~; ) - /3 2y - ( ~;~ )} y ds 

- ~ {RUY+(~)uu- (~)Y(~;)}I:. (4.4) 

On account of the Euler-Lagrange equation (4.3), the inte-
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grand vanishes. With the aid of the general solution to the 
Euler-Lagrange equation, in the over-damped case say, the 
joint entropy can be expressed as 

oAu,y,t luO, yO) 

ex: - (11..1 l{ (,8 14)[ T + y02][sinh Rt + (R l,u)sinh,ut ] 

+ Hu2 + U02] [sinh Rt - (R l,u)sinh,ut] 

- uuO[sinh( Rt 12)cosh (,ut 12) 

- (R l,u)cosh( Rt 12)sinh(,ut 12)] 

- ,8yyO [sinh( Rt 12 )sinh( ,ut 12) 

+ (R l,u)cosh( Rt 12)sinh(,ut 12)] 

+ 2 [uyO - uOy](,8 l,u)sinh( Rt 12)sinh(,ut 12) 

- 2[uy - UOyO]( R,8 1,u2)sinh2(,ut 12)} , (4.5) 

where ..1 = sinh2( Rt 12) - (R 1,u)2 sinh2(,ut 12) and 
,u = (R 2 - 4,8)112. Expression (4.5) can be arrived at by oth­
er methods; for example by the method of characteristic 
functions. Then retracing our steps, we obtain the principle 
ofleast dissipation of energy (4.2) for the phase-space transi­
tion density and, apart from a normalization constant, it is 
exact. This constitutes an explicit proof of the OM principle 
(4.2) for Gaussian fluctuations. 

The symmetry in past and future, which is discernible 
in the Euler-Lagrange equation (4.3), is a manifestation of 
the exact balance between the rates of growth and decay of 
Gaussian fluctuations. A measure of the strength of the sta­
tistical correlations in velocity space will be given by 

_ (=) sinh (';t) [u cosh (';t) 
_ U

O 
cosh ( ~t)] + ( ~) sinh (~t) 

X [ yO sinh ( ~t) _ (=) y sinh (,u;)]} . (4.6) 

In the long time limit, where the velocity correlations have 
worn off, (4.6) reduces to 

lim (~) OJ (u,y,t luO,yO) = - U, 
nco au 

independently of the initial conditions. It is precisely this 
behavior which we predicted in Sec. II [cf., discussion fol­
lowing Eq. (2.24)]. 

The transition velocity (3.19) is explicitly given by 

vv(u,y,t luO,yO) 

= (112..1 )( [u exp( - Rt 12) 

- UO cosh(,ut 12)] sinh (Rt 12) 

- (R l,u)[u I cosh(,ut 12) - (R l,u) sinh(,ut 12)} 

- UO cosh( Rt 12)] sinh(,ut 12) 

+ (2{3I,u)[ yO sinh(Rt 12) 

- (R l,u)y sinh(,ut 12)] sinh(,ut 12l} . (4.7) 
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This transition velocity measures the rate at which fluctu­
ations grow from the most probable path of their growth 

ji(t) = yO exp( Rt 12l{ cosh(,ut 12) - (R l,u) sinh(,ut 12)} 

- (2/,u)UO exp( RT 12) sinh(,ut 12). (4.8) 

Along (4.8), the transition velocity (4.7) vanishes. The mirror 
image in time of (4.7) is 

vt(u,y,t luO,yO) 

= (112..1 l{ [u exp( Rt 12) - UO cosh(,ut 12)] sinh( Rt 12) 

- (R l,u)[ulcosh(,ut 12) + (R l,u) sinh(,ut 12)} 

- UO cosh (Rt 12)] sinh(,ut 12) 

+ (2{3I,u) sinh(,ut 12) [yO sinh( Rt 12) 

- (R l,u)y sinh(,ut 12)]} . 

(4.9) 

This transition velocity measures the rate of decay of the 
fluctuations relative to the most probable path of their decay 

jit(t) =yO exp( - Rt 12)[cosh(,ut 12) + (R l,u)sinh(,ut 12)] 

+ (2/,u)UO exp( - Rt 12) sinh(,ut 12) (4.10) 

and alongjit(t ), vt(t ) vanishes. The fact that the difference in 
the nonlocal transition velocities (4.9) and (4.7) reduces to the 
observed local velocity ofthe Brownian particle, i.e., 

vt(u,y,t luO,yO) - vv(u,y,t luO,yO) = u 

is a consequence of the exact balance between the rates of 
growth and decay of velocity fluctuations. This embodies the 
principle of symmetry in past and future for second-order 
Gaussian processes. 

In addition, Gaussian processes allow for an explicit 
verification of the asymptotic expansion of the joint entropy 
that was made in Sec. III. In the limit of large resistance, 
,u -;::;R - 2( ,8 I R ) and in this limit the joint entropy reduces 
to 

oJ(u,y,t luO,yO) 

ex: -! [u2 + U02] + o1(y,t lyO) 

- [,8 IR sinh(,8t IR)] !(yOu - yuO) 

- (uy - UOyO) exp( -,8t IR)} , 

where 01 is the configurational joint entropy l5 

o1(y,t 1 yO) ex: - [,8 12 sinh(,8t IR )] 

X !(y2 + y02) cosh(,8t IR) - 2yyO} . 

(4.11) 

It will now be appreciated that the first two terms in 
(4.11) comprise the zero-order term (3.3) in the asymptotic 
expansion of the joint entropy. We calculate the first-order 
term (3.4) as 

djl(u,y,t luO,yO) 

= - 2k IQ -iI - t)[ y - yO exp(,8t IR)] u 

- Q -I(t)[y - yO exp( -,8t IR )]u exp( -,8t /R n, 
(4.12) 

where Q (t) is the second moment of the distribution, viz., 
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Q(t) = Q"" [1 - exp( - 2/3t /R)] 

and Q ( - t) is its mirror image in time. A simple rearrange­
ment of (4.12) shows it to be the remaining term in joint 
entropy expression (4.11). Were we to carry out the asympto­
tic expansion to second-order, we would find 

d]l(u, y,t iuo, yO) = - k (u2 + U0
2)Q -I(t) exp( - 2/3t /R ) 

_ (kR)(U2 + U02 ) dIn Q(t) 
2/3 dt 

= _ R (u2 + U 02
) (a~*), (4.13) 

where V* is the configurational transition velocity IS 

V*(y t iyo):=(_l ) {as* _ auT} 
, 2R ay ay 

- [RQ ( - t )/k ] -I 

x{y-yOexp(pt/R)}. 

Expressions (4.13) relate the rate at which the distribution 
spreads out to the "compressibility" of the fluid motion. IS 

Nevertheless, in the limit oflarge resistance, this will go un­
observed since upon multiplying (4.13) by (l/R f (to form the 
second-order term in the asymptotic expansion of the joint 
entropy), the coefficients combine to give 

(l/R )2P<1 

on the strength of criterion (3.11) for the validity of the ES 
approximation. 

513 J. Math. Phys., Vol. 26, No.3, March 1985 

ACKNOWLEDGMENT 

This work was supported in part by a contribution from 
the Consiglio Nazionale delle Richerche (CNR). 

II. G. Malkin, Theory of the Stability of the Motion (Atomic Energy Com­
mission Translation, Washington, D.C., 1966). 

2G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36,823 (1930). 
3H. A. Krarners, Physica 7,284 (1940). 
4See, for example, E. Nelson, Dynamical Theories of Brownian Motion 
(Princeton U.P., Princeton, NJ, 1967), pp. 621f. 

ss. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943). 
60. Klein, Ark. Mat. Astron. Pys. 5,1 (1922). 
1R. L. Stratonovich, Topics in the Theory of Random Noise (Gordon and 
Breach, New York, 1967), pp. 110-117. 

8H. C. Brinkman, Physica 22,149 (1956). 
"R. Landauer and J. A. Swanson, Phys. Rev. 121, 1668 (1961). 
lOG. Wilemski, J. Stat. Phys. 14, 153 (1976). 
liS. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (North­

Holland, Amsterdam, 1962), pp. 191-194. 
12U. M. Titualer, Physica A 91,321 (1978). 
13p. Marchesoni and P. Grigolini, "Adiabatic elimination procedures" in 

Advances in Chemical Physics, edited by M. W. Evans, P. Grigolini, and 
G. Pastori-Parravicini (Wiley, New York, 1984). 

I'T. Morita, H. Mori, and K. T. Mashiyama, Prog. Theor. Phys. 64, 500 
(1980). 

ISB. H. Lavenda and E. Santamato, J. Math. Phys. 22, 2926 (1981). 
16E. Santamato and B. H. Lavenda, J. Math. Phys. 23, 2452 (1982). 
111. V. Girsanov, Theory Probab. Its Appl. 5, 285 (1960). 
18H. Ezawa, J. L. Klauder, and L. A. Shepp, Ann. Phys. (NY) 88, 588 

(1974). 
190. Palkolf, Ann. Phys. (NY) 4, 325 (1958). 
2°K. Yasue, J. Math. Phys. 19, 1671 (1978); D. Durr and A. Bach, Commun. 

Math. Phys. 60, 153 (1978). 
21B. H. Lavenda and E. Santarnato, J. Stat. Phys. 29, 345 (1982). 
22p. A. Lee, J. Appl. Phys. 42, 325 (1971). 
23S. Machlup and L. Onsager, Phys. Rev. 91, 1512 (1953). 
24B. H. Lavenda, Thermodynamics of Irreversible Processes (Macmillan, 

London/wiley, New York, 1978), p. 91. 
2sE. Santamato and B. H. Lavenda, Lett. Nuovo Cimento 28, 189 (1980). 

B. H. Lavenda and R. Serra 513 



                                                                                                                                    

A multitype random sequential process 
B. Mellein and E. E. Mola8

) 

INIFTA, Division Qufmica Teorica, Sucursal4, Casilla de Correa 16, 1900 La Plata, Argentina 

(Received 25 April 1984; accepted for publication 27 July 1984) 

A random sequential process (RSP) can be formulated in two different ways: (I) A linear array of n 
identical compartments is ceaselessly bombarded by particles which occupy /3 (/3>2) contiguous 
lattice sites. These so-called /3-bell particles are assumed to make contact in a spatially random 
manner and to stick only if striking /3 (adjacent) vacant compartments. (II) A linear array of n 
identical compartments is sequentially filled by /3-bell particles, the occupation process being 
"selective," i.e., always being directed to vacant sequences of compartments oflengths at least/3. 
Dynamics of RSP's has always been formulated in either way and in the case of lattice spaces all 
the efforts have been addressed so far to allow in the space filling processjust one kind o/particle. 
The aim of this paper is to remove that restriction and to consider a lattice space filling problem 
with various kinds of particles involved. The situations of the two above-described models, 
making no difference in the one-type case, become distinct in the multi type case. In this paper we 
will be concerned with the generalization of model II. 

I. INTRODUCTION 

The solution of problems concerned with the random 
filling of space with sets of geometrical objects is of consider­
able interest. I However, the exact solution of such problems 
in more than one dimension presents serious difficulties l

-4 

and most of the exact results available are for one-dimen­
sional problems. 2,5-9 

Two related types of problems can be distinguished. In 
the first, which arises in evaluating partition functions, all 
possible nonoverlapping configurations of the geometrical 
objects are assumed to be equally likely,IO--I2 while, in the 
second, the space is filled sequentially and the configurations 
are not all equally likely (see Fig. 1). The present paper is 
concerned with a problem of the latter type in one dimen­
sion. Some of the above-mentioned problems are as follows. 

(i) Adsorption of molecules on a crystal surface6
,13 is a 

good example of a random sequential process if the tempera­
ture is so low that a molecule once adsorbed cannot migrate 
over the surface. The restriction to one dimension is justified 
if one is concerned with the adsorption of linear molecules 
into parallel troughs such as occur on a (110) surface of a 
face-centered cubic crystal or on a (ll2) surface of a body­
centered cubic crystal. 6 

(ii) Cascade processes 14.15 form another example. At the 
start of the process there is a particle of specified energy, 
which is subject to collision and subdivision into particles of 
smaller energy. This cascade is characterized by the fact that 
particles below a certain energy level cannot further subdi­
vide. 

(iii) There are chemical reactions confined to groups 
occupying adjacent sites. 16 An example of such a system is 
the addition of zinc to a solution of polyvinyl chloride, 17 the 
zinc extracting chlorines in a pairwise manner. 

(iv) According to the model proposed by Gornick and 
Jackson 18 the crystallization oflinear polymer chains can be 
considered as a process involving a random selection of crys­
tallizable sequences from the melt. If, owing to the require-

alTo whom the correspondence related to this article should be sent. 

ments of thermodynamic stability, such sequences must ex­
ceed in length some critical value less than the chain length, 
then the melt will be increasingly subdivided into uncrystal­
lized sequences of varying length. Some of these may be ex­
pected to be less than the critical length, so that the segments 
comprising them are wasted insofar as participation in 
further crystallization is concerned. 

(v) The kinetics of a reaction in a polymer system where 
each reacted unit protects its a nearest neighbors completely 
against reaction. 19 The oxidation of polysaccharides by per­
iodate ions is a good example. 

Clearly, in the five above-mentioned examples, after a 
period of time a saturation situation arises in which the fol­
lowing occur. 

(i) The adsorption process stops even though the degree 
of coverage of the surface is less than 1. 

(ii) The cascade reaches a stable terminal state consist­
ing of a finite number of particles. 

(iii) The addition of zinc ceases and one wishes to pre­
dict the chlorine concentration left in the polymer. 

5/30 1 1 + 1 + 1 1 6/30 

5/30 1 + 1 1 1 + 4/30 

5/30 1 + 1 + 1 1 5/30 

51301+1 1+1 5/30 

5/301 1+1 1+ 5/30 

5130111+1+15/30 

FIG. I. The total number of configurations of two dimers on a linear array 
composed of six compartments. Left; probabilities of each configuration in 
a nonsequential process. Right; probabilities of each configuration in a ran­
dom sequential process. 
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(iv) Further crystallization cannot occur because the 
length of all created amorphous sequences left is less than the 
critical value. 

(v) Chemical reaction terminates leaving some fraction 
of unreacted units. 

The sequential saturation of a one-dimensional lattice 
space by identical particles occupying /3 contiguous lattice 
sites has been extensively studied.5•6,20,21 The relationship 
between the sequential filling of a discrete and a continuous 
one-dimensional space has also been shown.6.19.22 A random 
sequential process (RSP) can be formulated in two different 
ways. 

(I) A linear array of n identical compartments is cease­
lessly bombarded by particles which occupy /3 (.8>2) conti­
guous lattice sites. These so called /3-bell particles (dumbbells 
ordimersin thecase/3 = 2, trimerswhen/3 = 3) are assumed 
to contact in a spatially random manner and to stick only if 
striking/3 (adjacent) vacant compartments. Mter some peri­
od of time, a saturation situation arises in wich the probabil­
ity of placing an additional particle on such an array be­
comes zero since all available space left cannot 
accommodate further particles. 

(II) A linear array of n identical compartments is se­
quentially filled by /3-bell particles, the occupation process 
being "selective," i.e., always being directed to vacant se­
quences of compartments of lengths at least {3. (See Sec. II 
below.) 

Thus while in model I filling is effected by "trial and 
error" and many trials will not lead to fixation of a particle, 
in model II all trials are successful. 

Dynamics of RSP's has always been formulated in ei­
ther way and in the case of lattice spaces all the efforts have 
been addressed so far to allow in the space filling processjust 
one kind o/particle. The aim of this paper is to remove that 
restriction and to consider a lattice space filling problem 
with various kinds of particles involved. The situations of the 
two above-described models, making no difference in the 
one-type case, become distinct in the multitype case. (See 
Fig. 2.) This is due to the fact that the "trial and error" 
occupation procedure of model I will favor, as the lattice 
space approaches the jammed state, more and more the 
shorter particles, while the assumptions of model II are such 
that the likelihood of a given type of particle to get stuck, 
remains unaltered (as long as such a particle can be accom-

+1+1 
2 +1 1+ 
3 1+1+ 
4 I' 1'1'1 
5 '1'1'1+ 
6 + 1'1'1' 

FIG. 2. The six possible ways of saturating a five-sites lattice space with 
dimers and trimers. 

515 J. Math. Phys., Vol. 26. No.3, March 1985 

modated) during the entire filling process. In this paper we 
will be concerned with the generalization of model II, results 
on a multitype version of model I will be published else­
where. In Table I are given the probabilities of observing 
each configuration of Fig. 2 in either model. Observe that the 
value of the average number of unoccupied sites is smaller in 
model II than in model I. This is due to the fact that the 
conditional probability of placing a trimer, given that a 
dimer has landed on sites 1 and 2 or sites 4 and 5, is smaller in 
model I than in model II, thus configurations 5 and 6 being 
less probable in model I than in model II. Notice also that 
configuration 4 is equally likely in either model. 

The need of considering the multitype version emerges 
if one is interested in knowing what would happen when the 
following occurs. 

(i) Linear molecues of different lengths are simulta­
neously adsorbed on a crystal surface. 

(ii) In a cascade process in every collision the amount of 
kinetic energy lost is not a constant. 

(iii) We consider several chemical reactions each of 
them confined to groups occupying a not necessarily constant 
number of adjacent sites. 

(iv) In a crystallization process the crystallizable se­
quence is a random variable with a given discrete distribu­
tion around a given mean value. 

(v) Every unit can suffer more than one chemical reac­
tion, each of them protecting different numbers of nearest 
neighbors. 

In the five above-mentioned examples of random se­
quential processes we can distinguish two groups, even in the 
one-type particle version. One group is formed by examples 
(i)-(iv); example (v) belongs to a kind of RSP where a partial 
overlapping between particles19 is allowed. Models I and II 
are concerned with the first group of examples. Work on the 
multitype version of RSP with partial overlapping has also 
started at La Plata. 

II. THE MODEL 

We consider the following sequential process in which 
particles of varying integral lengths are randomly placed, 
one by one, onto a one-dimensional lattice space (see Fig. 2) 
of n equivalent compartments: From a mixture of /3-bell par­
ticles, whose concentrations PP' 2<q</3<r<n, are supposed 
to remain constant throughout the subsequently described 

TABLE I. Probabilities of observing the configurations of Fig. 2 in random 
sequential processes due to models I and II, and three selected sets of rela­
tive frequency (P2' p,) with P2 + p, = 1. The symbol m denotes the average 
number of unoccupied sites. 

Configuration P2=0.1 P2 =0.5 P2=0.9 
I II I II I II 

1 0.0268 0.0262 0.1625 0.1562 0.3297 0.3263 
2 0.0036 0.0025 0.0750 0.0625 0.2095 0.2025 
3 0.0268 0.0262 0.1625 0.1562 0.3297 0.3263 
4 0.3000 0.3000 0.1666 0.1666 0.0333 0.0333 
5 0.3214 0.3225 0.2167 0.2292 0.0489 0.0558 
6 0.3214 0.3225 0.2167 0.2292 0.0489 0.0558 

m 0.6572 0.6549 0.7332 0.7081 0.9355 0.9217 
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selection and occupation process, a first particle is chosen 
randomly and placed on the 1 X n array at random, i.e., being 
the particle's length {3, say, its left-hand endpoint has equal 
probabilities l/(n - {3 + 1) of ocupying any of the sites 
1,2, ... ,n - {3 + 1. 

In this way arise two random subarrays, a left-hand 
array consisting of n 1 compartments and a right-hand array 
made up of nz sites (n 1 + nz + {3 = n), whose further occupa­
tions will be done independently, in the following manner: If 
n l <q, the left-hand array will be unoccupied. Otherwise we 
sample from the mixture until getting (we assume Pq to be 
positive) a first particle whose length does not exceed n l and 
put it randomly onto the left-hand array. We then turn to a 
first further occupation of the right-hand array which is ef­
fected in a similar way at random and independently. 

In this manner we continue filling the originating ran­
dom subarrays until no further particle fits. In the final state, 
known as the "jamming limit," all unoccupied sequences 
(gaps) between two contiguous particles will be composed of 
less than q sites. 

The total number of unoccupied compartments in the 
terminal state A n is a random variable of considerable inter­
est. The study of the asymptotic behavior of its mean and 
variance, denoted by an and ~, respectively, is the subject of 
this paper. 

As mentioned in the Introduction, this model consti­
tutes a possible generalization of previously formulated dis­
crete one-dimensional sequential random filling problemss.6 

and consequently provides results which were formerly ob­
tained as special cases. 

III. THE RESULTS 

Let 2<q<r be integer numbers and 
{pq,Pq+" ... ,Pr-I,Pr} be a probability distribution on 
{q,q + I, ... ,r - I,r}. Suppose thatpq > ° and let an' as intro-
duced in Sec. II, denote the average number of unoccupied 
sites of a 1 X n array in the jamming limit. Put 

n 

vo=O, Vn = I ak' n = 1,2 ... , 
k=1 

(1) 

q-I k r-II r 

S (s) = I !.... + I - Sk I Pj (2) 
k=1 k k=q k j=k+1 

(here and in the sequel an empty sum is given the value zero!), 

r-I r-I k-2 V'Pk . 
il(s) = Iansn-2 I skI '. -', (3) 

n=1 k=q+1 j=1 U+ 1) 
and 

L (s) = 2e- 2s (s) f (1 - t )il(t) e2s (t) dt. (4) 

We shall show in Sec. V that 

(5) 

Effectively, we will derive a more precise result on the 
asymptotic behavior of an: As n tends to infinity 

an =(n+M1)L(I)+o(n- k), foranyk=O,I, ... , (6) 

where 
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r 

M 1 = I kPk (7) 
k=q 

is the average size of the {3-bell particles taking part in the 
occupation process. 

A similar result is deduced for the variance ~ of the 
random variable An: As n tends to infinity 

~ =(n+Md[LZ(I)+K(I)] 

+ (Mi - Mz)L Z(I) + o(n -k), 

for any k = 0,1, ... , 

where 
r 

(8) 

M z = I kZPk (9) 
k=q 

is the second moment of the particle size distribution and K 
the function as given in (36). Observe that the second additive 
term on the right of(8) vanishes in the case of just one kind of 
particle, i.e.,pq = 1, since then Mi = qZ = M z' 

An immediate consequence of (8) and Chebyshev's ine­
qualityZ3 is the stochastic convergence of Anln to L (1), i.e., 
for any E> 0, the probability that An In differs from L (1) (or 
equally well from anln) by more than E, tends to zero as n 
tends to infinity. Symbolically, 

The proofs of the results (5), (6), and (8) and some alter­
native representations of the limit in (5) will be given in Sec. 
V. In the subsequent section we present briefly some special 
cases which might be of interest or at least illuminating. 

IV. SPECIAL CASES 

A. The most simple three-type model 

Let us suppose that the mixture of {3-bell particles con­
tains three types of particles, of lengths 2, 3, and 4, with 
relative frequencies Pz > 0, P3' and P4' respectively. Recall­
ing the definitions of the quantities introduced in the forego­
ing section and noticing that here q = 2 and r = 4, we find 
from (4) and (5) that 

I (PZ,P3,P4)= lim anln = 2 exp { - 2 - P3 - jp4} 

Xil(I-t)(t+t3[ PZ -pz]) 
o (pz + P3) 

xexp {2t + tZ(P3 + P4) + ~P4t3} dt. (10) 

(i) The case P3 = P4 = O. We see that (10) reduces to 

1(1,0,0) = 2e- z f(l -t)t e2t dt = e- z=0.135, 

(11) 

the well-known result first established by PageS and redisco­
vered several times.6

•
z4 

(ii) The case P4 = O. Equation (10) reduces to 

I (PZ,P3'0) = 2 exp { - 2 - P3} f (1 - t )t 

xexp {2t + P3tZ} dt. 

B. Mellein and E. E. Mola 
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0.15 

I 
I 
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I 
I 
I 

0.05'OL ------="0.=-5 ----:1:'-:.0:--' 

P3-

FIG. 3. The average uncovered fraction L (1) in the jamming limit of an 
infinite lattice space filled sequentially and randomly (due to model II) with 
dimers and trimers whose respective relative frequencies are P2 and P3 X 
average unsaturated coverage in absence of dimers, i.e., P2 = o. 

from which it is seen that (a I ah)1 (P2' P3'0) < 0 and 
(a 2 I ap~ )1 (P2' P3'0) > O. Hence I (P2' P3'0) decreases with in­
creasing P3 and as a function of P3 is convex (see Fig. 3). A 
numerical evaluation of the integral in (12) shows that to four 
decimal places 

lim I(P2'P3'0)~0.0767. 
p,!1 

Thus, compared with the case P2 = 1 (dimers only), the aver­
age uncovered portion of an infinite array in the jamming 
limit diminishes by more than 43%. The corresponding val­
ue with relation to the case oftrimers is 56%. 

(iii) The general case. Intuitively, the average saturation 
coverage in the jamming limit should take on its maximum 
value when, first, a high percentage of four-bell particles 
leads to an initial filling of the lattice space almost exclusive­
ly by particles of this type, when, second, due to a significant 
rareness of dumbbells, almost exclusively the three-bell par­
ticles take care of the occupation of the segments of exactly 
three adjacent lattice sites, and when, third, the pure pres­
ence of dumbbells provides for a final filling of the gaps con­
sisting of two compartments. Indeed, the function I of (to) 
takes on its minimum when 0"'P2<P3~0 and p4~1 (see 
also Fig. 4). More precisely, 

lim (lim I ( P2' P3'P 4)) 
p,1O p,lO 

0.08 

L (1) 

517 

=2e- 11I3 II t(l-t)exp {2t+t2+ ~ t3} dt 

~0.0505. 

0.50 

P3-

0.95 

FIG. 4. The average uncovered 
fractionL (l)in thejamminglimit 
of an infinite lattice space filled 
sequentially and randomly (due 
to model II) with particles of 
lengths 2, 3, and 4 and relative 
frequencies P2 = 0.05, P3' and 
P., respectively. 
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(iv) For P2> 0 fixed. It is interesting to determine the 
trimer concentration for which the average saturation cover­
age in the terminal state attains its maximum. As an example 
we took P2 = 0.05 and found that this maximum value [the 
minimum of 1(0.05,P3,P4)] is attained when (see Fig. 4) 
P3~0.2 (and hence p4~0.75; observe that, roughly, 
P3 = 4 P2 and P4 = 4 P3)' 

B. Rare dlmers In a two-type model 

We imagine the mixture of P-bell particles consisting of 
just two kinds of particles, dumbbells and k-bell particles, 
k>3, the dumbbells being rare, i.e., P2~0. Then interested 
in the average fraction of vacant sites in the jammed state, we 
must determine 

I (k )=lim (lim anln). (13) 
Pkt1 n_oo 

It follows from (2H4) that 

{ 

k - II} II k - I 
I (k ) = 2 exp - 2 L -:- (1 - t) L aJti 

J= I J 0 J= I 

{ 

k-I ti} 
xexp 2 L -:- dt. 

J= I J 
Some values of I (k ) are given in Table II. Utilizing the fact 
[see PageS or observe (6) and (to)] that an _e-2n as n-+oo, 
and well-known results20 on the asymptotic behavior of the 
average saturation coverage when the particle size becomes 
large, it is not difficult to show that 

lim I (k) = e-2(1 - L ·)~0.033, 
k- oo 

where 

(00 { (t 1 - Z } 
L· = Jo exp - 2 Jo -ze dz dt~0.748, (14) 

the expression gotten by RenyF for the average fraction of 
occupied space (in the terminal state) of a large one-dimen­
sional parking lot gradually filled at random with cars of unit 
length. 

V.PROOFS 

A. Mean convergence 

Define a pair of random variables ( P, r) as follows. Let 
P denote the length of the first particle to be placed on the 
given 1 X n array and let r indicate its left-hand position on 

TABLE II. The function /(k) introduced in (13). 

k /(k) 

3 0.077 
4 0.076 
5 0.066 
6 0.062 
7 0.058 

10 0.051 
15 0.045 

00 0.033 
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the lattice space. It then follows from our model assumptions 
that, for all n = r, r + 1, ... , 

, n 

= L L (An I/:J= k,r =j)P(/:J = k,r=j) 
k-qj= 1 

, n-k+1 
= L L (An I /:J = k,r =j)P(r=jl /:J= k) 

k=q J= 1 

XP(/:J=k) 

= ± P; 1 {2an_ k + "ik 
(OJ_l +O,.-k-i+d} 

k=q n - + i=2 
, 2Pk n-k 

= L L OJ 
k=qn-k+li=1 

or, using (1), 

, 2Pk 
on = L k 1 Vn-k' n = r, r + 1,.... (15) 

k=q n - + 
The initial conditions to be imposed in (15) are 

°1 = 1, 02=2, ... ,Oq_1 =q-l, 

Oq = 0, 0q+ 1 = pq/(pq + Pq+ I)' 

and the additional values 0q+2, ... ,O,_1 must be calculated 
successively from (15), redefining rand P q , •.. ,p, in every step 
appropriately. 

Before illustrating this procedure let us determine Oq + 2 

without making (direct) use of (15): Let 
P = Pq + Pq + 1 + Pq + 2 and q = 2. Since a trimer leaves 
necessarily one site of a 1 X 4 array unoccupied and since 
exactly one (of three possible and equally likely) placement(s) 
of a first dimer results in two subarcays of length 1 each 
(which will remain vacant), we see that 

0q+2 =pq+llp+~pqlp, ifq=2. 

If q>3, q-bell particles leave two sites (contiguous or not) and 
(q + 1 I-bell particles leave one site of a 1 X ( q + 2) array un­
occupied; thus 

0q+2 = 2pqlp +pq+llp, ifq>3. 

Now suppose that OI, ... ,Oq+I_1> q + t<r, are known. 
Set P = P q + ... + P q + t and observe that in the occupation 
process of a 1 X (q + t) array intervene q-, ... , (q + t I-bell par­
ticles with relative frequencies P; = pqlp, ... , 
P;+I =Pq+riP, respectively. Since this situation is gov­
erned by (15) with n = r = q + t and Pk = pic, 
k = q, ... ,q + t, Oq + t may be determined by means of (15), 
modified as indicated. 

From now on we will assume that 0q+3, ... ,O,_1 have 
been determined when dealing with the recursion relation 
(15). 

The next step in evaluating the asymptotic behavior of 
On is to derive a di1ferential equation satisfied by 

00 

A (s) = L ansn, (16) 
,,=1 

the generating function of the an' n = 1,2, .... Due to the 
nature of our problem, Ian I is bounded by n; the power series 
in (16) is therefore uniformly (and absolutely) convergent on 
compact subsets of the open unit disk. This observationjusti-
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fies the subsequent interchange of summation and integra­
tion and the rearrangement of the series. We proceed from 
(15). Multiplying both sides of (15) by s", O<s < 1, and sum­
ming from r to 00 we get 

= ± 2Pk sk- 1 f Vn_k f' t n- k dt 
k=q n, Jo 

= ktq 2Pk sk-
I f n=~-k Vn ttl dt. 

Now, putting 
r 

g(s) = L Pk sk 1 
k=q 

and making use of (3) and the fact that 

A (t) .. 
--= L v" tn, O<t<l, 
(l-t) ,,=1 

we find that 

or 

A (s) = 2g(s) f' A (t) dt + H (s) 
Jo 1- t 

(17) 

A 'Is) - A (s) [g'(S) + 2g(s) ] = g(S)(H)'(S). (18) 
g(s) l-s g 

When solving (18) with the initial condition A (0) = 0 one 
uses the easily checked relation [for the definition of S see Eq. 
(2)] 

J g(s) ds = -log(1 - s) - sIs) 
l-s 

after performing an integration by parts, the fact that 

lim [A (x) - H(x)]lg(x) = 0 
>:10 

to obtain 

A(s)=H(s)+ 2g(s) e-2s(s) f' H(t) (l-t) 
(l-s)2 Jo g(t) 

X [1 - (1 - t JS '(t)] e2s (t1 dt 

or, on observing (4) and 

1 - (1 - t)s'(t) =g(t), 

A (s) = H (s) + g(s)L (s)!( 1 - S)2. 

(19) 

(20) 

Since g( 1) = 1 and lim,! 1 L (s) exists, it follows from the Tau­
berian theorem for power series,23 applied to A in the form 
(20), that 

v"_I-n2L(I)/2, asn-+oo. (21) 

On noticing once more that 0<0,. <n, (21) together with 
(1) and (15), yields the desired result (5). 

B. The asymptotic form of the mean 

Recall (7) and put 
00 

C(s)= L [a,. -(n+M})L(ll] srI, O<s<l. 
n=1 

To prove (6) is then equivalent to showing that C and all its 

B. Mellein and E. E. Mola 518 



                                                                                                                                    

derivatives C(k) or order k. k = 1.2 •...• converge in 1. It is 
easily seen that C may be put in the form 

C(s) = (1 - S)-2[g(s)L (s) + ll(s)(1 - S)2 

+ L (1) {Mlr - (Ml + 1)s)]. (22) 

which suggests to expand j(s) g(s)L (s) into a Taylor series 
around 1. To this end observe that 

g(l) = 1. g'(I) = Ml - 1 = S '(1). 

and 

L '(1) = - 2L (l)s'(I). 

which provides 

j(s) = L (1) + L (1)[1 - Ml](s - 1) 
00 

+ Lj(k)(I)(s-W1k ! 
k=2 

(23) 

(24) 

Hence. on substituting for g(s)L (s) from (24). we find that (22) 
takes the form 

C(s)=MlL(I)+ f j{J1(I)(S.~ 1)i-2 • (25) 
}=2 J. 

proving (6) in the case k = O. Now noticing that derivatives 
of L (and hence ofj) of all orders in 1 do in fact exist. (6) 
follows from (25) by successive derivation of C. 

c. The asymptotic form of the variance 

and 

First let us introduce some more notations. We set 

bn = (A !). n = 1.2.... (26) 
n 

Wo = O. Wn = L bk • n = 1.2 •... 
k=l 

n-l 

CO=cl=O. Cn = L akan_k. n=2.3 •...• 
k=l 

00 

B(s)=Lbn~. 
n=l 

@(s) = 'il 
bk~ _ 2 'il 

Sk ki 2 Pk_}.(cj + wj ). 

k=l k=q+l j=l J+l 

(27) 

Starting out from the quickly verified recurrence relation 

b ~ 2Pk 
n = k k 1 (cn_ k +wn_ k ). n=r.r+ 1 •...• 

k=q n - + 
and on observing that 

00 B (t) 00 

A2(t)=Lcn1n and --=Lwtn 
n=l I-t n=l n • 

we find. following the line of reasoning indicated in Sec. V A. 
that B satisfies the first-order linear differential equation 

B '(s) _ B (s) [g'(S) + 2g(s) ] 
g(s) 1 -s 

= g(s)[2A 2(S) + (@ Ig)'(s)] (28) 

subject to the initial condition B (0) = O. Rather than solving 
(28) we introduce 

B(s) = 2g(s)T(s)/(I-s)2 +@(s) (29) 

in (28) to get 
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T'(s) - [2/(1 - s)][g(s) - I]T(s) 

= @(s)(l - s) +A 2(s)(1 - S)2. (30) 

The analytic form of the solution 

T(s) = e - 2s(s) f [@(t)(1 - t) + A 2(t)(1 - t )2]e2s (t) dt 

(31) 

of (30) with initial condition T(O) = 0 turns out to be much 
more convenient for our purposes than that of solution B of 
(28). It is obvious from (20) that the integral in (31) will di­
verge in s = 1. and our main task will therefore be to split it 
up into a convergent and a divergent part: Substituting for 
A 2(t) from (20) we see that (31) may be rewritten in the form 

T(s) = Il(s) + 12(s)e - 2s(S). 

where we put 

I l(s)=e- 2s (S) f [@(t)(I-t)+ll2(t)(l-t)2 

+ 2g(t )ll(t)L (I)] e2s (t) dt 

and 

I (s) = rs 
g2(t)L 2(t) e2s (t) dt. (32) 

2 Jo (1 _ t)2 

To get rid of the (in s = 1) divergent integral on the right of 
(32). we deduce from (18) and (20) that 

L '(s) - [2/(1 - s)]['g(s) - 1]£ (s) = 2ll(s)(1 - s). (33) 

and on carrying out an integration by parts in (32) and using 
(19) and (33) we get 

with 

and 

12(s) = 13(s)e1s (S) - 14(s). 

14(s) = 2 (' {_I - [g'(t) - g(t )s '(t )] g(t)L 2(t ) Jo 1 - t 

+ 2g2(t)L (t)ll (t) } e2s (t) dl. (34) 

Due to (23). the integral in (34) converges in s = 1. and we 
arrived at the desired decomposition of the right-hand term 
in (31). 

T(s) = 13(s) + ! K (s). 

where we set 

K (s) = 2 [Il(S) - 14(s)e - 2s(s)] • 

(35) 

(36) 

To proceed further in the analysis of the asymptotic 
behavior of u! we recall (7) and (9) and establish that 

2s "(1) =g"(I) = M2 - 3Ml + 2 

and 

lim [g'(t) - g(t)s '(t )]1(1 - t) = M~ - (Ml + M2)/2. 
til 

From this. (4). (26). (27). and (34). on introducing (35) in (29) 
and applying the same method as adopted in Sec. V B. it 
follows after somewhat lengthy calculations. that. as n tends 
to infinity 
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bn = L 2(I)n2 + [L 2(1)(1 + 2MI ) + K(I)]n 

+L2(1}[2Mi +MI -M2] +K(I)MI +o(n- k), 

k=O,I, .... 

This, in combination with (6), proves that ~ = bn - a~ be­
haves as stated in (8). 

In the case q = r = 2 (dimers only), the function K de­
fined in (36) may be determined explicitly. Particularly, we 
find thatK (1) = 3e-4

• SinceL 2(1) = e-4
, (8) yields the well­

known resultS,6 

~ _4e- 4(n + 2) as n-+oo. 

In all other cases K (1) must be evaluated numerically. Since 
the function L given in (4) requires a numerical integration, 
the calculation of the integral appearing in (34) and hence the 
determination of K (1) becomes rather tedious. Mackenzie6 

gives some values of K (1) in the one-type case. 

D. Other representations of the limiting average 
saturation coverage 

It has been noticed20 in the one-type case q = r that a 
simple modification of the generating function of the 
an' n = 1,2, ... [e.g., replacing A as given in (16) by 
A (s) = 1::= q ansn - q], may lead to a significant alteration of 
the (integral) representation (4) ofthe limit in (5). A similar 
phenomenon appears when one treats the average saturation 
coverage (as, e.g., Mackenzie6 does in the one-type case) in­
stead of dealing with the uncovered fraction in the jamming 
limit: In the present multitype case, introducing 
an = n - an, the average number of occupied sites of a 1 X n 
lattice space in the terminal state, into (15) leads to [MI is 
defined in (7)] 

r 2Pk n-k 
an = MI + L L aj' 

k=qn-k+lj=1 
n=r,r+ 1, ... , (37) 

the most simple initial values being a I = ... = a q _ I = 0, 
aq = q. Then setting 

n=q 

and proceeding from (37) just as in Sec. V A yields 

A*(s)= g*(s) e-Zs(s)l'[ll*+h]'(t)(I_t)2eZS(I)dt, 
(l-s)2 0 g* 

(38) 

where 5 is as defined in (2), 
r 

g*(s) = Sl - q g(s) = L Pk ~ - q, (39) 
k=q 

r-I 
ll*(s) = L an~-q+ I 

n=q 
r-q k-q-Ip .(a +···+ak . I) 

- 2 L Sk L q+J q . -J- , 
k=q+1 }=o k-J 

and 

h (s) = MIs-q+ 1/(1 - s). 

Now, in the one-type case q = r,g*(s)=I,ll*(s)==O,MI = q, 
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h 'Is) = q/( 1 - S)2, and (38) reduces to 

- Zs(,) is 
A *(s) = qe eZs(l) dt. 

(1 _S)2 0 

Hence, on applying the Tauberian theorem for power se­
ries,23 

a II lim _n = 1_qe- zS(J) eZs(l)dt=L(I), 
n-+oo n 0 

(40) 

the expression stated by Mackenzie. 6 

In the muititype case it seems to be more advantageous 
to perform an integration by parts in (38). Then, using (39) 
and once more (19) and the Tauberian theorem for power 
series, we get 

n~oo 

(41) 

which constitutes, in the case q = r, a third representation of 
limn~oo an/n, different from those established in (5) and (40). 
At least in the one-type case, (41) is easier to handle than (5). 

Concerning the integral representations involved in the 
asymptotic form of the variance, similar modifications may 
be gotten. However, the main difficulty in computing K (1), 
described at the end of Sec. V C, cannot be removed. 

VI. FINAL OBSERVATIONS 

The exact solution of model II developed in previous 
sections will enable us to attack problems like those men­
tined in the Introduction. The present model is particularly 
well-adapted for being applied to problems like the model for 
polymer crystallization, (iv), presented but unsolved by Gor­
nick and Jackson. Even more, the analysis presented in this 
paper allows the solution of that model without any kind 0/ 
restriction on the crystallizable length which now may be a 
random variable with any discrete distribution around a giv­
en mean value. From the comparison of theoretical results 
obtained by assuming different types of crystallizable length 
distributions against experimental results, it will now be pos­
sible to find the distribution of crystallizable lengths that 
thermodynamic stability requires. 

From Figs. 3 and 4 we learn that there can be a great 
difference in the average vacant fraction in the jammed state 
of a lattice space when (sequentially and randomly) filled by 
different kinds of particles rather than by just one type of 
particle, but such that the size of the latter one is equal to the 
average value of the size distribution of the former ones. As 
an example, let us consider the size distribution pz = 0.05, 
P3 = 0.90, P4 = 0.05 whose average value equals 3. Then 
(see Fig. 4) the average vacant fraction is less than 8% while 
(see Fig. 3) the corresponding value in the (one-type) case ofa 
trimer is greater than 17%. 

In a more general sense we are in a position to affirm 
that model II is able to deal particularly well with "space 
filling" problems mainly determined by "internal" restric­
tions like examples (ii) and (iv). When the space filling prob­
lem is controlled by "external" conditions like in examples (i) 
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and (iii) we should direct our attention towards model I. 
Mackenzie6 (see also Maltz and Mola22

) succeeded in 
obtaining asymptotic expansions of the one-type constants 
L (1) and K (1) when the particle size grows to infinity, on this 
occasion establishing a connection with Renyi's continuous 
mode1.2 The complex integral representations ofthese con­
stants in the present multitype model demand a similar treat­
ment. Interesting relations with work done by Ney9 can be 
expected. 
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Exact solutions to Fokker-Planck equations with nonlinear drift are considered. Applications of 
these exact solutions for concrete models are studied. We arrive at the conclusion that for certain 
drifts we obtain divergent moments (and infinite relaxation time) if the diffusion process can be 
extended without any obstacle to the whole space. But if we introduce a potential barrier that 
limits the diffusion process, moments converge with a finite relaxation time. 

I. INTRODUCTION 

A time-dependent Fokker-Planck equation (FPE) de­
scribes the dynamical evolution of the diffusion processes. 
Nevertheless, when the dynamics of the process is nonlinear 
it is very difficult to obtain exact or even approximate solu­
tions of such FPE's. Since at the present time nonlinear pro­
cesses are ofhi8hest interest (instabilities, phase transitions, 
etc.)· many people have tried to find exactly soluble nonlin­
ear models. 2-7 

The most common technique used to solve exactly a 
FPE consists in separating the temporal from the spatial 
dependence; this latter one is solved by means of an eigen­
function expansion in the same way as occurs with the 
SchrOdinger equation. 2-4 

Another more direct although more skillful technique 
is initiated in Ref. 6 and continued in Ref. 8. It consists in 
separating the part which is most related to the potential of 
the process (which causes the nonlinearity) from the prob­
ability density P (q,t ); then, by means of convenient assump­
tions, the remaining part of P (q,t ) is solved separately assum­
ing that it is Gaussian. Concretely in Ref. 8 we have found 
that the N-dimensional FPE 

P(q,t) = -al'[p'(q).P(q,t)) +~al' al'p(q,t), (1.1) 

when al'=a/aql' (sum over repeated Greek indices is as­
sumed) has an exact solution, with the usual initial condition 

P(q,O) = c5ft(q - qo) (1.2) 

if the drift/I'(q) = /1' (q.,q2, ... ,qN) has the form 

/I'(q) = - aql' + al' t,6 (q)/t,6 (q), (1.3) 

where 

t,6(q) = kU.lakF(lkl! laqi) 

+PkqkF(lk + ~ I ~ laqi 1)1, (1.4) 

the a K and P k being arbitrary constants and the 1 k arbitrary 
parameters. The function F(/k 1!laqi) is the hypergeometric 
confluent function. In this case the exact solution to the FPE 
(1.1) is 

with 

Pk(t )==qOke - at, 

17(t)=l - e- 2at
• 

(1.6) 

(1.7) 

(1.8) 

In Ref. 8 we have also found solutions of Eqs. (1.1) for a drift 
with spherical symmetry of the form 

f(r) = [ - ar + dt,6 (rlldr]! 
t,6(r) r 

(1.9) 

with 

t,6 (r) = laF(/IN /2Iar)J (1.10) 

for whatever value of the dimension N of the phase space, 
and 

t,6(r) = laF(/1 ~Iar) + pr-
N 

XF(/+ 1- ~12- ~lar)1 (1.11) 

if N is odd. In these cases the normalized solution of the FPE 
is given by (1.5) with t,6 (q) given by (1.10) or (1.11) and 

b =(4/- N}a. (1.12) 

In this article we intend to study some of the applications of 
these solutions for concrete models. 

II. A FIRST MODEL OF NONLINEAR DIFFUSION 

By means of an adequate selection of the constants ak 
andPk that appear in (1.4) we can write 

t,6 (q) = 1 kU. {e(a I2J<dD - 21)v'20qk)} I, (2.1) 
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where D _ I, hfiAq d is the parabolic cylindric function de­
fined by9 

D (z) = z1'/2e -r/4 { F(1/2) F( - v 11.-1 r) 
v F((1 _ v)/2) 2 2 2 

+~ F( -1/2) F(I- v I~I r)}. (2.2) 
..[i F(-v/2) 2 2 2 

For t~o the functions D_I,(..j2Qqd do not have real 
zeros and instead of (2.1) we can write 

N 

¢ (q) = II {e(a I2)9iD _ 21, (..j2Qqk)}· (2.3) 
k=1 

The characteristic function e (.u I'.··' I'-N ) associated to a 
density of probability P(q,t) is given byl 

() (1'-1'···' I'-N)== f dql .•. dqN 

xexp{i(l'-lql + ... + I'-NqN)}P(q,t). 
(2.4) 

Substituting in (2.4) the probability density given by Eq. (1.5) 
with ¢ (q) given by (2.3) we have 

e (1'-1'···' I'-N) 

(
a )N12 e- 1b12)t 

= 21T ¢ (qo)(sinh at )N 12 

N f+cc {I 
X JI -cc dqk D _ZI,(..j2Qqk)exp il'-kqk +2aq~ 

_ a(qk - flk(t W}, 
1](t) 

(2.5) 

D _ 21,(..j2Qqk) 

- (1/2)a9i iCC e r;;-: 2 21-1 = exp( - ,,2aqkS - ! s)s' ds 
F(2/k ) 0 

~>~. ~~ 
Substituting (2.6) in (2.5) we finally arrive at 

where 

Pk=..j2Qqok + i(zl..j2Q)(sinhat)l'-k· (2.8) 

Once we have evaluated the characteristic function, 
moments follow easilyl: 

1 (}'() (I'-I ••• I'-r) I 
(ql,···,qr) = - . 

i' al'-I···al'-r 1',= ... = 1',=0 
(2.9) 

In our case 

_ at 4/k . D - 21, - d..j2Qqk) 
(qdt) = qOke - -- (smh at) ---=----

..j2Q D -21,(..j2Qqk) 

(/k>O) (2.10) 

and 
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([qdt )]2) =q~ke-2at+ 1_e-
2at 

2a 

8/k -at( . h ) D- 2Ik - I(..j2QqOk) 
- -- qo e sm at ---=.----

..j2Q , D _ 21. (..j2Qqok ) 

4/k(/k + 1) ( . h2 ) D- 21.- 2(..j2Qqk) + sm at ---=----
a D _ 21. (..j2QqOk) 

(/k>O). (2.11) 

In this model the drift may be written in the form 

f I'(q) = - aq I' - 2/1'..fa [ D _ 21,.. _ I (..j2Qq)1 D _ 21,.. (..j2Qq) ] . 
(2.12) 

The first moment (2.10) as a function of the drift is 

(qdt) = qOke-at + (sinhat)[qok + fdqo)la]. (2.13) 

This first moment presents a "boomerang" effect since the 
average velocity 

d(qdt) {-at [fk(qo)]} dt = - a qOke - (cosh at) qo + -a-

(2.14) 

becomes equal to zero and changes the sign if 0 < Ik < 1 and 
- qlk < qOk <qlk (± qlk are the positions of the maxima of 

the potential ofthe drift) for a time tb (see Ref. 6): 

( ) 
_ 1 1 [aqo• - fk(qo) ] 

tb k -- n . 
2a aqOk + fk (qo) 

(2.15) 

We easily observe that Eqs. (2.10) and (2.11) give 

lim l(qdt)1 = lim l(qdt)2)1 = 00, (2.16) 
1-00 1_00 

except for 1 k = 0 that corresponds to the case of linear drift 
[see Eq. (2.12)]. 

We can also consider the model with spherical symme­
try such that, when qo = 0, the probability density (1.5) can 
be written as 

P(r t 10) = (-.!L)NI2 ¢(r) exp{ - (b/2)t - arl1](t)} 
, 21T ¢ (0) (sinh at)N 12 ' 

(2.17) 

wherer==(~:= I ~)1/2and¢ (r) is given by (1.10). Fori> 0 the 
function F(IIN 121ar) has no zeros and since F(alcIO) = 1, 
we have 

¢ (r)1 ¢ (0) = F(/ IN 121ar) (1)0). (2.18) 

For this model the potential V(r) ofthe drift (1.3) is 

V(r) = !ar - In F(/IN 121ar) (/>0). 

In Fig. 1 we represent this potential when N = 1 and a = 1, 
for the cases (a) / = 0, (b) / = 0.1, and (c) / = 0.5. The mo­
ments ([r(t )]m) are given by 

([r(t)]m) = (21T)N12 iCC ~+m-IP(r,tIO)dr 
F(N 12) 0 

(m = 1,2, ... ). (2.19) 

Substituting in (2.19) the probability density given by (2.17) 
and since9 
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VCr) 
(a) 

r 

(c) 

FIG. 1. Representation of the potential V(r) when N = 1 and a = 1 for the 
cases (a) I = 0, (b) 1= 0.1, and (c) 1=0.5. 

LOO e-azzv-IF(alclzjdz 

= a- vr(V)F(a,vlcl ~). (2.20) 

for Re a > 0, Re a > Re k, Re V> 0, we arrive easily at 

([r(t)]m) = r((m +N)/2) e-21at[11(t)]m/2 
21-NI2amI2r(N /2) 

(2.21) 

In this case the velocity of the moments is given by 

d ([r(t )]m) = 2N12r((m + r)/2) e - 2lat [l1(t )]m/2 - I 

dt aml2 - Ir (N Iz) 

X {[; (1 -l1(t)) + 111(t)] 

XF(/, m;NI~ll1(t)) 

+ I(N;m) l1(t)(I-11(t))F(1 +1,1 

+ m ; Nil + ~ I 11(t)) }. (2.22) 

Now we investigate the behavior of the moments ([r(t )]m) 
for large times (t> 1120). In this case 

l1(t)-+1 (t>1I2a) (2.23) 

and since9 

F(a,b Iclz) = r(c)r(c - a - b) 
rIc - b )r(c - a) 

XF(a,b la + b - c + 1Il-z) 

+ (l_z)(-a-b) r(a)r(a + b - c) 
r(a)r(b) 

XF(c -a,c - b Ic - a - b + lI1-z) (2.24) 

and F(a,b Icll - n)~1 (t>1I2a), we arrive at 

([r(t)]m)--- r(/+m/2) emat (t>_I_ and 1#0). 
21-N12am12r(l) 20 

(2.25) 

This expression diverges when t-+oo. 
The case I = 0 corresponds to linear drift and, there­

fore, presents no difficulty. 
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We come to the conclusion that both models presented 
in this section could not be valid for the study of the temporal 
evolution of physical systems towards equilibrium. In the 
following section we find a mechanism that yields exactly 
soluble models that relax towards equilibrium with a finite 
relaxation time. 

III. ONE-DIMENSIONAL MODEL WITH POTENTIAL 
BARRIER 

For a one-dimensional system the potential V(x) of the 
drift (1.3) is 

V(x) = ~ax2 -In f/J (x), (3.1) 

where f/J (x) is given by Eq. (1.4). By means of an adequate 
choice of the constants a k andf3k' we can write 

f/J (x) = U(/I~lax2), (3.2) 

where U(/I!lax2) is a function of Kummer.9 Let us suppose 
now, that, for a certain value of XI <xo, there exists a poten­
tial barrier, that is, 

V(x) = {!ax
2 
-In f/J (x), x;;;.x l , (3.3) 

00, x<x l , 

which is equivalent to the following expression for f/J (x) 

f/J (x) = {U(/I~lax2), X;;;'XI' (3.4) 
0, x<x l • 

This is possible since f/J (x) = 0 is also a solution of the differ­
ential equation that satisfies the function (3.2) (see Ref. 8). 

In this case, and supposing that Xo = 0, the probability 
density is 

P(x,t 10) = (.!!.....)112 f/J (x) exp{ - (bI2)t - ax2/11(t)1. 
2", f/J (0) (sinh at )1/2 

(3.5) 
In this model the moments are evaluated by 

([x(t)]m) = roo xmp(x,t 10jdx (m = 1,2, ... ), (3.6) 
Jx, 

following the procedure described in the Appendix. Express­
ion (3.6) becomes 

([x(t )]m) = r(1 + ~) (l1(t ))mI2-l 
2",am12 

X exp [ - 21at + axi 111(t)] 

00 

X I tIInm)(e,x\;l1(t)), (3.7) 
n~O 

where 

./Jl)(1 . (t)) = (l)n (I + !)n (1 __ 1_)n 
'fn ,xhl1 I ( ) n. 11 t 

X U(I + n I-..!..I axi ), (3.8a) 
2 l1(t) 

tII;l(i, x \;l1(t )) 

(/)n(/+!)n(I __ 1 ) [axi u(/+n+..!..I..!..1 axt) 
n! l1(t) l1(t) 2 2 l1(t) 

+ U(I + n + ..!..I_..!..I axt )]. (3.8b) 
2 2 l1(t) 
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When t< 1/20, then 7J(t )=20t< 1 and the main term of Eq. 
(3.7) is exp( - axi /7J(t)). Therefore, 

([x(t)]m)_e- xi/21 (t<1/20). (3.9) 

When t> 1/20, then 7J(t )=1 and the main term ofEq. (3.7) is 
exp( - 2Iat), i.e., 

([x(t)]m)_e- 2Ial (t>1/20), (3.10) 

that yields a relaxation time 

Trelax = 1/2Ia. (3.11) 

The moments, for small times, are growing functions of 
time; however, for large times, they are decreasing functions 
of time. Therefore, in the cases in which (3.7) are continuous 
functions of time, the moments pass through a maximum for 
t -1/20 and we again have the "boomerang" effect. 

We will finish this section studying the case when the 
potential barrier is very far away from the origin (that is, our 
initial state), i.e., when 

axi>1. (3.12) 

In such a case, as in Ref. 10, 

U(alclz)-z-a for Z-oo (Rea>O), (3.13) 

the functions rfJ'nm)(/,xI;7J(t)), defined by (3.8), may be written 

rfJ'nm)(/,xI;7J(t ))=( 7J(t) )1 + (I - m)l2 
axi 

x {(/)n(1 + !)n (7J(t) - l)n} 
n! axt 

(m= 1,2). 

Taking into consideration9 

00 z" 
zli'o(a,b;z)= L (a)n (b )n -, 

n=O n! 

zli'o(a,b;z-I) =~U(ala - b + liz), 

we arrive at 

f rfJ'nm)(/,x;7J(t ))=( 7J(tz' )1 -ml2 ( 7J(t) )1 
n=O axl 1-7J(t) 

X U(I I ~ 11 .:x;(t) (axt>I), (3.14) 

for m = 1,2. Substituting (3.14) into Eq. (3.7) we finally get 

r(1 +!) -axil'7ll ) 
([x(t)]m)......, e e-4lal 

2om121T (axt)1 - ml2 

X U(I IJ.-I ax
t

) (axt>I), 
2 7J(t) 

(3.15) 

for m = 1,2. 
When t> 1120, we have 7J(t )= 1. With the approxima­

tion (3.13) we have 

([x(t)]m)......,r(/+!) e-ax~ e- 21al 
21Tam12 (axt)1 - m/2 
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(axi > 1 and t> 1/20). 

When t < 1/20 we can approximate 

7J(t)=20t<l, 1 -7J(t)=I, e- 4Ial=1 
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(3.16) 

(for I moderate). 

Remembering (3.13), Eq. (3.15) becomes 

([x(t)]m)......,r(/+!) e-X~/21 
21Tam12 (axi V + (I - m)l2 

(axi>1 and t<1/20). (3.17) 

Therefore, even when the potential barrier is very far away 
from the initial state, the evolution of the system depends on 
the position x I of the barrier. 

If we compare Eq. (3.16) with Eq. (3.10), and Eq. (3.17) 
with Eq. (3.9), we observe that the asymptotic temporal evo­
lution of the model is similar to the evolution of the general 
case. 

For x <XI the potential (3.3) is a hard-core potential. 
This implies that the barrier is a reflecting barrier. Thus, the 
probability current J (x,t ) must be zero for x<x I' In our case 
J (x,t ) is given by 

J(x,t) = K(x,t )[a(1/7J(t) - 1)x¢ (x) +!¢ '(x)], (3.18) 

where 

and9 

K (x,t )=(.!!....)112 exp{ - (b /2)t - ax
2
/7J(t) 1 

21T (sinh at )1/2 

¢ '(x) = {- 2/
2
xU(1 + 11~lax2), 

0, x<xl • 

(3.19) 

Thus J (x,t ) will be zero at the barrier if ¢ '(x) is a continuous 
function at x = x I' This implies that the potential barrier 
must be located at the zeroes of the Kummer function. 

If, instead of (3.4), we write 

¢ (x) = {U(I 1!lax2), x;>x l , 

a, x<xl , 

where a<1 (our potential is not completely hard core), we 
have 

P(x,t /O)~O for x<xI (3.20) 

[see Eq. (3.5)] and the barrier may be located anywhere. 
In Fig. 2 we have a representation of the potential (3.3) 

in the case where I = - 0.5. 

IV. STATIONARY DISTRIBUTIONS 

V(x) 

As is well known a one-dimensional FPE 

p(x,t) = -~[f(x)P(x,t)] +J.-£12P(x,t) 
ax 2 ax2 

x 

(4.1) 

FI~. 2. Re~r~tation of the potential (3.3) in the case / = - 0.5. The po­
tential bamer IS located atxI = 0.25 0 1/ 2, and the minimum atxo = 0-

1
/
2

• 
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has a stationary distribution of the form 

PSt (x) = N exp{ 2 f" f(X')dX'}, 

when the probability current 

J(x,t) = f(x)P(x,t) _ ~ ap(x,t) 
2 ax 

satisfies the boundary condition 10 

lim J(x,t) = O. 
X-±/XI 

(4.2) 

(4.3) 

(4.4) 

Both our general model represented by Eq. (1.4) as well 
as the models represented by Eqs. (2.1) and (3.2) satisfy these 
boundary conditions. Their stationary solution is 

Pst (x) = N [ ~i(X)] 2e - ax', (4.5) 

where 

and 

~I(X) = aF(/I!lax2) + pxF(1 + mlax2), 
~2(X) = e(aI2)"'D _ 21 (..j2Qx), 

~3(X) = U(/I!lax2), 

(4.6a) 

(4.6b) 

(4.6c) 

a l / 2 [a2IF( -I) P2(1 + !)F( _I_!)]-I 
N = -- + --~---=-

1T' r(! -I) 4aF(l -I) 
(4.7) 

(provided that the proper choice of the constants a and p 
extends this normalization to the models (4.6b) and (4.6c)]. 

Let us study the stability of these stationary distribu­
tions. Following the criterion given in Ref. 4 we can affirm 
that the stochastic process represented by Eq. (4.1) has a 
stable stationary solution, and all moments (xm) up to the 
mth order exist if the following inequality is satisfied: 

L -l' -2SXf(x')dx' 1 
= 1m > . 

x_", (m + l)lnx 
(4.8) 

In our case we have [see Eq. (1.3) and Ref. 9] 

LI = - 00, L2 =L3 = + 00, (4.9) 

whatever the values of m and I. We see therefore that the 
general model is completely unstable (let us remember that 
in this model, when p = 0, the model presented in Ref. 6 is 
included). As a matter offact, both the general model (4.6a) 
as well as the model of Ref. 6 do not behave correctly at 
infinity since Pst (x}-oo when x_ ± 00. 

Thus, we can affirm that the models presented in Sees. 
II and III are stable for any value of the parameter I. 

V. CONCLUSIONS 

Relating the results of Sec. II with those of Sec. III, we 
observe that the nonlinear diffusion process, represented in 
general form by the drift (1.3), yields divergent momenta 
(and infinite relaxation times) if the diffusion process can be 
extended to the whole physical space. Nevertheless when, 
due to the introduction of a potential barrier, the diffusion 
process takes place in a limited part of space, the moments 
converge with finite relaxation time given by 

1"nonlinear = 1/21a. 

Comparing this relaxation time with the one that corre-
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sponds to a linear drift,f Il(q) = aqll, that is, 

1"linear = 11a, 

we observe that this process of nonlinear diffusion relaxes 
quicker than the linear diffusion if 

I>! . 

Let us remark also that the nondivergent model studied 
in this paper can reach large parts of space since the asymp­
totic evolution of the process is the same no matter how far 
away the potential barrier is from the initial state. 

The general model represented by Eq. (1.4) is unstable 
since its stationary distribution Pst (x) diverges. The models 
studied in Sees. II and III are stable. 

APPENDIX: EVALUATION OF INTEGRALS 

We have to evaluate the integral 

I(m) = L~ xmp(x, ~)dX (m = 1,2, ... ). (AI) 

By means of the change of variables z = ax2
, we get 

with 

K(t) F(I + !) e-21at(71(t))-1/2, 
21T'am12 

I\m)= [rm -1)I2e -ZI1](t)U(/I!lz)dz, 
%, 

I ~m)= 1'" z(m - 1)I2e - zl1](t) U (II! Iz)dz. 

(A2) 

(A3) 

(A4) 

(AS) 

The evaluation of I~m) is immediate taking into account 
that9 

1'" e-SZzk-1U(alelz)dz 

= F(b)F(l +b-e) S-b 

F(t +a+b-e) 

XF(a,b 11 + a + b - ell - +). 
where Re s > 1/2 and F(a,b lelz) is the hypergeometric func­
tion. 

The final result is 

I(m) = r((t +m/2)/2)F(t +m/2) ( (t))(I+m)/2 
2 F(l +1+m/2) 71 

xF(/,(t + m)/211 + 1+ m/211 - 71(t)), (A6) 

valid for m = 1,2,3, .... 
To evaluate I\m) we perform the change of variable 

y = zl71(t). Using the multiplication theorem9 

'" (a) (t + a - c) 
U(alelzz') = (z,)-a L" " 

,,=0 n! 

x(t- :,)"u(a+nlelz), 

we have 
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l\m) = (1](t W + m)/2 -/ f (/)n (/ + !)n (1 __ I_)n 
n =0 n! 1](t) 

X[ylm-I)/2e-YU(1 + nl!1 y)dy. 
y, 

(A7) 

For m = 1, and recalling that9 

f e-ZU(alelz)dz = - e-ZU(ale - liz) + C, 

(AS) 

the expression (A 7) becomes 

1\1) = (1](t W -I. {e - axil1J(t) [ f (/)n (I + !)n (1 __ I_)n 
n =0 n! 1](t) 

since 

X U(/+n 1_ ~ I ;i))] 
_ r(~) F(ll+.lli +~II __ I )}, 

r (I + ~) , 2 2 1](t) 

U(/+nl-!IO)= rm , 
r(/+n +~) 

r (I + n + ~) = r (I + ~)(I + ~)n' 
F(a,b lelz)= f (a)n(b )n z". 

n=O (e)n n! 

(A9) 

For m = 2, integrating by parts and taking into account 
(AS), Eq. (A 7) becomes 

1\2) = (1](t ))(312) -/ {e - QX~/1J(t)[ f (I)n (/7 !)n (1 __ I_)n] 
n=O n. 1](t) 

X __ I U I+n+- ___ I 
[

ax2 ( IIIlax2) 
1](t) 2 2 1](t) 
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+ U(/+n +.ll_.ll axi )] 
2 2 1](t) 

_ rm F(/,I+W+2II-_I_}. 
r(1 + 2) 1](t) 

(AW) 

In general, 

l\m) = ( 1](t W + m)12 -/ { e - axil1J(t) 

X [ ~ . • /Jm)(1 . (t ))] r(~) 
n~o Ifn ,xh1] - r(I + I + m12) 

X F(1l + .lli + 1+ mil __ 1_) (All) 
'2 2 1](t) , 

with Vfnm) (1,x1;1](t)) given by (3.S). Expression (All) is only 
valid for m = 1,2. 

Substituting (All), (A6), and (A3) in Eq. (AI) and with 
the help of Ref. 9, 

F(a,b lelz) = (1 - z) - QF(a,e - b lelz/(z - 1)); 

in this way we obtain Eq. (3.7). 
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The problem of obtaining left-right asymmetry of fermion quantum numbers in Kaluza-Klein 
theories is studied. A non-Riemannian Kaluza-Klein geometry, based on a nonsymmetric 
fundamental tensor gZA , is shown to lead to zero modes of the Dirac operator and can possess a 
nonvanishing chirality index that permits a realistic description of fermions. Some specific models 
of unification and their group structures are considered. 

I. INTRODUCTION 

A higher-dimensional gravity theory can give a unified 
description of four-dimensional gravity and gauge interac­
tions, if all spacelike dimensions except three are compacti­
fied into an internal space with a very small characteristic 
length of the order of the Planck length. By integrating the 
action over the internal space the isometries of the compact 
internal space reduce to gauge symmetries. It is assumed 
that the ground state has the formM 4 XG, whereM 4 is the 
four-dimensional Minkowski space and G is a compact 
space. The continuous symmetries of G will be the ob­
served gauge symmetries in the four-dimensional world, 
which should minimally contain the symmetries of 
SU(3)XSU(2)XU(1). This program has been pursued by 
many authors. 1-3 However, a major difficulty in construct­
ing a realistic model has been pointed out by Witten.4 By 
starting with a Riemannian geometry in 4 + n dimensions 
that is coupled to spinors and assuming that the internal 
space is compact, one always ends up in the four-dimension­
al theory with fermions that belong to vectorlike representa­
tions of the gauge group, i.e., such theories do not have the 
left-right fermion asymmetry observed in nature. 

Another problem is that by beginning with a purely 
Riemannian structure, the Dirac equation cannot have zero 
mass modes for compact internal spaces. It has been suggest­
ed that by including torsion in the space, the problem of not 
having zero mass solutions to the Dirac equation can be cir­
cumvented.s However, this does not resolve the problem of 
left-right fermion asymmetry. 

One way out of the problem of obtaining light fermions 
in realistic chiral representations of a low-energy gauge 
group is to add extra gauge fields.4

,6 However, it is necessary 
then to postulate the existence of topologically nontrivial 
vacuum configurations. If such a program is pursued, then 
the idea of deriving a unified theory from higher-dimension­
al gravity is lost, together with much of the appealing simpli­
city and unity of the theory. 

If we retain general coordinate invarlance in 4 + n di­
mensions as the only local symmetry of the theory, we must 
either give up the compact nature of the internal space or 
abandon the notion of purely Riemannian geometry, Giving 
up the compactness of the internal space complicates consid­
erably the structure of the theory. In the following we shall 
consider a non-Riemannian extension of Kaluza-Klein the­
ory suggested some time ago,7-9 based on a nonsymmetric 
field structure.lO,ll A theory of gravitation in four-dimen-

sional space-time formulated in terms of a nonsymmetric gl'v 

has been extensively investigated. 12-17 This theory is consis­
tent with all experimental relativity tests in the solar system. 
Recent new observational results for the eclipsing binary 
system DI Herculis 18 may in fact provide confirmation of 
the nonsymmetric gravitational theory (NGT).19 

II. GEOMETRICAL STRUCTURE OF THE GENERALIZED 
THEORY 

We adopt the notation that in a 4 + n dimensional 
space, capital Greek letters (.I,A ,n, ... ) denote the base mani­
fold (curved) indices and capital Latin letters (A,B,C, ... ) de­
note the flat (tangent space) indices. For a four-dimensional 
space-time lowercase late Greek letters (p,v,A., ... ) will be used 
for curved space indices, while the late Latin letters 
(m,n,p, ... ) denote flat indices. For internal indices taking n 
values, early lowercase Greek letters are used in the curved 
case (a.p,y, ... ) and early lowercase Latin letters in the flat 
case (a,b,c ... ). The general coordinates:xI thus consist of 
space-time coordinates xl" and the internal coordinates ya. 
The internal dimensions are all spacelike. 

The four-dimensional form of NGT follows from an 
algebraic reduction of an eight-dimensional real tangent 
space to a hypercomplex structure generated by a complex 
operator J with J 2 = 1 (see Refs. 16 and 17). By imposing the 
hypercomplex structure J on R 8 and demanding that 
VJ = 0, the group GL(8,R) is reduced to GL(4,R) 
X GL(4,R ), which in tum is reduced to GL(4,R ) in four­
dimensional space-time upon introducing a metrically com­
patible connection in the space. From this follows that in 
four-dimensional space-time, the fundamental tensor g"v 

has the sesquilinear form 

g"v =g(J.tv) + Eg[l'v]' (1) 

where g(J.tv) denotes the symmetric part and g[l'v] the skew­
symmetric part of gl'v' Moreover, gl'v is (hypercomplex) Her­
mitian g"v = gvl' and ~ = 1. In terms of hyper complex vie/­
beins e':: = e'; + Ee'F, we have 

r " " 

(2) 

For this version ofNGT, it has been proved that the physical 
sector of the theory does not possess any ghost poles.20 

We can generalize the method of algebraic reduction to 
2(4 + n)-dimensional space. Let us begin with a real 
2(4 + n )-dimensional tangent space with the group GL(p,R ), 
where p = 2(4 + n). The (hyper) complex structure J with 
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J 2 = 1 is imposed on this space and we require that V J = 0, 
with the consequence that GL(p,R) is reduced to the semi­
simple product GL(N,R )XGL(N,R) with N = 4 + n. We 
then demand that the connection on the p-dimensional 
space be metrically compatible, which reduces 
GL(N,R ) X GL(N,R ) to GL(N,R ). The symmetric metric of 
the initial (real) p-dimensional space is reduced to a nonsym­
metric metric in N-dimensional space 

gIA = g(IA) + Eg[IA I' (3) 

where as before E = - E and c = 1. In 4 + n dimensions the 
fundamental tensor gIA has the form 

gIA = 4~ 7]AB' 

where the (hyper) complex vielbeins 4 obey 

~~ = 15~, 4e~ = I5g 

and they satisfy the equation (~.I = aI~) 
~,I + (WI )~e~ - WiAt1 = o. 

(4) 

(5) 

(6) 

The W and Ware the spin and the generalized Lorentz con­
nections, respectively. In NGTl2, 13 and Kaluza-Klein NGT 
the torsion is determined by the metric compatibility equa­
tion up to an auxiliary vector field. We can solve for Win 
terms of e and w: 

(7) 

where DI is the covariant derivative operator, defined by 

DI~ =~,I + (wI)~e~. (8) 

A group of isometries is defined by the transformation 

4 =e'~(U)~, (9) 

where Uis an element ofGL(N,R ) that leaves the fundamen­
tal form (3) invariant. Moreover, W will remain invariant 
under the transformation (9) provided that 

(WI)~-+[UWIU-l- (aIU)U-1H. (10) 

A curvative tensor can be defined by 

([DI,DA])~ = (RIA )~, (11) 

where 

(RIA)~ = (WA)~,I - (WI)~,A + ([WI,WA])~' (12) 

This equation is invariant under the transformation (9). 
The scalar curvature in 4 + n dimensions is 

R = ~Ce:1ei (RIA )~. 

The action of the theory is 

S = - - d 4x ---.E. eR 1 f f d n 

4~ V(n)' 

(13) 

(14) 

where e = det(4) and ~ / 41T = G is the Newtonian constant 
in four dimensions, whereby the invariant volume V (n) ofthe 
internal space has dimensions (lengtht. 

III. HIGHER-DIMENSIONAL SPINORS AND THE 
CHIRALITY INDEX FOR FERMIONS 

A spinor transforms according to the law 

r/J-+t/! + 15t/!, 15st/! = - SI aIt/!, (15) 

where 5 I (x) is defined by the infinitesimal transformations 

r-+r + SI(X). (16) 
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The t/! belongs to a fundamental spinor representation of the 
universal covering group spin(N - 1,1) of the Lorentz 
group. Under infinitesimal Lorentz transformations with 
the coefficients a AB (x) = - a BA (x), a Dirac spinor is a 2(N /2) 

component representation that transforms under infinitesi­
mal Lorentz transformations according to 

I5Lt/!= -!aAB.IIABlt/!, (17) 

where the N (N - 1 )/2 generators.I [AB I can be constructed 
from the N = 4 + n Dirac matrices r A. These matrices obey 
the usual rules 

{rA,rB} = 27]AB, .I [ABI = -HrA,rB]. (18) 

In general, we have for a scalar quantity rP 

DIrP = [aI - HWI )AB.I AB ]rP, (19) 

where ( WI) AB = (WI) (AB ) + (WI) [AB I and .I AB 
= .I (AB) +.I [AB I. The.I (AB) are N (N + 1 )/2 noncompact 

generators ofGL(N,R ). The Dirac covariant derivative that 
transforms as a (finite component) spinor under Lorentz 
transformation is 

~ It/! = [aI - HWI )[AB I.I [ABI]t/!, (20) 

We can now construct a scalar Dirac operator 

~t/! = rI~ It/! = gIA)EAArA~ It/!, (21) 

where the vielbeins E 1 are defined by the metric tensor 

gIA) = E!E~7]AB. (22) 

The physical mass spectrum of our theory is determined by 
the Dirac operator ~ = r A ~ A • 

Witten has discussed the index of chirality for fermions 
in the context of dimensional reduction.4 An analysis of the 
problem for the case of non-Riemannian geometry has been 
given by Wetterich.21 Let us assume that 

(23) 

where F denotes the gauge transformation and r the Dirac 
matrices. The index number is defined by4 

Nd~) = n/ - nc- - nt + nc-' (24) 

where n/ is the number of zero modes of ~ in the Weyl 
spinor t/!+ associated with a complex representation of the 
spinor, while nc- and nc+ denote the corresponding values 
for t/!- and for the complex conjugate representation. Thus 
Nc is the number of four-dimensional left-handed fermion 
generations, up to a numerical factor. 

In the case that the vielbein 4 has an inverse every­
where, the operator ~ is an elliptic operator, which for com­
pact spaces has the property that Nc(~) remains invariant 
under continuous changes of the metric. In compact spaces 
we have for elliptic operators ~ 

(25) 

for some arbitrary parameter s, provided that the nonderiva­
tive operator B obeys 

(26) 

For Riemannian geometry, the chirality index vanishes for 
the Dirac operator for arbitrary compact spaces. For theor­
ies with torsion WfIA I #0 the Dirac operator also has zero 
index because ofEq. (25). This follows because B is a nonder-
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ivative operator in the Dirac operator rADA + B that cor­
responds to non vanishing torsion. Thus, although we could 
have zero modes in the presence of torsion, the chirality in­
dex vanishes and we cannot have left- and right-handed 
chiral asymmetry. Only in the case that g.~A lor, equivalent­
ly, the vielbein E 1 fail to have inverses everywhere is it possi­
ble for chiral fermions to exist, i.e., to have a nonvanishing 
chirality index.21 

IV. NONELLIPTIC DIRAC OPERATORS IN HIGHER­
DIMENSIONAL NGT 

Let us write g~A and ~A in terms of their symmetric 
parts h~A andrA and their skew-symmetric parts/~A and 
k~A, repsectively, 

g~A =h~A +/~A' ~A=rA+k~A. (27) 

If we assume that h = det(h~A )#0, then the metric tensor 
h~A = hA~ always has an inverse 

h~Ah~A =8~. (2S) 

The following relations can be derived: 

g = det(g~A) = h + / + (h /2)h ~Ah An/~JAn' 

(29) 

and 

g2 = h /p =//k, (30) 

where rAp ~A = 8~ . Our Dirac operator is 

fifl =p~ArAfifl~ =EirAfifl~, (31) 

where the E i are defined by Eq. (22). This definition of the 
Dirac operator is not unique in the nonsymmetric theory. 

Thus, the physical spinors couple through p~A = ~~. If 
we assume that p = det!r'A) vanishes somewhere in the 
compact space, then Ei is not invertible everywhere. Thus 
fifl is not an elliptic operator, which is a necessary condition 
for the existence of chiral fermions: i.e., we can have 
Ndfifl)#0.21 In the Riemannian case, the metric is just the 
square of the vielbein e1 

g~A =gA~ =e1eAA , (32) 

and g should be nonvanishing everywhere in the compact 
space. 

Thus in NGT we can preserve h #0 and have p = 0 at 
some point in the space such that fifl is not an elliptic opera­
tor and therefore can possess a nonvanishing chirality index. 
Since h # 0 the metric properties of the space, defined by h ~A 
and h ~A, are preserved in the manifold. 

V. MODELS OF UNIFIED THEORIES BASED ON 
NONSYMMETRIC KALUZA-KLEIN THEORY 

Let us consider examples of a unified theory using our 
generalized Kaluza-Klein scheme. We choose p = 2S with a 
real tangent space based on the group of transformations 
GL(2S,R). By dimensional reduction this is reduced to 
GL(14,R )XGL(14,R) and GL(14,R). The basic group in 
N = 14-dimensional space is SL( 14,R ) with a 10-dimension­
al compact space. The symmetry breaking that occurs under 
compactification could then lead to the scheme 
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SL(14,R )-SO(13,I)-SO(IO) X SO(3, 1) 

-+SU(3)XSU(2)XU(1)XSO(3,1) 

-+SU(2) X U( 1) X SO(3, 1). 

(33) 

Thus in four-dimensional space-time the compact group 
SOt 10) would describe the grand unified scheme for particle 
physics. The problem of left- and right-handed fermion 
asymmetry is avoided since the fermions couple to the non­
symmetric field structure. We choose even N and avoid the 
case of a single ~ representation of the spin group with 
Ys = + 1 and Ys = - 1 parts with the same transforma­
tions under SO(N - 1,1). 

It is possible to go to more complicated schemes such as 
one based on quaternion 17,22 and octonion 17 algebraic reduc­
tions of the higher-dimensional tangent space. In the case of 
the quaternion reduction of the theory, the relevant group is 
GL(p,C), which contains the compact unitary group SU(q) as 
well as the group of homogeneous Lorentz transformations 
SO(3,1). We could envisage the schemes in p = 24-dimen­
sional space: 

and 

SL(24,C)-+SL(12,C)X SL(12,C)-+SL(12,C) (34) 

SL(12,C)-+SL(S,C)XSL(4,C)XGL(I,C) 

-+SU(S)XSO(4,C)XGL(1,C) 

-+SU(S)XSO(3,1)XGL(1,C) 

-+SU(3)XSU(2)XU(1)XSO(3,1)XGL(I,C) 

-+SU(2)XU(I)XSO(3,I)XGL(1,C). (35) 

Now the relevant grand unified theory is SU(S). 
Further work has to be done to obtain detailed predic­

tions of the unified theories of the kind displayed in the above 
models. In particular, the significance of spontaneous com­
pactification in our non-Riemannian Kaluza-Klein scheme 
must be studied in detail. 

VI. CONCLUSIONS 

We have shown that a non-Riemannian Kaluza-Klein 
theory, based on a hypercomplex, nonsymmetric g~A' can 
have a nonvanishing chirality index, leading to nonequal 
left- and right-handed zero mass modes of the generalized 
Dirac operator in the compact space, because the vielbein 
E 1 in the Dirac operator fifl may no longer have an inverse 
everywhere. However, the symmetric part of g~A' which 
constitutes the metric tensor of the theory, still has an in­
verse everywhere, thereby retaining the purely geometrical 
properties of the space. Thus the line element defined in 
4 + n-dimensional space by 

ds2 = g(~A I dr dxt (36) 

is still well-defined in the theory, even though det(gl~A I) van­
ishes somewhere in the manifold, rendering the generalized 
Dirac operator a nonelliptic operator that permits a nonvan­
ishing chirality index. In this way we realize that the non­
symmetric field structure is related to the existence of physi­
cally realizable fermion field operators. 
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Exact solutions are found for the static gravitational fields for a matter-free space in the general 
scalar-tensor theory of Nordtvedt-Barker-Schwinger. The singular behavior of some of the 
invariants has also been discussed for the solutions in Barker and Schwinger theories. 

I. INTRODUCTION 

Static perfect fluid distributions with high symmetries 
such as spherical, cylindrical, and planar symmetries in gen­
eral relativity are widely discussed in the literature. 1-6 How­
ever, the corresponding problem in scalar-tensor theory still 
lacks thorough investigation. Recently increasing interest in 
general scalar-tensor theories seems to stem mainly from 
attempts to extend the principle of conformal invariance to 
also include gravitational phenomena (gravity becoming it­
self the manifestation of a broken symmetry7.8). Also Ko­
dama9 has shown that the use of scalar fields may enable one 
to construct nonsingular field-theoretical models for ele­
mentary particles. Recently Banerjee and Santos lO have dis­
cussed static perfect fluid in Brans-Dicke theory. 11 

In the present paper we have considered gravitational 
field equations in the general scalar-tensor theory of Nordt­
vedt l2 in a static nonrotating space-time with two mutually 
orthogonal spacelike Killing vectors. This metric may be 
interpreted to represent cylindrical, toroidal, planar, or 
pseudoplanar symmetry depending on the behavior of the 
space coordinates. 

The scalar-tensor theory proposed by Nordtvedt con­
siders the parameter ClJ as a function of the scalar field ifJ and, 
in the special case ClJ = const, it reduces to the theory of 
Brans-Dicke. 11 

Our paper is organized as follows. In Sec. II we have 
written the field equations and their general solutions. In 
Sec. III and Sec. IV we have found exact solutions in the 
Nordtvedt's scalar-tensor theory of gravitation with scalar 
field ifJ being obtained from specific choices of ClJ as a function 
of ifJ as proposed by Barker13 and Schwinger.8 In Sec. V we 
study the singular behavior of some of the invariants, viz., 
Kretschmann curvature invariant and curvature scalar. 

II. FIELD EQUATIONS AND THEIR SOLUTIONS 

We consider a static space-time possessing two space­
like Killing vectors which are mutually orthogonal and also 
orthogonal to the timelike Killing vector. One can choose 
the coordinates so that the metric has the formS 

dr = e2r(x) dt 2 _ ~ (x) dx2 

(2.1) 

It corresponds to cylindrical symmetry if sand TJ repre­
sent the azimuthal and longitudinal coordinates, respective­
ly, so that S E (O,21T) and TJ E ( - 00,00). If both S and TJ are 
angular coordinates, we call the system toroidally symmet­
ric, whereas if both sand TJ represent longitudinal coordi-

nates [TJ E ( - 00, + 00 ),S E ( - 00, + 00)), the symmetry 
can be called "pseudoplanar" [to obtain the well-known 
planar symmetry, one should put in addition, {3 (x) = p(x)). 

In the following we attempt to find exact solutions of 
the field equations in Nordtvedt's general scalar-tensor the­
ory corresponding to the metric (2.1) for a matter-free space. 
However, one can without loss of generality, use the coordi­
nate condition 

). = y + P + {3. (2.2) 

This coordinate condition enables us to write the field 
equations in a symmetrical form. 

The field equations in the Nordtvedt's general scalar­
tensor theoryl2 are 

GJ~ = - .!!!...- [A. .jA. _..!. 8j A. A..k] ifJ 2 'f' 'f'.j 2 j'f'.k'f' 

_ ..!. [A. :j. _ 8~DA. ] ifJ 'f'.J J 'f' , (2.3) 

DifJ = _ ifJ.kifJ·
k 

dClJ 
2ClJ + 3 difJ ' 

(2.4) 

where ifJ is the scalar field and ClJ is a function of ifJ. The field 
equation (2.3) can be written explicitly as 

G: = e - U U = e - U [~ (~' r -).:'], (2.5) 

G ~ = e - U [{3" + y" - U] 

= e - U [ - ~ (~' r + P:' - ifJifJ"] , (2.6) 

G~ =e-U[y" +p" - U] 

= e - U [ - ~ ( ~' r + {3:' - ifJifJ"] , (2.7) 

G! =e- U [{3" +p" - U] 

= e - U [ - ~ (~' r + y:' - ifJifJ"]· 

Equation (2.4) for the scalar field leads to 

DifJ = e - uifJ "= _ e - U (ifJ ')2 dClJ . 
2ClJ + 3 difJ 

(2.8) 

(2.9) 

Here and in what follows, the primes indicate differentiation 
with respect to x and 

U ={3'y +{3'p' + y'p'. (2.10) 

Now we attempt to solve this system of five equations 
and five unknown functions y, p, {3, ClJ, and ifJ. Adding (2.5) 
and (2.6) one can immediately obtain the relation 
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13" +y" = -(t/J'/t/J)(y +/J')-t/J"/t/J. (2.11) 

Subtracting (2.8) from (2.6) and (2.7), we have, respectively, 

y" - p," = - (t/J '/t/J)(y - p,') 

and 

y" -13" = - (t/J'/t/J){y -13'). 

Adding (2.11) and (2.13), we have 

y" + y t/J '/ t/J + t/J " /2t/J = o. 
On integration Eq. (2.9) yields 

t/J' = C(2tu + 3)-1/2, 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

C being an integration constant. Once w(t/J ) is known other 
equations can be integrated. 

III. SOLUTIONS IN BARKER'S THEORY 

Within the framework of Nordtvedt'sl2 general scalar­
tensor theory Barker13 has proposed a particular w - t/J rela­
tionship in the form 

w(t/J) = (4 - 3t/J )/(2t/J - 2). 

Use of (3.1) in (2.15) and integration gives 

t/J = 1 + (Klx +K2)2, 

(3.1) 

(3.2) 

where KI and K2 are integration constants. Now from (2.14) 
and (3.2) we have 

y=M2 +MI tan-I(Klx +K2) - ~ log [(Klx +K2)2 + 1], 
(3.3) 

where M2 and MI are constants of integration. Now using 
(3.2) in (2.12) and (2.13), on integration we have, respectively, 

(3.4) 

and 

13 = y - (D3/K d tan-I(Klx + K2), (3.5) 

where D3 and D4 are integration constants. 
Equations (3.2H3.5) constitute the complete solution 

for the metric (2.1). In order that this solution satisfies all the 
field equations, we must have a relation between the con­
stantsKI, M I, D3, andD4 given by 

(3.6) 

IV. SOLUTIONS IN SCHWINGER'S THEORY 

Schwinger" and Milton and Yeel4 have formulated a 
scalar-tensor theory (as a mass-varying theory), but it can be 
put in the form of a standard scalar-tensor theory with a 
suitable choice of the function w(t/J ) and after a transforma­
tion to "particle units" has been carried out. 14 

Now we consider the w - t/J relation as proposed by 
Schwinger in the form 

2tu(t/J) + 3 = l/at/J, (4.1) 

where a = const. Using relation (4.1) in (2.15) and on inte­
gration, we have 
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(4.2) 

where C and C I are integration constants. 
Now using (4.2) in Eq. (2.14) and integrating, we have 

y = K4 - K3/(CX + CI ) -log[Cx + Cd, (4.3) 

where K3 and K4 are integration constants. With the help of 
(4.2), Eq. (2.12) and (2.13) yield, respectively, the solutions 

p, = y + 4D2/aC [Cx + Cd (4.4) 

and 

13 = y + 4DI/aC [Cx + Cd, (4.5) 

where DI and D2 are integration constants. 
Equations (4.2H4.5) constitute the complete solution 

for the metric (2.1). In order that the solution satisfies all the 
field equations, one must have a relation between the con­
stants a, C, D I , D2, and K3 given by 

V. SINGULAR BEHAVIOR OF INVARIANTS 

We now study the regularity of the solutions from the 
behavior of some of the invariants, viz., the Kretschmann 
curvature invariant .!t' = RhijkRhijk and the curvature sca­
lar R = t j Rij (given in the Appendix). 

In the case of Schwinger's theory the invariants.!t' and 
R tend to ex> asx~( - CI/C). Therefore,.!t' andR aresingu­
laratx = - CI/C. Hence, thereissingularityatx = - C I / 

C within the framework of Schwinger's theory. Similar is the 
situation about the singularities of the solutions within the 
framework of Barker's theory. 

APPENDIX A 

The nonzero components of R hijk for metric (2.1) are 

RI212 = e2p [ p," + p,'2 - A 'p,'] , 

R1313 = e213 [13" + 13'2 - A '13'], 

RI414 = e2Y [ - y" - y2 + A 'y], 

R 2323 = e- 2Y [ p,'/J'], 

R2424 = - p,'ye - 213, 

R 3434 = -/J'y'e-2p. 

The curvature invariant in terms of metric coefficients for 
the metric (2.1) is given by 

R = - 2e-:U [A" - (p,'/J' +/J'y + yp,')]. 

Thus the expression for Kretschmann scalar 
.!t' = RhijkR hijk takes the form 

.!t' = 4{e - 4(A + PI(R 1212)2 + e - 4(A + P I(R 1313)2 

+ e - 4(A + YI(R 1414)2 

+ e - 4( P + P (R 2323)2 + e - 4( P + YI(R2424f 

+ e - 4tP+ YI(R 3434)2}. 
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APPENDIXB 
The nonzero components of Riemann curvature tensor and curvature scalar for the solution in Barker's theory are 

R =ex [2P- 2D4 tan-l(kx+kl]{Q+ 2D4k l(k lx+k21 
1212 p kl I 2 [(klX + k212 + 1 J2 

- (s - [(klx +~:12 + IJ)( 2S - (klx +i212 + J} , 
R = ex [2P - 2D3 tan -I(k x + k I] {Q + ",.2D3k l(klx + k21 

1313 p kl I 2 [(klx+k212+1J2 

-(s- (klx +i212 + J(2S- (kIX+~:12+ I)}' 

RI414 = eXP[2PJ{ - Q+ 2S 2 -S (D3 +~41 }, 
(klx+k21 + 1 

R - ( 2P I{S2 S(D3 +D41 D~4} 
2323 - exp - - (klx + k212 + 1 + [(klx + k2f + IJ2 ' 

R2424 = exp [ - 2P + 2D3 tan-I(klx + k21] { - S2 + SD42 } , 
kl (klx+k21 + 1 

R 3434 = exp[ - 2P + 2D4 tan-I(klx + k21] { _ S2 + SD\ } , 
kl (klx + k21 + 1 

and 

R = 8k ~ 2 2 eXP{3P - (D3 + D41 tan -I(klx + k21} , 
[(klx + k21 + 1 J kl 

where P, Q, and S are 

P= M2 +MI tan-I(klx + k21 - ~ log[(klx + k212 + IJ, 

k 2 

Q = - (klx + ~212 + 1 
2Mlk~(klx + k21 2K~(klx + k212 - + _---..:..;........:..--:----..:.--:-
[(klx + k212 + IJ2 [(klx + k212 + IJ2 ' 

S= Mlkl 
(klx + k212 + 1 

kl(klx +k21 
(klx + k212+ 1 . 

APPENDIXC 

The nonzero components of Riemann curvature tensor and curvature scalar for the solution in the Schwinger's theory 
are 

R3434 = exp{ - N -

and 

R = ex -3N-8C
2 

{ 

a 2 [Cx + Ctl 4 p 

where 

8(DI +D21 } 
aC[Cx+Ctl ' 
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The totally symmetric and totally antisymmetric direct couplings of fermions in d-dimensional 
space are investigated. Explicit forms are given for d <; 11. A different way of handling the d­
dimensional Dirac algebra is also described. 

I. INTRODUCTION 

Recent interest in Kaluza-Klein theories stems mostly 
from dimensional extensions of local supersymmetry. In 
particular, simple Yang-Mills in ten dimensions may be re­
duced to the maximal extension (N = 4) of supersymmetric 
Yang-Mills in four dimensions l

; and simple supergravity in 
11 dimensions may be reduced to the maximal extension 
(N = 8) of supergravity in four dimensions.2 The fundamen­
tal fermionic fields in the Yang-Mills case are the Weyl­
Majorana spinors appropriate to ten dimensions and in the 
supergravity case the corresponding fundamental fields are 
the Majorana vector spinors. 

There is also a classical solution of the II-dimensional 
supergravity field equations that splits the II-dimensional 
manifold into a four-dimensional space-time and seven-di­
mensional internal space.3 This unforced output of the 11-
dimensional theory provides not only a realistic space-time 
but also a possible internal space since its dimensionality is 
the minimum compatible with the symmetry of 
SU(3)XSU(2)XU(I). 

The Kaluza-Klein idea for unifying gauge interactions 
with gravity is, of course, not limited to the supergravity 
approach. In general if the ground state isM 4 XB, whereBis 
a compact space, continuous symmetries of B will be ob­
served as gauge symmetries in M4 (see Ref. 4). 

In all of these higher-dimensional theories there is need 
for efficient ways of dealing with the spinor algebra. For 
example, one frequently encounters Fierz transformations 
in the usual on-shell formulations, while the complications 
become greater if one attempts to construct off-shell theor­
ies. On the phenomenological side, one notes that the inter­
action among four fermions frequently becomes effectively 
zero range because of the great mass of the intermediate bo­
sons; and the effective interactions therefore reduce to direct 
quadrilinear forms. 

As these direct Fermi interactions appear both actually 
and potentially in many theoretical schemes, we have 
thought that it may be useful to examine these couplings in 
higher-dimensional theories and in a way independent of su­
pergravity. We also describe a different way of handling the 
Dirac algebra. S 

II. NOTATION 

The Dirac algebra in d dimensions may be defined by 
the anticommutation relations 

(rj,rk)+ = 2/)jk' j,k = I, ... ,d, 

where the ri are all Hermitian 

(2.1) 

r/ =rk' 
Let us introduce the notation 

r (g) = rr'~2, ... ,~d, 
where 

g = (g1,g2'''')' 

gk = (0,1). 

(2.2) 

If rk transforms like a d-dimensional vector under the 
d-dimensional orthogonal group, then the rank of the tensor 
associated with r (g) is 

(2.3) 

If r (g) is written out explicitly, one component of the rank 
three tensor is, for example, 

rIg) = rmrnrp , 

where the indices are never equal and always appear in the 
natural order m < n <po Each component of the rank g ten­
sor is associated with a different vector g. 

The r (g) are unitary and are either Hermitian or anti­
Hermitian according to the relation 

r + (g) = E(g)F (g), 

where 

E(g) = ( _ )(g/2)(g- I). 

(2.4) 

(2.5) 

Let the individual rk be either pure real or pure imagi­
nary and let the number of imaginary ones be p. Let C be the 
product of the imaginary ones only. Then 

C+ = C- I = E(p)C (2.6) 

and 

c = ( - jPE(P)C, 

where - means transpose. Then 

C -lrkC = ( - jPrk' 

C-Ir(g)c= (- F( - yr(g) 

= ( - FE(g)l' (g), 

(2.7) 

(2.8) 

(2.9) 

where t is the number of imaginary matrices in r (g). Let 

E=c-Ir. (2.10) 

Then if '" and X are two spinors, it follows that ",EX is a 
tensor of the same rank as r. We may also write this tensor as 
~rX' where ~ = fpc -I. The matrices E are symmetric or 
antisymmetric according to 

E(g) = (- jPE(g + p)E(g). (2.11) 

536 J. Math. Phys. 26 (3), March 1985 0022-2488/85/030536-06$02.50 @ 1985 American Institute of Physics 536 



                                                                                                                                    

Computations that make direct use of (2.1) are manifestly 
covariant but may become very lengthy if d is large. For this 
reason we shall use instead of (2.1) the following relation 

r(g)F(g') = r(g')r(g)( - )"'+l1li'. (2.12) 

In this notation the composition law is 

r (a)F (b) = ( - t b
( - )blllr(a + b), 

where T is the triangular matrix 

Tjj = () (i -11 
= 0, i<.j 

= 1, i>j. 

Then 

(2.13) 

(2.14) 

or in general 

;k g r (g)F (m)r (g), 

where the sum is over all components of the tensor rIg) of 
rankg. Then 

II~ g r (g)r (m)r (g) = ;kg r (g)F (g)r (m)( - )Bm + BID 

= ( - )BmE(g)F (m) ;kg ( - )BID 

= (- )Bm€(g) W(m,g)F (m), (2.22) 

where 

W(m,g) = ;kg (- )BID. (2.23) r(b)r(a) = (- )blll+ a7br(a)r(b), 

and by (2.12) 

(_ )blll + a7b = (_ )ab+ab. 
The function W(m,g) is computed in the next para­

(2.15) graph. It is 

Also 

( _ )alll = (_ )aE(a), (2.16) 

!(F(a),r(b))± =! rIa + b)( - )blll[( - lab ± (- tb). 
(2.17) 

The r in these relations are antisymmetric by construction. 
If r (a) is not written in the above notation but is instead 

written in covariant notation and is also antisymmetrized 
then formulas like (2.17) are written as follows: 

(2.18) 

(2.19) 

= ~ (_)1 (2p + 1)1 (2k + 1) 81M, ~>J 
"'- (2 + 1 - 21'11 2; INl •···• N>J 1=0 '.fJ ':I,. :I 

xr M2J+l •...• M2k+d M' (k ) 
N2J+l •...• N2p+l]' a = In ,p. 

(2.21) 

Example: 
To illustrate the use of our abbreviated notation consid­

er a contraction like 
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g 

W(m,g) = W(m,g) = L C:C:=:( - r. (2.24) 
1'=0 

III. FIERZ IDENTITY 

Let us next write the Fierz identity in the above nota­
tion 

- - 1 - -
()'MX)(t/JNt/J) = - L €(g) ()..Mr (g)N.t/J ) (t/Jr (g) X), 

v 

where 

v = 2[dI21, 

and 

M=r(m), N=r(n). 

In particular, consider 

M(kln) =K(k)N(n), 

with 

kn=O. 

Then 

(3.1) 

(3.2) 

(3.2a) 

m = k + n, m = k + n. (3.3) 

In this case the quadrilinear form is a tensor of rank k. Then 
by (2.12) 

K (k)N (n)r (g)N (n) = K (k)N (n)N (n)r (g)( _ )"g + DII 

=K(k)r(g)E(n)( - )"B+DII. (3.4) 

Therefore 

(XMX)(~Nt/J ) = 1.- L (X K (k)r (g)t/J ) (~r (g)X) 
v II 

x€(g)E(n)( _ )"B+DII. (3.5) 

The contracted form ofthis relationship is 

L (XM(kln)x) (~N(n)t/J) 
D 
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x [1 K (k)r (g); ] [~r (g)x] 

I 
= -; ~ E(n + g) ~g W(g,k,n) 

X [1 K (k)F (g~ ] [~r (g)X], 

where the following sum is over n: 

W(g,k,n) = k (- ) .... 
D =n 

ak=O 

Then 

W(g,k,n) = 2:iVt) ( - Y', 

where iVt) is the number of solutions of the equation 

ng =p" 

subject to the constraints on n 

n2 = n, and ok = O. 

One finds 

iVt) = C! C~=~-i, 

where 

g=g-gk. 

Then 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

The function W (g,n) may also be expressed as a contour inte­
gral around the origin 

W(g,n) = ~ J dzz- n
-

1(1-zJ'(1 +Z)d-k- i . 
2m j 

(3.13) 

Example: In particular, if the quadrilinear is an invar­
iant then k = 0 and 

g 

W(g,n) = W(g,n) = 2: C~ C~=~( - Y', (3.14) 
o 

W(g,n) = ~ J dzz- n
-

1(1 -z)8(1 +Z)d- g• (3.15) 
2m j 

In these cases W(g,n) depends only on (g,n). [Equation (3.14) 
is also the equation referred to in (2.24). Compare (2.23) and 
(3.7) with k = 0.] 

If k = 0, (3.6) becomes 

k (lr(n)x) (~r(n);) 
n =n 

1--
= -; ~ E(n +g)W(g,n) ~g (Ar(g~) (t/lr(g)X)' 

(3.16) 
If the quadrilinear is a tensor of rank k then (3.6) holds; but if 
it is an invariant, then the special result (3.16) holds. In these 
two cases the appropriate forms of W (g,n) are given by 
(3.12H3.15). 

IV. IDENTITY OF CREMER, JULIA, AND SCHERK2 

Ifk #0, then W(g,n) depends on gas well asg. Toillus­
trate the usefulness offormula (3.12) we prove the following 
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identity of Cremer, Julia, and Scherk for d = II: 

i {r"va6{Jyt/lv ~ar fJr - r fJrt/lv~ar"va6{Jy} 

+ i {r"va8(Jt/lv ~arp - rpt/lv~ar"va8(J} 

+ 1 {[r"-s,r P] t/lv~arp + rpt/lv~a [r,,-S,r P]} 

= 1 [r"va6,r P] (~arpt/lv)' (4.1) 

Proof: 
By (3.1) a typical term on the left is Pierz transformed as 

follows: 

k M(kln)t/lv~aM(n) 
D =n 

I -
= - - 2: 2: (M(kln)F(g)M(n)) (t/lar(g)t/lv)€(g), 

v I D 

where 

M (kin) = r"va8{Jy, 

M(k) = r"va6, 

M(n)=r Py. 

(4.2) 

The notation is hybrid, since (v,a) are contracted against 
M(kln). 

The additional minus sign on the right comes from the 
anticommutativity offiia and t/lv' The g sum extends only 
fromg = 0 tog = 5 sincer(l1)-l. 

Since ~a and t/lv are anticommuting Majorana fields 

~ar(g)t/lv = ( - )8€(g) (~vr(g) t/la)· 

But by (4.1) v and a are contracted against matrices 
antisymmetric in v and a. Hence the only non vanishing 
terms satisfy 

( - )8€(g) = - I, 

or 

g= 1,2,5, 

sinceg<5. Now define 

1(k,m,g) = k [M(klm)F(g)M(m) 
.. =m 

- M(m)F(g)M(klm)], 

and 

%(k,n,g) = k ([M (k),M (n)] r (g)M (n) 
II =n 

(4.3) 

(4.4) 

+ M(n)F(g) [M(k),M(n)]). (4.5) 

Then Eq. (4.1) becomes after its left side is Pierz transformed 
by (4.2) 

..!.. 2: [1(4,2,g) + 1(4,I,g) +%(4,I,g)] (~ar(g)t/lv) €(g) 
V I 

= - (M(4),r(1)) (~ar(l)t/lv)' (4.6) 

To pass from (4.1) to the present notation one must double 
the first term of (4.1) since (va) is counted twice in (4.1). As 
previously noted the only nonvanishing terms in the g sum 
are g = 1,2,5. Therefore (4.6) may be established by proving 
the following simpler identities: 
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1(4,2,g) +1(4,I,g) +5(4,I,g) = 0, g= 2,5, 

and 

-b [1(4,2,1) + 1(4,1,1) +5(4,1,1)] (~ar(l)tPv) 

(4.7) 

= - (M(4), r(l)) (~ar(l)tPv)' (4.8) 

To prove (4.7) and (4.8) note first 

M(klm)F(g)M(m) -M(m)r(g)M(klm) 

= (M (kim) M (m),r (g)) ( - t8+ ..... 
Since, k is even and km = 0, 

(4.9) 

1(k,m,g) = E(m) (- )mgW(g,m) (M(k),r(g)) = 0, 
(4.10) 

if kg is also even. By (3.12) one finds 

W(g,l) =X, W(g,2) =! (X2 -7), 

where 

x = 7 - 2g, g = g - gk. 

One also computes for n = 1 

5(k,n,g) = 2( - )B(k - 2gk) (M (k),r (g)). 

Then 

-b [1(4,2,g) + 1(4,I,g) + 5(4,I,g)] 

= F(g,x) (M(4),r(g)), 

where 

F(g,x) = -b [ ~ + 22( - )B - 4g( - )B 

- ((x2/2) + (- )Bx)) . 

(4.11) 

(4.11a) 

(4.12) 

(4.13) 

(4.14) 

We find the values of F(g,x) given in Table I. From these 
values one sees that (4.7) and (4.8) are correct and therefore 
that the identity of Cremer, Julia, and Scherk also holds. 

v. PERMUTATION SYMMETRIES OF FERMI 
COUPLINGS7 

Let 

Let 

Eg(abcd) = ~}aC-Ir(g)b) (cC-Ir(g)d), 

g=O, ... ,D. 

PEg (abcd ) = Eg (P(abcd)), 

where P(abcd) is a permutation of abcd. 
Then 

PEg = LEg' P(g',g). 
g' 

Let E be a vector in the space spanned by the Eg 

TABLE I. Values of F(g,xl. 

g gk g x F(g,xl 

1 1 0 7 -1 
2 1 1 5 0 

1 4 -1 0 
5 3 2 3 0 
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(5.1) 

(5.2) 

(5.3) 

(5.4) 

The same vector in the new basis PEg will have new compo­
nents (h') 

(5.5) 

There are 4! permutations in general, but four of these 
correspond to the unit matrix. Thus there are only 31 differ­
ent matrices and these provide a representation of 11'3' the 
permutation group on three objects; that is, 11'3 and its three 
cosets in 11'4 have the same representation. 

Denote the elements of 11'3 as follows: I,A,B,C,AB,BA. 
These fall into three classes: the identity I; the transpositions 
A, B, C; and the two elements of period 3, AB and BA. Hence 
the following matrices commute with every member of 11'3: 

RI =A + B + C, (5.6a) 

R2 = AB + BA. (5.6b) 

One also has C = ABA. Then all matrices may be gener-
ated from the noncommuting matrices A and B. Let us take 
A = (ab) and B = (bd ). 

In the Hermitian representation that we are using A is 
diagonal and7 

A (g,g') = ( - Y'E(g + p)c5(g,g'), 

andBis 

B (g, g') = 2 - nE(g + g') 

x [ g! g'!(2n - g)!(2n - g)!] 1/2 L (g,g'), 

where 
2n 

L (g,g') = L [(2n + m - g - g')I(g - m)1 
o 

x (g' - m)lm!] -I( - t. 

(5.7) 

(5.8) 

(5.8a) 

In this representation the transposition matrices are real and 
symmetric. 

There are three irreducible representations of 11'3: Two 
ofthese, r + and r _, are one dimensional, and the third is 
two dimensional. Respectively, r + and r _ are completely 
symmetric and antisymmetric. The projection operators as­
sociated with the irreducible representations are, in general, 

(5.9) 

where X j (P ) is the trace of P in the irreducible representation 
rIO nj is the dimensionality of r j , and the summation is over 
the N members of the permutation group. Then 

e+ =1(1 +RI +R2)' 

L = 1 (1- RI - R2 ), (5.10) 

e2 = ! (2 - R 2 ). 

We are particularly interested in the symmetric and anti­
symmetric representations. 

The number of times C1 an irreducible r j is contained in 
any given representation is 

Cj = ~ LX{"(P)X(P), (5.11) 
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where X(p) corresponds to the given representation. P is 
summed over the group. 

VI. CHARACTERS 

Since A is diagonal we have simply 
2n 

X(A)= L (-Y'E(g+p)=E(-p)(-tP. (6.1) 
g=O 

We are working with Euclidean signature so that 
p = n - 1 mod 4 or p = n mod 4. In either case 

X(A ) = E(n). (6.2) 

B is not diagonal but must have the same trace as A since it 
belongs to the same class. By (5.8) 

1 2n g 
X(B)=-;; L (-)g L (_)mc~c;~-"f (6.3) 

2 g=O m=O 

= ~ f (-)g i dz. z-g-I(1 + z)2n -g(1 - zIg, 
2 g=O ! 2m 

(6.4) 

where c is a small circle around the origin. This character 
may be computed by interchanging the order of summation 
and integration. One finds 

x(B)=~idz.(I+z)2n f (-r(l-z)g (6.5) 
2 ! 2m z g=O r 1 +z 

= E(n), (6.6) 

as required. The remaining character is 

X(AB) = X(BA) = LA (g,g')B(g',g) 
g,g' 

2n 

i dz (l+z)2n+1 n (_)..1.(I_Z)2A.} 
- j 211"i l-z ..1.~1 --;u- 1 +z 

( - )q+ I i dz (_)n (1 _ z)2n + I 

= r j 211"i ~n+1 ~(1 +z)2+(I_z)2 

X [1 - z - (1 + z)z). (6.11) 

The denominator of the integrand may be factored 

~(1 +Z)2 + (l-zf = [~+ (1-1jZ+ i] [~+ (1 +i)z- i]. 
(6.12) 

The contour about the origin may be deformed to enclose 
these four roots. Then for p odd 

X(AB) = J6 sin(2n + 1)-- (- t 
(_)q+ I { 711" 

3 12 

X cos (2n + 1) - . 711" } 
12 

(6.13) 

For p even 

X(AB) = - J6 cos(2n + 1)-- (_)n 
( )q+ I { 711" 

3 12 

X sin (2n + 1) 711"} • 
12 

(6.14) 

For either even or odd p 

X(AB) = - E(n)+J6 {COS(2n + 1) ~; _ (_)n 

Xsin(2n + 1) 711"} • (6.15) 
12 

This formula leads to the following results: 

X(AB) = 1, n = 3m, 

=0, n = 3m + 1, 

= L (- Y'E(g + p) B (g,g). (6.7) = -1, n=3m+2. 

(6. 16a) 

(6. 16b) 

(6. 16c) 
g=O 

Let us separate the even and odd values of p. 

(a)Let p = 2q + 1. Then 

E(g + p) = ( - )qE( - g). 

(b) Let p = 2q. Then 

E(g + p) = ( - )qE(g). 

Then for p odd 
2n 

X(AB) = - (-)q L E( -g)B(g,g) 
g=O 

= (- )q+ I L~ (- r/2B(g,g) 

+ L ( - )1/21g + I)B (g,g)} 
odd 

=( - )q+1 {..1.to (- )..1.B(U,U) 

+ ..1.tl (- )..1.B(U - I,U - I)} 

(6.8) 

(6.9) 

(6.10) 

= ( - )q + I { i.!!:.. (1 + zfn n (_)..1. (1 _ Z)2A. 
2n j211"i z ..1.~o? l+z 
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VII. SYMMETRIC AND ANTISYMMETRIC 
REPRESENTATIONS 

According to (5.11) the numbers of symmetric (c+) and 
antisymmetric (c _) representations are 

c ± =! [xlI) ± 3X(A ) + 2X(AB)] 

=! [2n + 1 ± 3E(n) + 2X(AB I]. 
ASE(x + 2m) = (- )mE(X) 

(a) n=3m, c± =m+![I±E(-m)], 

(b) n = 3m + 1, c ± = m +! [1 ± E(m)], 

(c) n=3m+2, c± =m+![I=FE(-m)]. 

(7.1) 

(7.2a) 

(7.2b) 

(7.2c) 

The results up to d = 12 are summarized in Table II. 

TABLE II. Numbers of symmetric (antisymmetric) forms. 

d n m c+ c_ 

2 1 O(b) 1 0 
4 2 O(c) 0 1 
6 3 I(a) 1 2 
8 4 I(b) 2 1 

10 5 1 (c) 2 1 
12 6 2(a) 2 3 
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TABLE III. Symmetric and antisymmetric forms in (6,7) and (10,11) dimensions. 

g 0 2 3 4 

symmetric 0 0 ~.J5 !.J5 

anti-
0 0 0 0 symmetric 

-1 0 0 0 WIS 

symmetric 0 0 1m 0 0 

0 -=rJJf62 0 0 

anti- l!~ 4 
symmetric 

0 0 

w x x x 

The cases of special interest are the 10- and II-dimen­
sional Kaluza-Klein theories that lead by dimensional re­
duction to maximally extended Yang-Mills and supergra­
vity theories in four dimensions. In addition the Euclidean 
d = 7 case is also of interest as the internal Kaluza-Klein 
space corresponding to d = 11. . 

The specific symmetric and antisymmetric forms may 
be obtained with the aid of the corresponding projection op­
erators or alternatively as common eigenvectors of A and B. 
The eigenvectors of B may be obtained by noting 

A = C-1BC. (7.3) 

Since A is diagonal the eigenvectors of B are the columns of 
C. But C may be calculated directly as the product ABA . One 
obtains the results in Table III. 

The forms described in Table III are all of the type 

F= LAg L (ar(g)b) (cr(g) d). (7.4) 
g II 

The entries in Table III are the values of Ag • 

For Majorana spinors, which can only exist in 
2,3,4,8,9 mod 8 dimensions, we can use Dirac conjugation in 
our expressions, since for these ,V C -I may be replaced by 
rfJ+-f· 

The last line describes the terms that vanish if (abed) are 
all Weyl spinors having the same Weyl parity. This condi­
tion drastically simplifies all forms in Table III except the 
first antisymmetric form in six dimensions, which remains 
unchanged. 
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5 6 7 8 9 10 

0 0 

d =(6,7) 

-1 0 
c+ = 1 
c_=2 

l.J6 0 

0 

0 

1~ 0 0 0 1.J63 
1v's4 0 0 1JiO d= (10,11) 

c+ =2 

0 l!~ ~.J5 0 0 
c_ = 1 

x x x 

In obtaining these forms commuting spinors have been 
assumed. If anticommuting spinors are used instead, then 
the symmetric and antisymmetric forms are interchanged. If 
some of the fermionic factors are vector spinors rather than 
simple spinors, then the corresponding forms will of course 
also be antisymmetric in the vector indices. 

For supergravity applications the fermionic factors 
could be anticommuting vector spinors in 11 dimensions or 
commuting Killing spinors in seven dimensions, but we have 
not studied possible supersymmetric extensions of these 
forms. 

In an octonionic realization of Englert's compaction of 
II-dimensional supergravity, Giirsey and Tze8 display both 
the torsion and the field strength as completely antisymme­
tric forms on the septads. As far as we have been able to 
discover, however, there is no simple relation between these 
forms and the corresponding antisymmetric spinor forms of 
this paper. 
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In this paper we present a vector model for the electroweak interactions. The Cartan map gives an 
isomorphism between Dirac bispinors and an isotropic class of Yang-Mills vector fields. The 
isotropic Yang-Mills vector fields Fk = Ek + IRk with k = 1,2,3, satisfy the condition that the 
matrix of scalar invariants (Fj.F k) equals a scalar multiple of the identity matrix. We show that all 
the bispinor observables commute with the Cartan isomorphism, including all gauge 
transformations, as well as Lorentz transformations. We derive the Yang-Mills equivalent Dirac 
equation. As a consequence of the vector model, we obtain a new Lagrangian for electroweak 
interactions, which is an alternative to the Weinberg-Salam Lagrangian. Moreover, we show that 
the vector model predicts that the Weinberg angle Ow satisfies sin2 Ow = 0.25, which is close to the 
measured value of sin2 Ow = 0.23. The vector model accommodates all the lepton and quark 
flavors. Furthermore, it predicts the conservation of baryon number and lepton number, as well as 
electric charge in electroweak interactions. The vector model also gives a new interpretation to 
antiparticles. In the vector model, an antiparticle is characterized by its opposite baryon number, 
lepton number, and electric charge; yet both particles and antiparticles propagate forward in time 
with positive energies. 

I. PRESENTATION OF THE MODEL Fj.Fk =A8jk 

withj,k = 1,2,3 and A a complex scalar field. In a recent paper, 1 we investigated some problems of 
assigning spinors to physical states; namely, that spinors are 
tied to a specific Cartesian coordinate frame, that a spinor 
representation is not coordinate-free and consequently can 
only be defined on a very restricted class of manifolds, and 
that the relativistic transformations do not act properly on 
spinors. 

The difficulties in the case of spinors were resolved by 
the Cartan map, which is a locally one to one coordinate map 
from spinors (that is e 21 onto the manifold2 of isotropic vec­
tors in e 3. V nlike spinors, isotropic vector fields are coordi­
nate-free, and hence have curvilinear components in arbi­
trary coordinate systems. For example, whereas isotropic 
vector fields can be defined on the manifold S4, spinors can­
not. Indeed, S 4 is not parallelizable, and therefore the Carte­
sian frames necessary for "spinor structure" cannot be de­
fined on it.3 Also, unlike spinors, isotropic vectors are 
transformed unambiguously under Lorentz transforma­
tions. 

We show in Sec. III that the extended Cartan map is 
locally one to one from C 4 onto the manifold of isotropic 
Yang-Mills vector fields. We also show that the extended 
Cartan map commutes with all bispinor observables, and 
gauge and Lorentz transformations. Henceforth we will use 
the term Cartan map for either the extended or usual map as 
appropriate. 

We further showed that the Cartan map commutes 
with all spinor observables, and leads to a simple Dirac equa­
tion which preserves the isotropic vector constraint. Other 
authors have also discussed relations between antisymme­
tric tensors and spinors, and in particular, relations between 
constrained tensor systems and spinors, similar to the Cartan 
map isomorphism.4 

In this paper, we extend the Cartan map to bispinors. A 
bispinor i;J = (5",1/*) consists of a spinor 5" and a conjugated5 

spinor 1/*. The extended Cartan map takes each bispinor i;J to 
a triplet of Yang-Mills fields (F1,F2,F3), as depicted in Fig. 1. 
These Yang-Mills fields (Fk = Ek + IRk for k = 1,2,3) sa­
tisfy the isotropic condition that the matrix of scalar invar­
iants (Fj.Fk) be a scalar multiple of the identity matrix. That 
is, by definition, 

In addition to th~ Cartan isomorphism between bispin­
ors and the isotropic Yang-Mills vector triplets (F1,F2,F3), 

we also discuss the Weinberg-Salam map from bispinors to 
trispinors depicted in Fig. 2. A trispinor consists of a spinor 
pair (v, 5") E C 4 and a conjugated spinor 1/* E C 2

• Trispinors 
were used by Weinberg and Salam to model the electroweak 
SV(2) X V( 1) gauge interactions.6 We show that the isotropic 
Yang-Mills vector fields provide a different though similar 
model for the electroweak interactions. Both the trispinor 
and vector models obtain their properties from the Dirac 
bispinors, via the maps shown in Fig. 2. 

[ :.] 
BISPINOR 

PAIR ~ < c· 

CARTAN MAP 

k • 1. 2. 3 

FIG. 1. The Cartan map. 

li] 
YANG-MILLS 

+ 
TRIPLET Fk £ C' 
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DIRAC 

BISPINDR 

[ :.] WE I NBERG - SALAM MAP 

YANG - MILLS 

TRIPLET 

WEI NBERG - SALAM 

TRISPINOR 

U 

FIG. 2. The Weinberg-Salam map. 

The study of isotropic Yang-Mills vector fields reveals 
the bispinors have SL(2,C) gauge symmetry. The gauge 
group SL(2,C) acts on Yang-Mills triplets (F I ,F2,F3) via the 
complex orthogonal matrices. An important subgroup of 
SL(2,C) is SU(2), which has the usual three generators. These 
three generators give rise to "formal rotations" ofF I' F 2' and 
F . By the Cartan map, the electromagnetic gauge transfor-

3 . bo h "th ." mations become the formal rotatlOns a ut t e ree-axIs, 
that is, they leave F3 unchanged and formally rotate FI and 
F2 into each other. We will therefore denote the electromag­
netic group of gauge symmetries as U( 1 h, which is a sub­
group ofSL(2,C). 

Previously, when considering bispinors,7 physicists 
were only concerned with the U( 1 h electromagnetic gauge 
symmetry. Here, we consider the larger group of gauge sym­
metries, SL(2,C). The classification ofbispinor invariants un­
der SL(2,C) is different than their usual classification under 
U(lb· 

As shown in Sec. II, there is associated with each iso­
tropic triplet of Yang-Mills vector fields (F IOF 2,F 3)' a unique 
complex scalar p, and also a unique quadruplet of orthogo­
nal real Lorentz currents UO,jl,j2,j3)' Both the singlet (p) 
and the quadruplet of currents Ua) are irreducible represen­
tations of the SL(2,C) gauge group, and by the Cartan map, 
these are all bispinor 5L(2, C) invariants. 

The usual bispinor invariants under U( 1 h are those that 
are unchanged by electromagnetic gauge transformations 
(i.e., unchanged by formal rotations about the three-axis). 
These invariants in vector theory notation arep, F 3,jO' andj3' 
In particular we will show in Sec. III thatjo is the particle's 
probability current andj3 is the chiral current. Table I lists 
those invariants by their usual notation, and gives their equi­
valent notation in the vector theory. 

For the gauge group SL(2,C), the three-axis does not 
have a privileged role, and F I> F2 andjl,j2 must be included 
in the complete set ofbispinor invariants shown in Table II. 
We propose that currents derived from UO,jlOj2,j3) playa 
role in the vector model that is similar to the role played by 
the electroweak currents in the Weinberg-Salam model. 

For the wave equation to be SL(2,C) gauge invariant, a 
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TABLE I. Usual bispinor invariants. 

Usual Vector model 
notation notation 

Scalar s Rep 
Pseudoscalar p Imp 
Probability current j jo 
Chiral current j3 j3 
Spin tensor SaP F3 

quadruplet of real Higgs scalars ( ¢o, ¢I' ¢2' ¢3) is also re­
quired. That is, ¢a are real scalars for Lorentz transforma­
tions, but transform as a quadruplet under SL(2,C) gauge 
transformations. In Sec. IV, we extend the usual Lagrangian 
for bispinors to incorporate these Higgs fields. From this 
Lagrangian [discussed more fully below-see formula (1.8)] 
we obtain a complex triple of conserved Noether currents, 
denoted (JI .J2.J3). The Noether currents Jk may be ex­
pressed in terms of the real orthogonal currents j a and the 
real Higgs scalars ¢a by the formulas8 

ReJk = ¢Ojk - ¢kjO' 

(1.1) 

with k, m, n = 1,2,3. (See Table III.) 
There is, thus, a real conserved Noether current for 

each of the six generators of SL(2,C). In particular, for the 
electromagnetic generator, we obtain (elm) Re J3 as the elec­
tric current (where e is the magnitude of the electric charge 
and m is the mass). Formula (1) shows that for the conven­
tional choice of Higgs scalars ¢a = (O,O,O,m), the electric 
current is just - ejo, wherejo is the prObability current (see 
Table I). 

Isotropic Yang-Mills fields (F I ,F2,F3) transform under 
a bigger gauge symmetry group SL(2,C) X U( 1 )0' which con­
tains SL(2,C). The subgroup U(I)o consists ofthe "neutral" 
gauge symmetries.9 By the Cartan map, the chiral gauge 
transformations on bispinors become the neutral transfor­
mations acting on F k' These neutral transformations map 
Fk to Fk eix, where X is a phase. 

The Lagrangian L, given in formula (1.8), is invariant 
under SL(2,C). The kinetic part of L is also invariant under 
SL(2,C) X U( 1 )0' however, the mass part of L is not invariant 
under U(1 )0' 

From the kinetic part of L, one can define a (noncon­
served) Noether current 10 for U(1)o' This is the neutral cur-

TABLE II. Complete set ofbispinor invariants under SL(2,C). 

p = singlet, complex scalar 

[F::'] = triplet, Yang-Mills fields 

r~}::o:,] 8 = quadruplet, real orthogonal Lorentz currents 
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TABLE III. Additional observables ofthe vector model. 

[;:1] : = quadruplet, real Higgs scalars 

[J~:ll = triplet, conserved Noether currents 

K = singlet, neutral current 

rent K, expressed in terms of the orthogonal currentsja and 
the real Higgs scalars t/Ja by the formula 

K = t/J aja (1.2) 

(see Table III). 
In particular, let us compute (eolm)K with the conven­

tional Higgs scalars t/Ja = (O,O,O,m), where eo is the magni­
tude of the neutral charge. From (1.2) we see that (eolm)Kis 
equal to - eoj3' wherej3 is the chiral current. l1 

In Sec. IV we show that the gauge-invariant vector 
equivalent of the Dirac equation is given by 

iDasaFk + (DFm)·FJ P = Jk, (1.3) 

with subscripts (kmn) taken in cyclic order, and where 

Da = Yang-Mills covariant derivatives, 

sa = Proca spin-one matrices, 

Fm·Fn =A6mn , 

p = (FIXF2·F3)/A. 

Equation (1.3) is equivalent to the usual Dirac equation 
for bispinors, with the Higgs scalars t/Ja = (O,O,O,m). 

The vector model gives a new interpretation to the mass 
terms of the Dirac equation. We see from (1.3) that the mass 
terms are the conserved Noether currents J k , which appear 
as sources on the right-hand side of the wave equation. 

If we state that J I , J2 , J3, and K are the electroweak 
currents, and that (t/Jo, t/JI' t/J2, t/J3) are the Higgs scalars, then 
we have a vector model for the electroweak interactions sim­
ilar to the Weinberg-Salam model. We will always regard 
the Yang-Mills triple F k and the Higgs quadruplet t/Ja as the 
fundamental fields: Jk and K are determined by them. 

The vector model reveals that the Dirac equation has 
broken SL(2,C) symmetry in a way not previously consid­
ered. Usually, the Dirac equation is written for bispinors, 
denoted '" = ( $,7]*), which are comprised of a spinor $ and a 
conjugated spinor 7]*. Associated with '" is the spinor pair. 
'" = ($,7]) and its conjugate pair "'* = (7]*, - $ *), where 
7] = - ( 7]*)*. We will show in Sec. IV that Dirac's equation 
has broken SL(2,C) gauge symmetry by writing it as an equa­
tion for spinor pairs, instead ofbispinors, using the bijective 
map ip-", from bispinors to spinor pairs. The following 
Dirac equation from Sec. IV explicitly includes the Higgs 
scalars and is equivalent to Eq. (1.3) by the Cartan isomor­
phism. It is invariant under both Lorentz and SL(2,C) gauge 
transformations: 

(1.4) 
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where Da are the Yang-Mills covariant derivatives, U a are 
Pauli matrices, the ~a are the gauge matrices (see Sec. III), 
and t/Ja is a real scalar Higgs field, a SL(2,C) gauge quadru­
plet. Solutions of Eq. (1.4) also satisfy the Klein-Gordon 
equation, 12 which in the case of free particles is given by 

DaDa'" = - (t/Ja t/Ja)"" 

so that the mass is given by 

(1.5) 

(1.6) 

As previously stated for the vector equation (1.3), Eq. (1.4) is 
equivalent to the usual Dirac equation when t/Ja is chosen by 
convention to be 

t/Ja = (O,O,O,m). (1.7) 

Equation (1.4) is the Euler-Lagrange equation for the fol­
lowing Lagrangian: 

L = ReI (Da~"')' (t/J (3Tp "') + M2""~*J/M (1.8) 

(see Lemma 4). 
This Lagrangian, which is also an invariant scalar un­

der both Lorentz transformations and SL(2,C) gauge trans­
formations, is different than the Lagrangian used in the 
Weinberg-Salam 13 model, even though the Higgs field has 
the same number (four) of real components. Thus, the new 
Lagrangian will give us new predictions. 

Specifically, the vector model predicts that the Wein­
berg angle Ow, used in the Weinberg-Salam model for 
electroweak interactions, satisfies sin2 Ow = 0.25, which is 
close to the measured valuel4 of sin? Ow = 0.23, and that the 
neutral charge is 1/.J3 times the electric charge. If in the 
vector model, we represent the F k by their spinor coordi­
nates ( $,7]), then the generators to and t3 of the neutral and 
electromagnetic gauge transformations may be explicitly 
identified with the following matrices: 

to =1 = [~ ~], 

t3 = ~ = [~ ~ 1] . (1.9) 

In the Weinberg-Salam model the electroweak interac­
tion is represented by trispinors IS 

Let the usual generators to and t3 ofSU(2)XU(1) for the 
Weinberg-Salam model be denoted by t ~ and t 3 . Acting on 
trispinors, the generators t ~ and t 3 are represented by the 
matrices 16 

[-I 0 ~ ], t~ = ~ -! 
0 -1 

t; ~ [~ 
0 

~] . -! 
0 

Since these matrices are diagonal, we may restrict them to 
just the bispinor ($,7]*). To translate these generators into 
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the vector model for comparison with (1.9), consider their 
action on the pair (S,l1). Acting on the spinor pair (S,l1), we 
have 

t b = [ ~ ~ ~], 

t ~ = [ ~ ~ ~], 
so that we get from (1.9), 

t3 = - t 3 - t b, to = - 3t 3 + t b . (1.10) 

The two models (vector and Weinberg-Salam) give two 
versions of the Yang-Mills covariant derivativesl7

: 

D a = ihVa + eV'kt k + eoVgt O, 

D,a=ihva - gW'kt,k- gowgt'O, 

for a = 0,1,2,3 and k = 1,2,3, where D a is the covariant der­
ivative for the vector model, D 'a is the covariant derivative 
for the Weinberg-Salam model, e and eo are the absolute 
values of electric and neutral charges, respectively, g and go 
are the coupling coefficients, the Vp are the Yang-Mills po­
tentials in the vector model (directly observable), and the 
Wp are the Yang-Mills potentials in the Weinberg-Salam 
model (not directly observable). Since they represent the 
same interaction, D a and D 'a must be equal, thus 

-eV~t3-eoVgto= gW~t3 + goWgtb. (1.11) 

Substituting (1.10) into (1.11) and equating coefficients of t 3 
and t b, we have 

gW~ = eV~ + 3eoVg, gowg = eV~ - eoVg . (1.12) 

Furthermore, 18 

W~ = vg cos Ow + V~ sin Ow, 

wg = - vg sin Ow + V~ cos Ow , (1.13) 

where Ow is the Weinberg angle. 
Equation (1.13) shows an essential difference between 

the vector model and the Weinberg-Salam model. In the 
vector model, V~ and vg are the directly observed electric 
and neutral potentials. Whereas, in the Weinberg-Salam 
model W~ and wg are not directly observable. They are 
related to the observable potentials V~ and vg by the formal 
Weinberg rotation (1.13). Solving (1.12) and (1.13) we obtain 
a prediction for the Weinberg angle Ow as follows: From 
(1.12) and (1.13), 

g cos Ow = 3eo, g sin Ow = e , 

go sin Ow = eo, go cos Ow = e . 

Therefore, 

tan Ow =! cot Ow = gofg, 

and sin2 Ow = 1. Moreover, 

eo = e tan Ow = (lIv1J)e. 

Thussin2 Ow = 0.25, and the weak (neutral) charge eo is lIvIJ 
times the electric charge e. 

By the following argument the vector model also pre­
dicts that the electric charge of the neutrino is zero, and that 
its neutral charge is 2IvIJ times the electric charge e. In the 
vector model we regard the neutrino as having a very small 
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mass m', and the Higgs scalars may be given by r/Ja 
= (O,m',O,O). Then from formula (1.1) it follows that the 

electric current vanishes: (elm') ReJ3 = O. Also from (1.2), 
the neutral current (eofm')K = - eojl' We substitute r/Ja 
= (O,m',O,O) into Eq. (1.4), and observe that in the massless 

limit (letting m' approach zero) the spinor pair associated 
with the neutrino has the form '" = ( s,s), and hence [see 
formulas (3.3)] 

It = - i€~s = -.ro. 
Regardingj = t~s as the neutrino current, we see that 

K = - eojl = 2eoj = (2IvIJ)ej, 

in agreement with the Weinberg-Salam model. Thus, the 
electric charge of the neutrino is zero and its neutral charge 

is given by (2/v1J) e as claimed. 
In Table IV we list the predictions of the vector model 

including predictions for the masses ofthe gauge fields, WI' 
w2 , and Z (Z = Vol. Except for these masses, which are 
smaller than predicted by the Weinberg-Salam model, the 
rest of Table IV agrees with the Weinberg-Salam model pre­
dictions, provided that the Weinberg angle satisfies sin2 Ow 
= 1 as proved above. 19 

When the Higgs scalars r/J a assume conventional values, 
there is further correspondence between the vector model 
and the Weinberg-Salam model as shown in Table V. The 
electric and neutral currents are identical for both models, 
provided that the Weinberg angle Ow satisfies sin2 Ow = 1. 
For example, the neutral current of an electron in the Wein­
berg-Salam model is given by20 

jneutral = - (elvIJ)[j3 + (1 - 4 sin2 Ow)jo] . 

Clearly, this agrees with the vector model prediction 

- (elvIJ)j3 derived above, when sin2 Ow = 1. 
In Table VI we extend the assignment of Higgs scalars 

¢ a = r/J aiM to include all quark and lepton flavors. An im­
portant property of this choice of Higgs scalars is that they 
are additive in all electroweak interactions (such as beta de­
cay). This additivity is necessary if we assume that the seven 
charged Noether currents (eofM)K, (elM) ReJk, and 
(elM) 1m Jk are additive in interactions. To see this, consid­
er the particles at rest when theirNs are equal. We may then 
assume that the probability currentsjo satisfy jo = 0 andJ~ 
= 1. From Table VI we see that ¢o = 0; whereas formula 

(1.1) gives (elM) Ren = - e¢k' Hence the additivity of 
(eIM)Jk implies that the ¢a must be additive. We propose 

TABLE IV. Predictions of the vector model. 

Weinberg angle: sin2 Bw = i 
Charges" 

Electron 
Neutrino 

Massesb 

mw = 40 GeV 1e2 (80 GeV Ie) 
mz = 23 GeV Ie (90 GeV Ie) 

Electric 
-I 

o 

Neutral 
- 1/.,[3 

2/.,[3 

"These charges agree with the Weinberg-Salam model predictions pro­
vided that sin2 Bw = i. 

b Masses predicted by the Weinberg-Salarn model are shown in parenthesis. 
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TABLE V. Electric and neutral currents with conventional Higgs scalars. 
a= 1-4sin2 8w • 

Vector Weinberg-Salam 
model model 

Electric current -ejo -ejo 
(electron) 

Electric current 0 0 
(neutrino) 

Neutral current - (e/.j3U3 - (e/.j3)(j3 + ajo) 
(electron) 

Neutral current (2e/.j3)j (2e/.j3)j 
(neutrino) 

that electroweak interactions (which change particle identi­
ties) will conserve the sum of the Noether currents and, 
hence, of the Higgs scalars ~a' giving us four additive "quan­
tum" numbers which are conserved. 

For example, consider the beta decay, 

d-+u+e+ve • 

From Table VI and formula (1.1), the electric current for the 
particles u, d, e, ve is given by - (e~3)jo, so their electric 
charges are equal to ~e, - !e, - e, 0, respectively (i.e., the 
Higgs scalars give the correct electric charges for the parti­
cles). The additivity of electric charge in all electroweak in­
teractions, follows from the additivity of ~3 (shown in Table 
VI). 

To obtain the correct charge, it must be true that ~a(e) 
= - ~a(e). We propose that this is true for all particles and 

antiparticles, i.e, that the Higgs scalars for the antiparticles 
(e.g., antineutrino, etc.) equal the negatives of the particle 
Higgs scalars. Then, in the particular example of beta decay, 
the additivity of ~a means that for each a = 0,1,2,3, 

~a(d) = ~a(u) + ~a(e) + ~a(ve) 
(see Table VI). 

The additivity ofthe Higgs scalars ~1' ~2' and ~3 leads 
directly to three familiar conservation laws. Using Table VI, 
we derive the following relations: 

B = -! ~2 = baryon number, 

L = ~1 - ! ~2 + ~3 = lepton number, 

C = - ~3 = electric charge. 

Since B, L, and C are linear functions of ~a they must be 
additive also. Thus, the vector model predicts the conserva­
tion of baryon number and lepton number, as well as the 
electric charge, under the proposition that the Noether cur­
rents are additive in electroweak interactions. 

TABLE VI. Higgs scalars for quarks and leptons. ~a = tPa/M. 

Quark flavors" 

",c,t 
d,s,b 

Lepton ftavors" 
e,p"T 

" Antiparticles: replace ~a with - ~a' 

~a 
(O,!, -~, -~) 
(0, -~, -~,!) 

~a 
(0,0,0,1) 
(0,1,0,0) 
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The proof of this proposition will require a more com­
plete Lagrangian than given in (1.8) which will include the 
dynamics of the Higgs fields. Such a Lagrangian must be 
invariant under gauge transformations for the sum of the 
Noether currents to be conserved. Although it is obvious 
that such a Lagrangian can be formulated, the dynamics of 
the Higgs field needs further investigation. This subject will 
be addressed in a forthcoming paper. 

The vector model suggests that the Higgs field extends 
into the neighborhood of each particle. When two particles 
approach each other, their Higgs fields must superimpose, 
and then be redistributed. The redistribution of the Higgs 
fields causes the identities of the particles to change. How­
ever, the redistribution of the Higgs fields is subject to the 
additivity of the Higgs scalars ~a' and hence to the additivity 
of the Noether currents. 

Note, however, that there is an essential difference 
between the vector model and the Weinberg-Salam model. 
In the vector model, an electron becomes a neutrino when 
the Higgs field ifJa changes. However, in the Weinberg-Sa­
lam model, this is accomplished introducing an additional 
neutrino "state." The vector model is, therefore, more econ­
omical because it does not require a proliferation of "states" 
to describe new particles.21 Instead, the Higgs field ifJa 
switches to different mass shells. Methods for switching 
"mass shells" are currently being studied, and will be ad­
dressed in a following paper. 

The vector model also gives a new interpretation to the 
antiparticles. The baryon numbers, lepton numbers, and 
electric charges of a particle and its antiparticle sum to zero, 
which as we have seen, implies that their Higgs fields sum to 
zero. For example, ifJa (e) = - ifJa (e). Substituting - ifJa for 
ifJa in the Dirac equation (1.4), we see that antiparticles propa­
gate/orward in time with positive energies, whereas previous­
ly they have been regarded as propagating backward in time. 
(In the Weinberg-Salam model, ihitial and final states are 
interchanged for antiparticles. However, this is not required 
for the vector model.) 

In summary, the vector model for electroweak interac­
tions predicts the Weinberg angle, and also the conservation 
of baryon number, lepton number, and electric charge. How­
ever, at present there are some defects. The assignment of 
Higgs scalars to quark and lepton flavors do not now reflect 
differences in their families. For example, the muon conser­
vation is not yet predicted. Also, the theory so far does not 
require the parity violation of weak interactions. Finally, in 
the vector model, the Higgs fields are dynamic. Therefore, 
we will be able to predict transition probabilities for the weak 
interactions as soon as a Higgs field Lagrangian is added to 
the Lagrangians for the spin-half particles (1.8) and for the 
gauge fields. The formulation of this Lagrangian is currently 
being studied. 

In the remainder of this paper, we lay the foundation for 
the mathematical results used in the presentation of the vec­
tor model. In Sec. II we introduce isotropic Yang-Mills vec­
tor fields and discuss their properties; we present algebraic 
identities of the Cartan isomorphism in Sec. III; and we de­
rive the isotropic vector wave equation which is equivalent 
to Dirac's equation for bispinors in Sec. IV. 
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110 ISOTROPIC YANG-MILLS FIELDS 

Let (E,H) be the real components of a complex three­
dimensional vector field F on R 4 defined by 

F=E+IH. 

It is well known that if E and H are regarded as the compo­
nents of an electromagnetic field, then Lorentz transforma­
tions acting on F are represented by complex orthogonal 
3X3 matrices.22 Complex orthogonal matrices leave invar­
iant the Euclidean quadratic form: 

F.F=F! +F~ +F~ =E2_H2 + 2iE·H. (2.1) 

For example, consider the Lorentz transformation that 
combines a boost 7J and a rotation 8 about the x axis, given by 
the real 4 X 4 matrix 

[~: 
sinh 7J 

cosh7J 
o 
o 

o 
o 

cosO 
sin 8 

(2.2) 

By including boosts and rotations about all three axes, matri­
ces of the form (2.2) generate the Lorentz group. Acting on 
complex vectors F = E + IHinC 3, the matrix (2.2) becomes 
the 3 X 3 complex orthogonal matrix with determinant I, 

[~ 
o 

cos(8 + i7J) 
sin(8 + i7J) 

- Sin(~ + i7J)] , 
cos(8 + i7J) 

(2.3) 

and hence E,H E R 3 transform as electromagnetic fields. 
From (2.1), E 2 - H 2 and E·H are Lorentz scalars. 

A complex vector F is called isotropic ifF·F vanishes. 
We see from (I) that for isotropic vectors F = E + IH, E and 
H are orthogonal and have equal lengths, in all reference 
frames. 

More generally, ifFI and F2 are any three-dimensional 
complex vectors, then the complex orthogonal matrices 
leave invariant the Euclidean inner product FeF2, Thus, 
F I·F2 is a scalar invariant under Lorentz transformations. 

For three such vector fields F I, F2, F3 there are seven 
Lorentz scalar invariants, namely, FjoF k forj, k = 1,2,3, and 
also F IXF2"F3 • The triplet (FI,F2,F3) will be called isotropic 
if it satisfies the Lorentz invariant equations 

Fj"F k = Ac5jk , (2.4) 

for complex scalar A. 
For isotropic complex vector triplets (F ltF2,F 3)' we may 

define another complex scalar p by the formula, 

p = (FIXF2oF3)1A . (2.5) 

It is easy from (4) and (5) to show that A = p2. Formula (4) 
then becomes 

Fj"F k = p2c5jk • (2.6) 
Theorem: If (FI,F2,F3) is an isotropic complex vector 

triplet, then there exists a unique real orthonormal Lorentz 
basis 

eta) = (e~) ,e(ed ' 
with a = 0,1,2,3 such that for k = 1,2,3 

Fk/ P = e?o)e(k) - efk)e(O) - ie(o) Xe(k) . (2.7) 
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Proof: Set fk = F k/ p, then from (5), 

~o fk = c5jk and fl X f2" f3 = I . (2.8) 

The complex vector triplets ( f l, f2, f3) satisfying (2.8), com­
prise a single orbit of the Lorentz group [i.e., the isomorphic 
group ofSO(3,C) matrices]. Similarly, the real orthonormal 
Lorentz bases eta) also comprise a single orbit of the Lorentz 
group. Since by a straightforward derivation from (2.2) and 
(2.3), the map (2.7) commutes with Lorentz transformations, 
it suffices to prove that it is one to one. 

By an SO(3,C) transformation, any triplet (fl, f2, f3) 
which satisfies (8) can be made to satisfy (fj)k = l)jk' From 
(2.7), since the fk are now real vectors, we see then that e(O) 
X e(k) = 0 for k = 1,2,3, which implies e(O) = O. Since the eta) 

are orthonormal, e(O) = (1,0). Then from (2.7) and (2.8), we 
obtain elk) = (0, fk). We conclude that the eta) are uniquely 
determined, so the map (2.7) is one to one. Q.E.D. 

SL(2,C) matrices23 also act as formal gauge transforma­
tions on the triplet (F I,F2,F3). These formal transformations 
do not involve the space-time coordinates; they just permute 
the vector fields F I' F2, and F3. For example, as discussed in 
Sec. I, the electromagnetic gauge transformations are ele­
ments of SL(2,C) that act as formal "rotations" about the 
three-axis; i.e., they "rotate" FI and F2 into each other, and 
leave F 3 unchanged. Also as discussed in Sec. I, the gauge 
group SL(2,C) may be extended to SL(2,C)xUo(I), where 
elements ofUo( I) map F k to F k eix for k = 1,2,3 (x denotes a 
phase). 

Triplets (FI,F2,F3) which transform under Lorentz 
transformations and formal SL(2,C) X Uo( I) gauge transfor­
mations, we will call Yang-Mills triplets. These triplets may 
be classified with regard to their seven Lorentz scalar invar­
iants. A Yang-Mills triplet is isotropic if as in (2.4) 

FjoF k = Ac5jk , 

which is also a gauge-invariant condition. 
We conclude from (2.5) and (2.7) that every isotropic 

Yang-Mills triplet (FI,F2,F3) uniquely determines a scalar p 
and an orthonormal basis from which we define four real 
orthogonal currentsja = I ple(a)' The SL(2,C) gauge trans­
formations leave p unchanged and irreducibly act on the 
quadruplet UO,jl,j2,j3) as formal "Lorentz" transforma­
tions. The Uo(l) gauge transformations change the phase of 
p, but leave the currentsja unchanged. Thus, the combined 
gauge group SL(2,C)X Uo(l) acts irreducibly on the triplet 
(FI,F2,F3), on the singlet (p), and also on the quadruplet 
Uo,jltj2,j3)' 

We prove in the next section, using the Cartan map, 
that F k, p, and j(a) comprise all possible bilinear invariants 
which can be associated with bispinors. Consequently, we 
show that the Cartan map gives an isomorphism between 
bispinors and isotropic Yang-Mills vector fields. 

1110 THE EXTENDED CARTAN MAP 

Let, = [!~] E C 2 be a spinor. The conjugate spinor as­
sociated with, is 

,. = [ t~] E C 2 , -'I 
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where the bar denotes complex conjugation. The map ~ -+ ~ * 
is a bijection, since ~ = - ~ ... 

The Cartan map24 is defined to be a bilinear map b from 
C 2 XC 2 into C 4 given by 

bat ~,1J) = - (UZ~). il*, 
fora = 0,1,2,3, and whereUZ = (I,a), a = (O"x,o'y,O"z) are the 
Pauli spin matrices acting on C 2, I is the identity matrix, and 
~ and 1J are spinors or conjugate spinors. The Cartan map 
allows us to construct all the "bilinear" (more precisely qua­
dratic) invariants of a spinor~. Since b O( ~, ~ ) = 0, the non­
vanishing invariants of ~ are given by 

F = zb( ~, ~), j = b ( ~, ~ *) , 

where b = (b l,b 2,b 3
) and b = (bO,b). 

It was shown24 that FeC3 satisfies the isotropic condi­
tion F·F = O. Moreover F = E + zH transforms under the 
Lorentz group action as an electromagnetic field (E,H). 
Also,j equals the probability current, 

j= tuz~, 

which is a Lorentz four-vector. The isotropic vector 
F = E + zH determinesj = (l, j) by the formulas 

l= lEI, j=(EXH)/IEI· 

We showed that the map ~-+F gives an isomorphism 
between spinors and isotropic vector fields. Now,:!Ie extend 
this map to Dirac bispinors, mapping bispinors 1/1 onto the 
isotropic Yang-Mills triplets (FI ,F2,F3) discussed in Sec. II. 

A bispinor ~ = ( ~,1J*)eC 4 consists of a spi.!t0r ~eC 2 and 
a conjugated spinor 1J*eC 2

• Associated with 1/1 is the spinor 
pair 1/1 = (~,1J) and its conjugate 1/1* = (1J*, - ~ *), where 
1J = - (1J*)*. The maps ip-1/I and 1/1-1/1* are bijections, 
since 1J = - 1J* * and 1/1 = 1/1* *. Because of these bijections, 
bispinors ~, spinor pairs 1/1, and conjugate spinor pairs 1/1* are 
all equivalent ways of expressing a Dirac bispinor. However, 
whereas SL(2,C) gauge transformations may be defined for 
spinor pairs ~,1J), and also for the conjugate spinor pairs 
(1J*, - ~ *), they are not defined as complex matrices acting 
on bispinors. We will show in Sec. IV that Dirac's equation 
has SL(2,C) gauge symmetry by writing it as an equation for 
spinor pairs, instead of bispinors (using the bijective map 
ip-1/I from bispinors to spinor pairs.) [Note that for the 
spinor pair 1/1, the electromagnetic gauge generator (via the 
map ip-1/I) becomes TJ. Hence, in the vector model, electro­
magnetic gauge transformations become the formal "rota­
tions" about the three-axis.] 

The extended Cartan map defined below commutes 
with both Lorentz and SL(2,C) gauge transformations. In 
order to view the gauge symmetry of the extended Cartan 
map, it is preferable to express it using spinor pairs, instead 
of using the equivalent bispinors. 

Definition: The extended Cartan map is defined to be a 
bilinear map from C 4 X C 4 into C 4 

@ C 4 given by 

(3.1) 

for a, /3 = 0,1,2,3, and where UZ = (I,a), 1"p = (I, - 1"), 

a = (O"x,O"y,O"z) are Pauli spin matrices acting on c4, 
1" = (1"I,r,TJ) are the gauge matrices acting on C 4

, and 1/I,x 
are either spinor pairs or conjugate spinor pairs. Note that 
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whereas the Pauli matrices a = (O"x,O"y,O"z) generate the 
space rotation group, the gauge matrices 1" = (1" 1,1" 2,1" 3) are 
the three generators for the gauge subgroup SU(2), which 
formally "rotate" the spinor pair. Moreover, a and 1" com­
mute. We will adhere to the following notation: 

(,a = (I, - a) = O"a, ;.a = (I, - 1") = 1"a , 

lra = (I,a) = UZ, ;a = (1,1") = ".a. 

A complete set of bilinear combinations of the components 
of the bispinor ~ can be obtained from B p( 1/1, 1/1) and B p 
( 1/1, 1/1*). Since, 

B~( 1/1, 1/1) =B~( 1/1, 1/1) =0, 

for k = 1,2,3, the only bilinear (quadratic) invariants of ~ 
which do not vanish are (see Table II in Sec. I) 

P = iBg( 1/1,1/1), Fk = iBk ( 1/1, 1/1), jp = B p( 1/1, 1/1*), 
(3.2) 

where k = 1,2,3, /3 = 0, 1,2,3, Bp = (B ~,B~,B~), and 
Bp = (B~,Bp). NotethatwhereaspandFk are complex, the 

j p are real. . ... 
It will be useful to write the four currents} p expbcltly In 

terms of the spinor components of~ = (~,1J*): 

.io = tuz~ + TjUZ1J, It = - tUZ1J - iluz~ , 
(3.3) 

it = i[ tUZ1J - iluz~ ], h = - tuz~ + TjUZ1J. 

As in Sec. II, one can show thatjp with{3 = 0,1,2,3 are a real 
orthogonal Lorentz basis for R 4, with scalar lengths equal to 
I pi, and with both p and the j p determined by the F k. One 
may show that the map ip-{FI ,F2,F3) is an isomorphism 
from bispinors onto isotropic Yang-Mills triplets as a conse­
quence of the following three lemmas. 

Lemma 1: As defined by formulas (3.2), we have the 
following. 

(a) pis both a Lorentz and an SL(2,C) gauge scalar. 
(b) The F k transform as a Yang-Mills triplet for Lor­

entz and SL(2,C) gauge transformations. 
(c) Thej p transform as Lorentz four-vectors and as an 

SL(2,C) gauge quadruplet. 
As with the SL(2,C) gauge transformations, chiral transfor­
mations commute with the Cartan map. 

Lemma 2: For chiral gauge transformations, we have 
the following. 

(a)p undergoes a change of phase. 
(b) F I ,F2,F3 undergo a change of phase. 
(C)jO,jl,j2,j3 do not change. 
Lemma 3: Let 1/1 = (~,1J)and1/l' = (~',1J')betwopairsof 

spinors (or conjugate spinors). Then the following identities 
are true. 

(a) Bg(1/I,1/I)B~(1/I,1/I') = - iBj (1/I,1/I).Bk (1/I,1/I'), 

with (ijk) taken in cyclic order, where j,j,k = 1,2,3 are the 
SUbscripts. 

(b) B~(V°a1/J,1/I') = voBa (1/I,1/I')· 

(c) Ba (voa1/J,1/I') = vB~(1/I,1/I') + jvXB~(1/I,1/I'). 
3 

(d) B g(v·1"1/I, 1/1') = L vjB j(1/I,1/I') . 
j=1 
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(e) Bf(v·n/J, v/) = v;Bg(t/I,V/) + iEijkVj B'k(t/I,t/I'), 

where vER 3, a = 0, 1,2,3 and the subscripts i,j,k = 1,2,3. 

(f) Bg(t/I', t/I) = Bg(t/I,t/I'), 
Bo( t/I', t/I) = - Bo(t/I, t/I') , 
B~(t/I', t/I) = -B~(t/I, t/I'), 
Bdt/l', t/I) = Bk(t/I, t/I') , 

for k = 1,2,3 (i.e., the bilinear maps, B g and Bk are 
symmetric, whereas Bo and B ~ are antisymmetric). 

Theorem: The extended Cartan map tfr--+(F I>F 2,F 3) 
from bispinsors onto isotropic Yang-Mills triplets is a local­
ly one to one (coordinate) map from C 4 onto the four-(com­
plex) dimensional manifold: 

M= {(F\>F2,F3)eC9IFjeFk =..tl5jk ; 

j,k= 1,2,3, ..teC). 

The only identifications are '" with - "'. The coordinate 
map commutes with both Lorentz and SL(2,C)XU(1)0 
gauge transformations. 

IVe THE DIRAC EQUATION 

Dirac's equation is usually stated as an equation for 
bispinors '" = (t,1J*). However, the symmetry properties of 
Dirac's equation are more obvious when it is written as an 
equation for the spinor pair t/I = ( t,1J) obtained via the bijec­
tive map tfr--+t/I, which sends (t,1J*)-( t,1J). 

The Dirac equation for bispinors is given by 

(PO - Pea) t = m1J*, (po + pea)1J* = mt, (4.1) 

where", = (t,1J*) is a bispinor field, pa = (p°,P) = ihVa + 
potentials, h is Planck's constant, and m is the mass. 

By conjugation, we get 

(pO-Pea)t=m1J*, (p0-pea)1J=mt*, (4.2) 

and also the conjugate equations 

(PO + Pea) t * = m1J, (po + Pea) 1J* = mt . (4.3) 

Let us consider the spinor pair t/I = (t,1J) and also the 
conjugate spinor pair t/I* = (1J*, - t *). Equations (4.2) and 
(4.3) can be written as 

paua t/I= - 4> a':ra t/I*, palTa t/I* = 4> a'Ta t/I, (4.4) 

where 4> a = (0,0,0, - m) is the real quadruplet of Higgs sca­
lars, if = (1,00) are Pauli matrices, ~ = (I, - a), ~ = (I,r) 
are gauge matrices, and ':ra = (I, - T). 

It is evident that Eqs. (4.4) are invariant under Lorentz 
transformations provided that 4> a for each a = 0,1,2,3 trans­
forms as a Lorentz scalar. Moreover, it is straightforward to 
show that Eqs. (4.4) are invariant under SL(2,C) gauge trans­
formations provided that 4>a transforms as a (real) SL(2,C) 
gauge quadruplet. 

Using the fact that if and ~ commute, we can derive 
the Klein-Gordon equation, which in the case of free parti­
cles is given by 

pa Pa t/I = - ( 4> a4>a) t/I . 

Therefore, the mass is given by 

M =.J - 4> a4>a . 

Lemma 4. The Dirac equation, 
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paUa t/I= - 4> a':ra t/I* 

with 
3 

Pa =ihVa +eo V~ +e L V!'Tk , 
k=l 

may be derived by applying the Euler-Lagrange equations to 
the Lagrangian 

L = Re{ (paua t/I)' (4) {J'Tp t/I) + M 2t/1.'¢l*}lM. 

Moreover, we have the following. 
(a) The Lagrangian L is an invariant scalar under both 

Lorentz and SL(2,C) gauge transformations. 
(b) The conserved Noether currents derived fromL [one 

for each generator ofSL(2,C)] are given by 

Jk = 4>ojk - 4>do - iEkm" 4>m j" , 
with k = 1,2,3. 

(c) The kinetic part of the Lagrangian L is an invariant 
scalar under neutral (chiral) gauge transformations. 

(d) The neutral (chiral) current is given by 

K= 4>aja' 

which corresponds to the single generator ofUo(I). 
(e) The interaction part of the Lagrangian L is given by 

3 

L = eo VO Ka +.!.- Re ~ V k Ja (4.5) 
[ M a M k~l a k, 

where eo and e are the neutral and electric charges, respec­
tively, and the V: are the Yang-Mills (complex) potentials. 

(f) With the conventional choice of Higgs fields 4>a 
= (O,O,O,m), the Lagrangian L reduces to the usual Lagran­

gian for Dirac's equation (4.1). 
Note that in formula (4.5), both K and V· are real. How­

ever, both Jk and V k are complex for k = 1,2,3, which is a 
consequence of the gauge group SL(2,C). Note also that (5) is 
equivalent to 

3 

L[ = eo V~Ka +.!.- L (Re V!)(ReJ'k) 
M M k =l 

3 

-.!.- L (1m V!)(lmJ'k). 
M k =l 

(4.6) 

Formula (4.6) shows clearly that the interaction is complete­
ly described by the seven real currents Re Jk, 1m Jk, and K 
and the seven real potentials Re V\ 1m Vk, and VO corre­
sponding to the seven generators ofSL(2,C)XUo(I). 

In the remainder of this section, we will derive the vec­
tor equivalent of the Dirac equation. 

Application of the extended Cartan map B; to the first 
equation of (4.4) gives, using Lemma 3(e), 

B;(t/I.Paift/l) = - B;( t/I, 4>a ':rat/l*) = - J; . (4.7) 

Similarly, the left-hand side of(7) becomes, using Lemma 3, 
parts (c) and (a), 

B;( t/I.Paift/l) = - iDasaF; + B ~( t/I,Pt/I) 

= - iDasaF; - (il p)FjeBd t/I,Pt/I) 

= - iDasaF; + (DFk)eF/ p 

= - iDaSaFI - (DFj)eFkl p, 
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where sa = (I,S) are the Proca spin-one matrices, D a 
= i(h /2)va + potentials, D = (DlJD2.D3)' and the (ij k) 
sUbscripts are taken in cyclic order. Note that the Cartan 
map Bk ( t/J, X) for k = 1,2,3 is symmetric in the variables t/J 
and X, and in commuting pa into Da, Planck's constant h 
becomes h /2. Thus, we have proved the following theorem. 

Theorem: Via the Cartan map, Dirac's equation for bi­
spinors is equivalent to 

iDaSaFj + (DFj)oFk / P = J j , 

where the subscripts (ijk ) are taken in cyclic order. 
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We show that the product oflocal current operators in quantum chromodynamics (QeD), when 
expanded in terms of condensates, such as #, G;" G;", ~r rfJii,rf/!,iabc G;" G e., G ~, etc., yields 
a series in Planck's constant. This, however, provides no hint that the higher terms in such an 
expansion may be less significant. 

I. INTRODUCTION 

The ground state ofQCD has fermions and gauge boson 
condensates such as #, G;" G;", etc. These condensate 
operators appear in the operator product expansion 1 (OPE) 
of the products oflocal currents such as ~ a(x)r,. f/! a (x) (where 
a is the color index) in addition to the usual perturbative 
effects2 due to the presence of the colored gauge field interac­
tions. We present a systematic procedure to be useful in car­
rying out the above expansion in the momentum space. 3 

Alongside, a set of suitable approximation rules is also pre­
sented. 

It has been found useful, for numerous reasons, to ana­
lyze the OPE of the products oflocal current operators.4 For 
one, it is possible to estimate the magnitude of the conden­
sates (#, G;" G;", ... ) from such an expansion.s Since this 
expansion series has an infinite number of terms, its analysis 
poses some difficulties especially because the expansion pa­
rameter cannot be regarded as small. It is therefore difficult 
to argue that it is meaningful to terminate such an expansion 
after the first few terms. We show that the expansion in con­
densates is a series in Planck's constant Ii. Since Planck's 
constant has dimension, this provides no clue whether the 
higher-dimensional condensates are less significant. How­
ever, such expansions in Ii frequently have been carried out 
in the calculations of effective action where it has been pre­
sumed to make sense.6 

II. CONDENSATE EXPANSION FOR QCD 

The fermion part of the QeD Lagrangian in the pres­
ence of a background color gauge field is 

LF = ~[iJj - m]f/!, (1) 

where Jj,. includes a background field A,. as 

Dab = a tJab - i (g/2) • A ab . A C (2) ,.,. c,.' 

and f/! is a column matrix. The background field A,. corre­
sponds to the presence of gluon condensates. Therefore, the 
fermion propagator satisfies 

[ir,. (a,.tJab - (ig/2)A. ~bA ~) - m ]SF(X, x') = tJ(X,x/). 
(3) 

It is convenient to specialize to coordinate gauge 
[xaA «(x) = 0] and write7 

a'Pern'lanent address: Department of Physics, McGill University, Mon­
treal, Quebec, Canada H3A 2T8. 

(4) 

We go to momentum space by writing 

S (x x') = J d 4

k e-ik(X,x')S (k). (5) 
F , (21T)4 F 

Substituting (4) and (5) in Eq. (3) and solving for S F(k ) we get 
(restoring Ii explicitly) 

S~(k) = (l/k 2
)[ ltJab + (igli/4)U ~/rq G:T aTSIJ(k I], (6) 

where aT is a derivative with respect to the momentum vari­
able k. Since the second term on the right-hand side has an 
explicit factor of Ii, it is possible to make successive intera­
tions to arrive at a series in Planck's constant. Let us make 
the lowest approximation and write 

(7) 

Therefore, 

We are interested in evaluating the polarization tensor HI''' 
defined as 

H,.,,(q2) = i J d 4xei
q(

x /1l)(0ITJ,.(x)J,,(0)10), (9) 

where, for simplicity we chose 

(10) 

and a is the color index. 
The procedure we outline will go through the other 

types of currents as well as can be checked by an explicit 
calculation. It is straightforward to check that the propaga­
tors for gluons can also be written as an expansion in 
Planck's constant in the presence of a background gluonic 
field. 

Since QeD also has a fermionic condensate (chiral sym­
metry breaking), it is necessary to expand the fermionic field 
by writing 

(11) 

where tfJ a(x) is regarded as originating from the fermion con­
densate, and f a(x) as the fluctuations. Substituting Eq. (11) 
in (9) we get 
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HI''V(q2) 

=i f d4xeIQX/I1(0ITfa(x)rJa(X){b(0)rJb(0)10) 

+ if d 4x e/qx/l1 

X (OITfa(x)rl't,6a(x)~b(O)rl'fb(O)IO) 

+ i f d 4x e/qx/l1 

X (OIT~a(x)rJa(x){b(O)r'Vt,6b(O)IO) 

==ll!'V + H;'V + H!'V (12) 

where the superscripts in H simply represent the three terms 
appearing in the preceding expression. The other terms in 
the expansion can be shown not to contribute in the limit of 
large q2 (short distance). The first term in this expansion can 
be easily evaluated by carrying out a Wick expansion of the 
time-ordered product. Thus, 

H !'V(q2) = - i f d 4X e/qx/l1(OI Tf a(x)f b (010) 

Xrl' (01 Tfb(O)fa (x) 10)r'V. (13) 

Since 

(01 Tf(y)f(y')IO) = (-nJiISF(y' - y), (14) 

we get, by substituting (S) and (14) in (13), an expansion in 
Planck's constant. The first term (independent of the gluon 
condensate) is 

HI lnq2 [ 2] 
1''1' = - 4r1f ql'q'V - ql''Vq + .. " (15) 

where we have disregarded the log-divergent term because it 
does not depend on q2. Such a term, when differentiated with 
respect to q2 (as would have happened if we wished to deal 
with the Borel-transformed series), drops out. In the above 
calculations, we have also neglected the masses of the 
quarks. Otherwise, corrections dependent on the quark 
masses would appear. 

When S I(k) from Eq. (S) is substituted in (13), terms 
depending on the gluon condensate also appear. The first 
nonzero contribution is given by (we have carried out the d 4X 
and one of the momentum integrations) 

x." [ (f+1)r Ad a ( f+l )]r GUf"GKt. (16) 
I I' (q + k)2 k ba , (q + k )2 'V d d 

It is tedious but straightforward to evaluate the above object 
and get 

HI lnq2 2 
1''1' = - 4r1f (ql'q'V - ql''Vq ) 

+ 4S~q4G';.pGcaIJ(ql'q'V - ql''Vq2) + .... (17) 

To evaluate the higher-order terms in gluon condensates it is 
required to expand the propagator by using the iterative 
equation (6) by writing 
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S(2)(k) = (I /k 2\~ab + igfJ..!.. A ab." G U'TCa S(I'(k). 
F JV 4 k 2 C Iu f" F 

(IS) 

It can be checked easily, that thefabcG~G~G8a conden­
sate term goes with a factor of Ii and the quartic gluon con­
densate goes with If. 

Next, we need to expand the expression for A ~(x) in 
terms of G~'V(x) in the coordinate gauge around G~(O). 
When equations of motion are used for the G I'fJ 's we obtain a 
series of expansions in Ii for HI''V' 

Since HI''V 2 and HI''V 3 yield identical results, it is suffi­
cient to consider only one of them: 

H(2) = if d 4x e/qx/l1 
1''1' 

x (OITfa(x)rl't,6a(X~ b (O)rJb (0110) 

= -i f d 4xe/qX/I1(0IT]a(x)fb(0)10) 

xrl'~ b(o)t,6a(x)r'V· (19) 

For (OIT]a(x)fb(O)IO), we use Eq. (S) and (14) and expand 
t,6a(x) around x = 0: 

t,6a(x) = t,6a(O) + xaaat,6 + .... (20) 

It is necessary to retain the second term and integrate 
over x if the conserved (ql'q'V - ql''Vq2) structure is to emerge. 
The first term is easy to evaluate. Note the ~ b(O)t,6a(O) is 
normalized as 

(21) 

where N = -b to take account of three degrees of color and 
four of spin. 

For the second term, xa may be brought out of the inte­
gral by writing it as a derivative with respect to q. Inside the 
integral, the term ~ baat,6a may be reduced as 

~baat,6a = ~bTr[rarp ]~t,6a. (22) 

Using the equations of motion and normalization (21), we get 

H~t + H~t = [2mli(~t,6 )/q4 ](ql'q'V - ql''Vq2). (23) 

We observe the explicit appearance of Ii in the numerator. 
We can now proceed to include the gluon condensate­

dependent term in the propagator and generate higher-di­
mensional condensates such as ~ul''VA at,6GI'W1, which goes 
like If. 

So far, we have not dealt with the perturbative expan­
sion. The perturbative series is obtained in the usual manner 
by noting that 

i f d4x e/qx/l1(OI TJI' (x)J'V (0110) Heisenbers 

= i f d 4x ei9x/l1 

X (01 TJI' (x)J'V(0)e(llI1)SLmtd4YI0)iDteJ"action' (24) 

Note that LQCD in our case is arrived at by shifting the gluon 
field B; ~A; + b; and the fermion field I/Ia ~ t,6a + fa. 
In the unshifted Lagrangian, b; and!.. are the gluonic and 
fermionic fluctuations, respectively. 
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We have presented a systematic way of evaluating the 
condensate terms in momentum space in the operator pro­
duct expansion oflocal current operators. We note that such 
an expansion corresponds to a series in Planck's constant. 
Such expansions in Planck's constant have been used exten­
sively in computations of effective actions. 
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Using density functional theory in the asymptotic limit of very heavy positive ions, it is 
demonstrated that the well-known scaling property of the total energy E3(Z, N) of an ion with N 
electrons and atomic number Z is a special case of the d-dimensional result 
Ed(Z, N) = Z(4+4d-d')ld(4-d!fd(N IZ):d #4. 

I. INTRODUCTION 

Interactions between charges in dimensions d other 
than three have been of interest over a long period. Thus 
Lenard 1 studied a one-dimensional charged gas with linear 
rij interaction between charges i andj, while Dyson2 was 
concerned with the two-dimensional logarithmic interac­
tion. Much later, Parrinello and March3 studied the thermo­
dynamics of electron crystallization in d-dimensions. 

Recently Pucci and March4 have pointed to the interest 
in relations between total energy E and chemical potential,u 
in apparently complex molecular systems such as the linear 
polyacenes. Notwithstanding such apparent complexity, 
they have demonstrated from approximate theories that E I 
N,u tends to a value near to! as the number of rings tend to 
infinity, a result they conjecture to be dominated by the 
d = 2 dimensionality. The potential importance of dimen­
sionality in bound-state formation in molecules has also been 
explored to some extent.5

,6 In Ref. 5, the importance of Har­
tree self-consistency was emphasized. Since, however, even 
in the asymptotic limit of large numbers of electrons N to 
which the present paper is directed, the treatment of molecu­
lar systems by analytical, as opposed to numerical, methods 
remains difficult, we have been motivated by the above con­
siderations to first consider the role of dimensionality in the 
Hartree self-consistent field theory of heavy positive atomic 
ions. 

II. CHARACTERISTIC LENGTHS IN ELECTRON 
DISTRIBUTION IN d-DIMENSIONS 

As is well known, the length scale of a heavy atom 7 

varies proportional toZ -1/3. This is derived from the Thom­
as-Fermi theory, which is known to yield asymptotically 
correct properties in three dimensions8 in the limit of large 
numbers of electrons N. 

Therefore, to establish the length scale in d-dimensions, 
we tum to the work ofK ventsel and Katriel9 on the d-dimen­
sional Thomas-Fermi equation. Writing the maximum local 
momentump/(r) through the relation 

pJ{r)/2m =,u + etP (r)==el[l (r), (2.1) 

these workers obtain the di1ferential equation obeyed by 1[1, 

which differs from the electrostatic potential tP only through 
a constant 

p _ 81T'e(..[iiiiiielh )d 
d - F(dI2+ 1) 

(2.2) 

Taking the Thomas-Fermi density p(r), with the 
boundary condition that as r-o, 

l[I(r)-[41T'Zel(d-2)nd]r- d, d>3, (2.3) 

with IJd = d~/2 IF(d 12 + 1), for a point charge ofmagni­
tude Ze, K ventsel and Katriel9 point out that the normaliza­
tion integral f p(r)dr diverges for d>4, for such singular po­
tentials as given by Eq. (2.3). We assume below that such 
divergence can be "cured" by introducing finite nuclei, 
which, because of the totally different length scales of nuclei 
and atoms, could not significantly influence the length scal­
ing of interest to us here. 

Thus, we shall write first 

l[I(r) = [4Ze1T'r- d I(d - 2)ndh'd(r) 

==DdXd(r)r- d, (2.4) 

where X d (r) tends to unity as r tends to zero from the bound­
ary condition (2.3). The differential equation for Xd(r) is 
readily shown to take the form 

rifXd + (3 _ d)r aXd 
ar ar 

= /3dD (d/2 - l'xdd/2r (4-d)d/2. (2.5) 

As the final step in establishing the length scale of the d­
dimensional electron cloud, we write 

r = hdx. (2.6) 

Then the choice of hd as proportional to Z(2 - d )/d(4 - d) re­
moves the Z dependence completely from the differential 
equation for X d' This establishes the length scale therefore, 
as desired, and yields of course, the usual three-dimensional 
result h3 ccZ -1/3. 

III. CHEMICAL POTENTIAL AND TOTAL ENERGY 
SCALING 

As in three dimensions, d-dimensional heavy positive 
ions have a finite semiclassical radius, say rd' Outside r d 
therefore, the ion has an electrostatic potential which is the 
same as though the charge at the origin were (Z - N)e. Since 
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p(r d) = 0, by definition of the semiclassical radius, and 
p rr.p/ from the usual phase-space arguments, it follows 
that pf(r d) = O. Thus, from Eq. (2.1) we have 

J..t=-e4>(r/) (3.1) 

and hence, from the point charge form (2.3) 

J..t= [-41T(Z-N)e2/(d-2)JJd](rd)2-d, d>3. (3.2) 

This immediately leads to the desired scaling property of the 
chemical potential as 

J..t = Z(bd)2- dFd(N /Z) (3.3) 

using the boundary condition dependent only on N /Z as 
given in Ref. 9. Substituting the result below Eq. (2.6) for the 
Z dependence of bd yields 

J..t = Z4Id(4-d)hd(N /Z). (3.4) 

Of course, a full theory of hd (N /Z) in Eq. (3.4) will eventually 
require solution by numerical methods of the usually nonlin­
ear equation (2.5). 

The final step to arrive at the scaling of the total energy 
Ed (Z, N) of the d-dimensional positive ion can be made in 
the asymptotic limit under consideration here by using the 
thermodynamic relation 10 

J..t=(:!t, (3.5) 

which yields to leading order 

Ed(Z, N) = Z(4+4d-d')/d(4- d'fd(N /Z), d>4. (3.6) 

555 J. Math. Phys., Vol. 26, No.3, March 1985 

Equation (3.6) is the main result of this paper. The substitu­
tion of d = 3 reduces Eqs. (3.4) and (3.6) to well-established 
results in the self-consistent field theory of heavy positive 
ions. 10 The case d = 4 is anomalous,l1 as the virial theorem3 

gives immediately that E4(Z, N) = O. 
Consideration is presently being given to the possible 

generalization of these scaling properties to some multi­
center problems of current interest in molecular physics. 
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In this paper we calculate exactly the lineshape for a model of an excited two-level atom in 
interaction with a continuous spectrum of radiation for the problem of spontaneous emission. 
Specifically, for the case of ad = 1 radiation field, we use the exact results reported in our earlier 
work [J. Math. Phys. 14,414,423 (1973)] for the probability p(1') of the atom's being in the excited 
state at time l' to obtain an analytic expression for the lineshape of the emitted radiation (i.e., the 
photon). We also calculate the lineshape using two Wigner-Weisskopfstyle approximations and 
the results, for a given choice of coupling function, are compared numerically with the profile 
generated using the exact solution. These comparisons show convincingly the success with which 
these two approximations can be expected to reproduce the qualitative and quantitative features 
of the exact lineshape for values of the coupling constant a ranging between 0.01 and 0.3. Finally, 
we calculate explicitly the scattering operator corresponding to the above spontaneous emission 
problem and work out exactly the probability of forward and backward scattering of a photon by 
the atom at and away from resonance. 

I. INTRODUCTION 

The model to be discussed in this paper is that of an 
excited two-level quantum system interacting with a radi­
ation field. The two-level system will usually be thought of as 
an atom with two accessible electronic states between which 
a transition occurs with emission or absorption of radiation. 
However, the "atom" could just as well be a molecule or a 
spin and the radiation field could be a set of closely spaced 
molecular states, a phonon field or any of a variety of things, 
provided the dimensionality d of the field, the electromag­
netic multi polarity of the atomic/molecular transitions, the 
spin, and parity are properly taken into account. 

In a series of papers by the authors (Refs. 1-10, hereaf­
ter referred to as I-X), we have worked out the exact dynam­
ics of an excited two- or three-level atomic system in interac­
tion with a d = 1 field of electromagnetic radiation, as 
governed by a certain Hamiltonian (see text below). Specifi­
cally, in IV and V we studied the spontaneous emission of a 
two-level atom and in VII and VIII the induced emission; 
the further contributions IX and X dealt with the exact dy­
namics of three-level quantum systems. In these papers, only 
the time evolution of the atomic state (or states) was consid­
ered. For the purposes of seeing what experimental conse­
quences there might be of our theoretical studies, it is more 
sensible to consider the lineshape of the emitted radiation 
and to include in the model a more realistic (three-dimen­
sional) geometry. Both ofthese tasks require no further de­
velopment of analytic techniques (as was the case in I-X), 
but do require a fair amount of manipulation of existing ex­
pressions and calculation (Sec. II). In this contribution we 
focus on the first of the above problems, and calculate the 
lineshape for the problem of spontaneous emission (Sec. 
III A), as determined from the exact solution to the underly­
ing quantum-statistical problem, presented in IV -V. Then in 
Sec. III B we introduce two Wigner-Weisskopf style ap-

proximations and calculate the lineshape corresponding to 
these two approximations. The results obtained and their 
characteristic features are compared numerically in Sec. VI 
for a specific choice ofform factor (which specifies the inter­
action between the atom and the radiation field) and for var­
ious choices of the coupling constant a. Finally, we consider 
in detail the scattering of radiation by the two-level atom and 
work out exactly the probability of forward and backward 
scattering of a photon at and away from resonance. 

We now specify the Hamiltonian for the model under 
study in this paper. It should be said at the outset that the 
restriction to a one-dimensional radiation field (which has 
been made throughout the series I-X) is not essential: It is 
made chiefly for ease of presentation and for simplicity of the 
numerical computations. Provided one counts modes prop­
erly, all the formal results go through exactly as for d = 1. 
The Hamiltonian is then 

H = E1aa* + E2a*a + ~ [~ hcv,da!aA. + 1)] 

+ ~ (h !a*aA. + hA.aa!) , 

where El and E2 are the energies ofthe ground state 11) and 
excited state 12) of the two-level atom, and where the opera­
tors are defined by 

a=11)(21, a*=12)(1I, 

(nA.laA.lmA.) = [2(nA. + 1)] 1/28Kr(mA. - nA. - 1) 

= (mA.la!lnA.) . 

Here the state InA. ) is that which has n A. ( = 0,1,2, ... ) photons 
in the A th mode of the radiation field, and 8 Kr( ... ) is the 
Kronecker delta. Further, lim A. is the energy of a photon in 
the A th mode, fIE = E2 E 1 is the energy separating the two 
levels of the atom, and the h A. give the coupling between the 
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atom and the radiation field. A basis for the Hilbert space of 
the system is given by the product states 

li;{n,d)=li) II In,t) , 
,t 

with i = 1,2 and n,t = 0,1,2, .... 
An important property of this Hamiltonian is that in 

the above basis it becomes block diagonal. The blocks or 
"sectors" of the Hamiltonian are the eigenspaces of the oper­
ator 

1 
N=a*a +2" ~al'a,t -1, 

which commutes with H. The eigenvalue of N associated 
with the state li;{n,t J) is (i - 1) + l:,tn,to and so Nmeasures 
the number of photons present when the atom is deexcited 
(i = 1). Papers I-VI dealt exclusively with the sector where 
N = 1, while in VII and VIII, a solution for N = 2 was ob­
tained for a finite and an infinite system, respectively. We 
remark in passing that the operator N was defined in VII 
simply as 

1 
N=a*a +- Lal'a,t. 

2 ,t 

In this paper we consider only the N = 1 sector, the 
sector appropriate for the discussion of spontaneous emis­
sion or the scattering of a photon off the deexcited two-level 
system. It is necessary to work with a continuous spectrum 
of radiation modes (i.e., an infinitely sized cavity) in order for 
either of these problems to be well defined, on account of the 
quasiperiodic behavior (Poincare recurrences) of a system 
with a discrete set of modes. It is most convenient to define 
the Hilbert space of the N = 1 sector specifically to take ac­
count of this; in other words, to define a space of functions of 
the mode parameter A, rather than a space of sequences in­
dexed by A. This will be the first step in the calculation of the 
spontaneous emission lineshape, to which we now proceed. 

II. FORMULATION 

The Hilbert space ,Jr for the problem is defined as fol­
lows. Consider the triple (co, Cr, C/)' where Co is a complex 
number, and Cr and CI each map the non-negative real line 
into the complex numbers. Then c=(co, Cr, C/) belongs to,Jr 
if its norm IIcII exists and is finite. The riorm is defined by 

IIcII2 = ICol2 + Loo dw{ Icr(wW + IC/(wWI . 

The inner product of c1 and c2
, say, is given by 

(c"~) = c~~ + 100 

dw{c~(w~(w) + c}(w)c7(w) I , 

where bars denote complex conjugates. The interpretation of 
C is that Co is the probability amplitude for a state in which a 
two-level atom is excited in the absence of any excitation of a 
one-dimensional radiation field; C r (w) is a wave function for a 
state in which the atom is deexcited and a photon is moving 
from left to right with probability I C r (w) 12 dw that the photon 
energy belongs to the interval [w,w + dw]; C/(W) is defined 
similarly for a photon moving in the other direction, from 
right to left. 
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LetH denote the Hamiltonian which governs the evolu­
tion of the system described by our Hilbert space. Then iffor 
some c, geK, Hg = c, we have 

Co = M {go + ( : ) 112 100 

dw [hr(w)gr(W) + hi (W)gl(w) ] } ; 

(la) 

cr(w) = wgr(w) + .j(a/1r)liEhr(w)go; (lb) 

(lc) 

Here a is a dimensionless coupling constant, being a one­
dimensional analog of the fine-structure constant of ordi­
nary quantum electrodynamics, M is the energy difference 
between the two levels of the atom, and the functions hr and 
hi determine the frequency (or energy) dependence of the 
interaction between the atom and the radiation field. 

If the system is in state c(O) at time t = 0, then at later 
times t the state is given by 

c(t) = exp[ - iHt lli]c(O) , 

or more conveniently in resolvent form 

1 i . (H )-1 cit) = -. dze- lZt 
- -z c(O). 

2m 9f Ii 
(2) 

Here CrfJ is a Bromwich contour above and parallel to the real 
axisofz,and(H 1ft - Z)-l is the resolvent ofH Ift,definedfor 
all nonreal z (at least), since the spectrum of the self-adjoint 
operator H is purely real. 

It is useful to scale the time by the coupling constant a 
(this is necessary if any "weak-coupling" approximations are 
to be well defined) and simultaneously make all variables 
dimensionless. Accordingly, we make the definition 
r = aEt, and we transform the Hilbert space ,Jr, so that.,.!o 
any ceK there corresponds a new element c of a space ,Jr, 
where 

Co = Co , cr.rIA. ) = PiE Cr.I(MA) . 

Note that 

IIcll 2 = IIcll 2 = ICol2 + 100 

dA [lcr(A W + IC/(A w] , 
and in fact the full Hilbert space structure is preserved by 
this transformation. We also define 

hr./(A) =.jM hr,/(MA ) . 
"'-

Now, from Eq. (2), ifc(rjeK corresponds under the Hilbert 
space transformation to cit jeK, we have 

c(r)=~ r dse-isT(...!!...--s)-IC(O). (3) 
2m J9f aM 

Let 

(H laM - S)-IC(O) =gs . 
Then, 

(HlaM-s)gs = c(O) , 

and so, from Eqs. (1), 

[c(O)]o = (lla - s)(gs)o 

+ (:aY/2 100 

ciA. [hr(A )(gs)r(A) 

+ h/(A )(gs )/(,.1. )] , 
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and 

[C(O)] ,.1 (A ) = (A la - S)(gs),./(A) 

+ ~(1I17'a) h,./(A )(gs)o. 

These equations can be solved for gs to yield 

(gs)o = ~ {[C(O)]o _ (!!....)1I2 (00 dA 
H(S) 17' Jo 

[h,(A )[c(O)] ,(A ) + hl(A )[C(O)]/(A)]} 
X , 

A-aS 
(gsl"/(A) = [lI(A - as)] (a[c(O)1r./(A) 

- ~(aI17')h,./(A )(gs)o} . (4) 
A 

Here the function H is defined by 

B(S)=.l-s-~ (00 dA h(A) , 
a 17' Jo A - as (5) 

in which we define 

h(A)=Hlh,(AW+ Ihl(AW]. (6) 
A • 

In order that gs and H (S) be well defined we must !m-
pose the following regularity condition on the functions h,./: 

(00 dA Ih,./(~ W < 00 (7) 
JI A 

and Ih,./(A W is bounded fo! all non-negative A. The condi­
tion implies essentially that h ,.1 (A )/(A - s ) is, for all S not on 
the positive real line, a function with bounded Hilbert-space 
norm. 

In addition, in order that the dynamics of the system be 
"ergodic" in the sense defined in our earlier study, we im­
pose the constraint that h (A )-0 asA-o sufficiently fast that 

L
OOdAh(A) 't 

---'--'- eX1S s , 
o A 

and further that 

_---'('-17'1_2.!...) _ a< fo dA h(A)/A 
A 

These conditions ensure that H (S ) has no zeros for S off the 
positive real line. 

We wish to use Eqs. (3) and (4) to derive the infinite-time 
limit of the solution c(r). This limit tells us to what asympto­
tic state the system will relax if it starts at r = 0 in state C(O). 
In particular if [c(O)]o = 1 and [c(O) 1rAA ) = 0, the asympto­
tic state describes the lineshape for spontaneous emission. It 
turns out that 

lim c(r) 

does not exist but that 

lim eur1a[c(r)],.M) 

is well defined for all non-negativeA. This is all that is needed 
physically since it is the limit of I [c(r)],AA W which is of 
interest. Alternatively, we can view eUr1a[c(r)] "I (A ) as the 
wave function in the interaction picture. For present pur­
poses it will be useful to retain the slightly clumsier Schro­
dinger picture. 

First we note that 

lim [c(r)]o = 0 . 
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To see this and to facilitate future calculations we introduce 
some definitions: 

1 i e-
isr 

II(r) = -. dS -A-' 
. 21Tl «J H(S)_ _ 

(8) 

A (a)1/2LOO h,(A)[C(O)],(A)+hl(A)[C(O)]/(A) 
G(S)= - dA , 

2 0 A -as 

};(r) = - ~ ( dS e-:rG(S) . (9) 
21Tl J«J H(s) 

A 

Here, G (S) is well defined by condition (7). Observe t}at/l 
does not depend on the initial condition c(O), but that G and 
12 do. The structure of the definitions II and}; as Laplace 
transforms permits the following inversion equations: 

1 Loo . -A-- = i dreiS'lI(r); 
H(S) 0 
A 

~(S) = _ i1°O dreiS'l2(r). (10) 
H(S) 0 

Then from Eqs. (3) and (4) it is easy to see that 

[c(r)]o = ~ ( dS e-isr(gs)o 
21Tl J«J 

= [c(O)]o.h(r) + ~(2/17')};(r). 
Our result follows if we can show thatnr) and};(r) tend to 
zero as r- 00. It is sufficient to check this for II; the calcula­
tion for/2 is similar. From Eq. (5) it is clear thatB is analytic 
and nonzero except for a cut along the positive real axis. The 
contour ~ in the definition (8) of II can therefore be de-

A 

formed by Jordan's lemma [note that IH(S )I-I-oass_ oo , 

arg S #0] to a contour g(J, say, surrounding the positive real 
A A 

axis (see Fig. 1). If H ± (S ) denotes the limiting values of Has 
its argument tends to real S through values with positivel 
negative imaginary part, then we can conclude that 

II(r)=~ (00 dse-isr[~_~]. 
21Tl Jo H+(S) H-(S) 

Now since 

B ± (S ) = .l_ s - ~ &' (00 dA h (A) =t= 2ih (as) 
a 17' Jo A - as 

(11) 

(here &' denotes the Cauchy principal part), it can be seen 
that [liB + - liB -] is bounded on the positive real line. 
Further, since plainly we require that/l(O) = I, the integral 

1m e 

----ft-;===;::::=~ Re e 

FIG. 1. The contour f!lJ. 
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Loo [1 1] ds -----
o H+(S) H-(S) 

exists, and so the Riemann-Lebesgue lemma ensures that 

Again from Eqs. (3) and (4) we find that 

[e(T)]r.I(A) = e-iAT1a[e(O)]r.I(A) 

_ (!:.)1I2hr.I(A) ~ r ds e- iST/gs)O . 
'IT 2m J'if A - as 

(12) 

Now since 

~ r ds e-isT/gslo = [e(O)]Ofl(T) + (~)II};(T) 
2m J'if 'IT 

and 

1 i d'f: e - iST _ 1 - iATla - ~ --e , 
2'ITi 'if A - as a 

by the convolution property of Laplace transforms we obtain 
that 

_ ds sO 1 i 
e-isT/g ) 

2'ITi 'if A -as 

i [d' -iA(T-T')la =- Te 
a 0 

X [ [e(O)]Ofl(T) + ~(2/'IT)f2(T')] . 

From this result and Eq. (12) we can see that 

= [e(O)]r.I(A) - (i/.,fiili)hr.I(A) 

X Loo dT eiAT1a { [e(O)] onT) + ( ! yl2 f2(T)} 

= [e(O)]r.I(A) 

(13) 

_ hr.I(A) [A- [e(O)]o _ (~)112 ~ +(A fa) ] , (14) 
.,fiili H +(A fa) 'IT H +(A fa) 

by Eqs. (10). The limits H + and G + are needed for the real 
argument A /a since the definitions (8) and (9) use an integra­
tion contour 9fj in the upper half-plane of S. 

III. CALCULATION OF THE LINESHAPE 

A. The exact result 

We now specialize the results presented in the preced­
ing section to obtain the lineshape of a photon emitted spon­
taneously by the two-level atom. Since the initial state e(O) 
obeys [e(O)]o = I, [e(O)]r.I(A) = 0, we see at once that A-

G(S) =.t;(T) = 0, 

and so 

e;,'I(A )==lim eiAT1a[e(T)lr.I(A ) 
T~oo 

= - hr.I(A )/.,fiili H +(A fa) . 

The probability density for the dimensionless energy A of the 
emitted photon (the lineshape) is thus 
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(15) 

since 
A-

il +(A fa) = H -(A fa) 

[see Eq. (11)]. Now, from Eq. (11) we can express Eq. (15) 
more explicitly: 

le;'/(A W 
= !:'lhr.M W([ 1 _ A _ 2a 9 roo dl'- h (1'-)]2 

'IT 'IT Jo I'- - A 

+ 4a2 [h (A w) -I (16) 

It is easy to check that 

100 

dA [le;"(A W + le[(A W] = 1 . 

Note that 

le;"(A W + lei(A W 
2 h(A) =-A- A- [by Eq. (6)] , 

a'IT H +(A /a)H -(A fa) 

1 [1 1] 
= 2'ITia H +(A fa) - H -(A fa) 

[by Eq. (11)] . 

Then, the above result follows at once from 

_1 r -.!!L= 1 
2'ITiJ'if H (S ) . 

It is plain from this normalization and from the form of Eq. 
(16) that as a-o, the function 

le;"(A W + lei(A W 
approaches the Dirac delta function /j (A - 1). Thus for very 
weak coupling, the lineshape, as one would expect, is in­
creasingly concentrated at the resonant frequency. 

B. The Wigner-Weisskopf approximation 

It is interesting to compare the exact result, Eq. (16), 
with the well-known Wigner-Weisskopf (WW) approxima­
tion to the lineshape. To obtain this approximation, one 
starts from Eq. (13) for the case of spontaneous emission: 

e;,'I(A ) = _ _ i _ hr.M) roo eiAT1aft(T)dT, 
~ Jo 

but replacesfl(T) by its WW approximation. This aR,proxi­
mation is effected by observing that if the function H (S) is 
analytically continued from the upper half-plane of S 
through the positive real axis into the lower half-plane, then 
a zero appears at a point SO' say, with ReSo>O and 
1m So < O. Since in our dimensionless notation the frequency 
in resonance with the two-level atom is A = I, the quantity 

Reso-lla 
is the Lamb shift and ( - 2 1m So) is the linewidth (inverse 
lifetime) for the decay. The WW approximation for nT) is 
simply e - isoT, so that for e;,'I(A) the WW approximation is 

~(a/'IT)[ hr.M )/(A - aso)] , 

and for the lineshape it is 
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a Ih,,1(AW 

1r (A - a Re SO)2 + a 2(lm SO)2 • 

Usually Re So and 1m So are approximated for small a by the 
formulas: 

Re So _.!. = -.!:... fll ('" dp h (p) , 
a 1r Jo p-l 

1m So = -4h(I), 

and this approximation yields for the lineshape 

!!...lh"/(A W([1 -A _ 2a fll {'" dp h (p)]2 
1r 1r Jo p - 1 

+ 4a2 [h (IW) -I (17) 

which looks, at least, very much like the exact expression 
(16). 

Sometimes a still cruder approximation is made in 
which the numerator Ih"M W is replaced by Ih"/(IW. This 
device may be regarded as just another step in the degrada­
tion of the formally exact result, Eq. (16). 

In some calculations it may be of interest to consider the 
proportion of the total energy in the range [A,A + dA] rather 
than the proportion of total probability. This "energy line­
shape" can be found from Eqs. (16) or (17) by multiplying by 
A, since it can be verified that 

i'" dAA [IC;"(AW+ Ici(AW] = 1. 

IV. PROPERTIES OF THE MAPPING FROM TIME ZERO 
TO ASYMPTOTIC STATES 

We now return to Eq. (14) to establish so~e of its prop­
erties as a preliminary to the discussion of the scattering of 
radiation by the two-level atom. It is useful to define a map­
ping n + from time zero states to the asymptotic states to 
which they evolve as 1'~ + 00: n +(CO'c"c/) denotes a pair 
(c;" ,ci) defined by the equations 

'" h,.M) 
C"/(A) = C"/(A ) - r:= 

v1ra 

[ 
Co ( 2 )112 G +(A fa) ] 

X iJ+(Ala) - -; iJ+(Ala) ' (18) 

where 

G (S )=:(!!...) 1/2 ('" dA h,(A )e,(A) + hi (A )e/(A). (19) 
2 Jo A-as 

Our first result is that n + is a (linear) isometry (and 
'" therefore one-to-one) mapping of K on to the Hilbert space 

of asymptotic states, i.e., the space of pairs (c;" ,ci) with ob­
vious norm and scalar product. Formally, the isometry 
property is 

i'" dA [IC;"(A W + Ici(A W] 

= ICol2 + i'" dA [IC,(A W + IC/(A W] , 

and it follows immediately from the fact that the evolution 
operator e -IHtlh is unitary. To show that n + is an onto 
mapping, it is probably best to exhibit its inverse explicitly. 
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This can be done most conveniently if the pairs (C"C/) and 
(c;",ci) are transformed: 

Ks(A) = [1/~2h (A ) ] [h,(A )e,(A ) + hi (A )e/(A )] , 

Ka(A) = [1/~2h (A) l[ hl(A )C,(A ) - h,(A )e/(A )]. (20) 

Then n + can be thought of as mapping (co,Ks,Ka) into 
(K;" ,K:). One observes at once that (O,O,Ka) is mapped simply 
into (O,Ka), i.e., that time zero radiation states with only aKa-
type component do not interact with the atom. Similarly, 
states like (co,Ks'O) are mapped to states like (K;" ,0). Thus all 
we need consider is the inverse image of asymptotic states 
(K;",O). 

The operator n + itself can be written explicitly as act­
ing on (CO,Ks): 

[n +(CO,Ks)](A) = Ks(A) _ (2h (A) )112 --::"',--__ 
1ra H+(Ala) 

X [Co - ~(2!1r)G +(A la)] . (21) 

It can be verified that the inverse is given by 

These equations can be obtained directly by setting up the 
problem of the inversion of n + as a singular integral equa­
tion and solving it a /a Muskhelishvili, II and can be checked 
by direct substitution if one uses the Poincare-Bertrand re­
sult: 

fll {'" ~ fll {'" dp' t/J (,p, p') 
Jo p -A Jo p -p 

- fll {'" dp' fll {'" dp t/J (p, p') 
Jo Jo (p -A )(p' -p) 

= -~t/J(A,A), (24) 

for well-behaved functions t/J of two real variables. The calcu­
lations that justify the above statements are given in the two 
Appendices. Appendix A contains the substitution of Eqs. 
(22) and (23) into Eq. (21) and the verification of the result by 
that means; Appendix B contains the solution of the appro­
priate singular integral equation. Note that Eqs. (22) and (23) 
yield well-defined expressions for all K;" with finite norm, 
because of condition (7). This allows us to conclude that the 
mapping n + is onto. 

The fact that n + is a one-to-one mapping may seem 
slightly counterintuitive. After all, if one considers the state 
that 

c(O) = (C°,Ks,Ka) 

evolves into from l' = ° to l' = 1", surely this evolved state 
must map into the same asymptotic state as c(O) itself? Physi­
cally, of course, this is so: 
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C;:'/(A )=lim eiATia [c(r)] ,./(,1 ) 
r-oo 

= lim eiA1r+r')la[c(r + 1")],./(,1) 
r_oo 

= eiAr'la lim eiArla [c r' (1')] ,.1(,1 ) , (25) 
r-oo 

where c r' (1') is defined as c(r + 1") and is the state reached at 
timerfrom the state that atr = Oisjustc(r'). In fact, Eq. (25) 
manifests the rather surprising fact that the entire dynamics 
of our system, and not just the asymptotic dynamics, can be 
recovered from the mapping n +. If, for some asymptotic 
state coo, we have 

c(O) = (n +)-I(c oo ) , 

then, if we form another asymptotic state c:; , say, by the rule 

(c:;),./(A ) = e - iArlac;:'/(A ) , 

we obtain that 

c(r) = (n +)-I(C:;). 

V. THE SCATTERING PROBLEM 

We are now ready to make use of the properties of n + 
in order to discuss the problem of the scattering of a photon 
by the two-level atom. In the theory of the S matrix (see, for 
example, Ref. 12), eigenstates of the system Hamiltonian 
without interaction are treated as ingoing states and are 
mapped by the S matrix to other eigenstates of the interac­
tionless Hamiltonian, the outgoing states. These ingoing and 
outgoing states in our problem must, of course, be states with 
the atom deexcited. In this context the operator n + and its 
time-reversed form n - are just the Moller operators of S­
matrix theory, and S itself can be interpreted as n + (n -) -1, 

the operator that acts on an asymptotic state at time 
t = - 00 and brings it through time zero and out to another 
asymptotic state at time t = + 00. We shall have fully char­
acterized the scattering problem, then, by calculating 
n+(n-)-I. 

The only difference between n + and n - is that in n -
A A 

the expressi~nsH+(A/a)~nd G +(,1 fa) in Eq. (21) must be 
replacedbyH -(A /a)andG -(A fa). This is easily established 
by arguments similar to those leading to Eq. (14) but with the 
S integrals in the lower half-plane. Thus let (CO,Ks,Ka) be any 
state at time l' = O. Then S maps n - (CooKs ,Ka) into 
n +(Co,Ks,Ka)' Clearly Ka is unaffected by the whole business. 
If we denote the image functions under n ± as Ks± 00, then 
from Eq. (21): 

Ks± 00(,1 )H ± (A fa) 

= Ks(A)H ± (~) _ Co( 2:~) )'/2 

+ ~ (h ~) )'12& ± (~). 
But, from the definitions, Eqs. (11) and (19), it is clear that the 
right-hand side of this equation is the same with either the 
+ or - sign. Thus 

K,+ 00(,1 )if +(,1 fa) = Ks- 00(,1 )H -(A fa) , 

and so 
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A A 

(SKs- 00)(,1 ) = [H -(A /a)/H +(,1 /a)]Ks- 00(,1 ) . 

The scattering problem is therefore solved without further 
calculation. We note that since 

A A 

IH+(K)I = IH-(K)I, 

normalization is preserved, as it must be, by the unitary op­
erator S. Further S is "diagonal" in A, i.e., it conserves ener­
gy, again a necessary property. 

For a better physical sense for the above result, it is 
useful to return to the C,.I representation. The inverse of the 
transformation, Eq. (20), is 

1 A A 

c,.rIA) = (2h (A ))1/2 {h,./(A )Ks(A) ± hl,rlA )Ka(A)} . 

(26) 

We choose for our t = - 00 state a state with cl- 00(,1) = 0, 
so that the incident photon travels from left to right. Then, 

Ks- 00(,1 ) = [lI(2h (A ))1/2]h,(A )c,(A ) , 

Ka- 00(,1 ) = [lI(2h (A W/2]h l (A )c,(A ) . 

Now, Ka- 00 is mapped into itself by S and K,+ 00(,1 ) is 

H-(A/a) 1 h (A) (A) 
H +(,1 fa) (2h (A W/2 ' C, . 

Use ofEq. (26) yields 

c,+ 00(,1 ) = _1 _ {lh,(A W ~ -(A fa) + IhrIA W} c,(A ) , 
2h (A) H+jA fa) 

c/ 00(,1) = _1_ h(A )hl(A ){1f -(A fa) - I} c,(A). 
2h(A) , H+(A/a) 

The probability of forward scattering of a photon of dimen­
sionless energy A, then, is just 

Ic,+ 00(,1 W/lc,(A W, 

i.e., 
A 

1 Ilh(A)12H-(A/a) A 212 
4h2(A) , H+(A/a) +lhl(A)1 . 

Forsymmetricinteractionswith Ih,(A W = Ihl(A W = h (A), 
this simplifies to 

[lI41H +(,1 laW] IH +(,1 fa) + H -(A laW , 

and if 

O(A/a) =argH+(A/a) = -argH-(A/a), 

it simplifies still further to cos2 0 (A / a). Explicitly, 

tano(~) 
-2h(A) 

(lIa) - (A fa) - (2hr) 9 fO' dp, h (p,)/( p, - A) 

Note that at resonance, A = 1, and 0 (A fa) becomes a inde­
pendent, with 

tan o(.!) = h (1) . 
a (lhr)9 fO'dp,h(p,)/(p,-A) 

However, if A = 1, 

lim tan O(A/a) = 0, 
a-o 

and so, in the weak-coupling, i.e., a~, limit, scattering at 
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FIG. 2. A plot of the lineshape Ic;j(,t W vsP (where,t = a,8) as determined 
from the exact expression, Sq. (16), for the choice of coupling constant, 
a =0.01. 

resonance is as with poSitive a, but no backward scattering 
occurs except exactly at resonance. This result is satisfying 
to one's physical intuition. 

VI. NUMERICAL RESULTS 

In Sec. III an exact expression was derived [viz. Eq. 
( 16)] for the lineshape for spontaneous emission of an excited 
two-level atom in a (one-dimensional) field of electromagnet­
ic radiation (assumed to be deexcited initially) in the limit 
where the system size becomes of infinite extent and the 
mode spectrum becomes continuous. In our earlier studies of 
the time evolution of the system, calculations were per­
formed for several different choices of the coupling function, 
in the notation of this paper, h (x). These were 

h (x) = x- 1/2 , h (x) = x- 1/4 , 

and 

h (x) = 4x/(1 + X)2 • (27) 

It was found in V that the first two choices of coupling func­
tion led to "ghost states" and nonergodic behavior in the 

20.0 2~.o 

II 

FIG. 3. A plot of the lineshape IC;j(,tW vsp fora = 0.1. The profile corre­
sponding to the exact lineshape, Sq. (16), is represented by the solid line, the 
one calculated using the Wigner-Weisskopf approximation, Sq. (17), is rep­
resented by the dashed lipe and the one corresponding to Sq. (17) with the 
numerator replaced by Ih,./(IW (see text) is represented by the dotted line. 
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FIG. 4. A plot ofthe lineshape Ic;j(,t W vs P for a = 0.2. The conventions 
here are the same as in Fig. 3. 

time evolution of p( T), the probability that the atom is in the 
excited state at time T, for sufficiently large values of the 
coupling parameter a. In this paper, however, we shall con­
fine our attention to results generated using Eq. (16) with the 
"ergodic" form factor (27). We shall also display results for 
the ICr,/(A. W as calculated using the Wigner-Weisskopf ap­
proximation (17) as well as for the case where the numerator 
in Eq. (17) is replaced by Ihr,/(IW; we shall refer t~ these two 
approximations as WWI and WWII. 

Given the choice (27), four different values of the cou­
pling constant a were selected for study, viz. a = 0.01,0.10, 
0.20, and 0.30. The results obtained for the ICr,/(A. W corre­
sponding to these choices of a are displayed in Figs. 2-5, 
respectively. From the results recorded in these four figures, 
it is seen that the correspondence between the exact results 
for ICr.M Wand the ones generated using WWI is quite ac­
ceptable up to a coupling strength of a = 0.1; both line­
shapes are essentially Lorentzian. Beyond this coupling, 
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FIG. 5. A plot of the lineshape Ic;j(,t W vsp for a = 0.3. The conventions 
here are the same as in Fig. 4. 
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however, the profiles determined from Eqs. (16) and (17) ex­
hibit noticeable and qualitatively significant differences. The 
exact lineshape is not at all Lorentzian in structure when 
a = 0.2, with the profile generated using (16) tending to skew 
even more when a is increased to 0.3. The lineshapes calcu­
lated using WWI, Eq. (17), remain approximately Lorent­
zian for all couplings a studied in this paper. Finally, we note 
that for all a<;O.l, the lineshape generated from the approxi­
mation WWII has the wrong qualitative behavior when 
p-o (viz., the intercept is finite in this limit) but sensibly 
describes the results obtained from Eq. (17) in the limit of 
largep. 

As a further means of quantifying the success with 
which the profiles generated from the approximations WWI 
and WWII represent the exact lineshape, one can compare 
the coordinates of the maxima in the plot of Ic,AA, )1 2 vSA for 
each a. As is seen from the data listed in Table I, the match­
ing of the peak height and location for profiles generated 
using WWI and WWII versus the exact lineshape is quite 
acceptable for a<;O.l, but becomes seriously in error for 
a> 0.1. One can also check numerically whether the norma­
lization condition 

100 

dA A [IC;"(A W + Ici(A W] = 1 

is satisfied in each of these cases. From Table I it is evident 
that only the exact solution displays the proper normaliza­
tion for all values of a; the data show that deviations from 
unity become rather pronounced when either Wigner­
Weisskopf approximation is employed in the coupling re­
gime, a> 0.1. 

VII. CONCLUSIONS 
In this paper we have carried out two exact calculations 

based on the N = 1 sector of the model for a two-level system 
in interaction with a continuous spectrum of radiation. The 
first calculation was of the lineshape of a spontaneously 
emitted photon, and we saw that, for weak coupling, the 
exact answer was very close to either ofthe Wigner-Weiss­
kopf approximations. For higher coupling, the exact Lamb 
shift appears to be substantially higher than that predicted 
by the approximate procedures, and the actuallineshape it­
self quite different. The other calculation was that of the 
scattering of an incident photon from the deexcited atom. 
Here a very simple result was obtained, permitting easy cal­
culation of the probabilities of forward and backward scat­
tering. It can be remarked here that, in a more realistic three­
dimensional calculation, the only extra complication would 
be purely geometrical. 

We also derived the explicit Moller operators for the 

scattering problem and their inverses. Although the inverses 
were not in fact necessary for the completion of the scatter­
ing problem, we found the interesting result that the Moller 
operators and their inverses-just because the operators 
were one-to-one and hence invertible--contained implicitly 
the/ull dynamics of the quantum system. This result is intri­
guing in view of the usual presumption that restricting atten­
tion to asymptotic states entails loss of information. 
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APPENDIX A: CALCULATION OF THE INVERSE 
MAPPING OPERATOR BY DIRECT SUBSTITUTION 

If(co,Ks) are given by Eqs. (22) and (23), we wish to com­
pute n +(co,Ks) and show that it is (K;''J. From Eq. (21) one 
finds that 

[n +(co,Ks)]s(A) 

(2h (A ))1/2 1 
= K.(A ) - """A,.----

(1T/a) 1 12 H +(A fa) 

x{co-(~r/2[&, 100 

dll(h(~)~2;s(ll) 

+ 1Ti(h (A W/2Ks(A) J } . (AI) 

With Ks (Il) given by Eq. (23), it is necessary first of all to 
deal with the expression 

100 h (Il) 100 (h (VW/2K;" (v) 
&' dll -- &' dv A • 

o Il - A 0 H -(v/a)(v -Il) 
(A2) 

Use ofEq. (24) converts this expression to 

&' dv A &' dll Il 100 (h (vW 12K;" (v) 100 h ( ) 

o H-(v/a) 0 (Il-A)(v-Il) 

h 3/2(A }K;"(A ) -r A • 

H-(A/a) 
Now, 

&' roo dll h (Il) 
Jo (Il- v)(v -Il) 

=_1_[&, rOOdllh(Il)_&, rOOdllh(Il)] 
V-A Jo Il-A Jo Il-V 

TABLE I. Location of lineshape maxima and normaIization for various couplings, 
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a 

0.01 
0.1 
0.2 
0.3 
0.375 

Exact expression 
[Eq. (16)] 

P.... Ic;:',I~.. Norm. 

98.7 
8.50 
2.70 
0.250 
0.0210 

0.159158 
0.160 191 
0.170451 
0.470024 
4.490 135 

0.995720 
0.994640 
0.999 314 
0,979732 
0.981673 
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Wigner-Weisskopf approximation I 
[Eq. (17)] 

P.... Ic;:! I~.. Norm. 

98.7 
8.70 
3.80 
2.24 
1.67 

0,159120 
0,158358 
0,155986 
0,151802 
0,147920 

0.982940 
0.860725 
0.725615 
0.601075 
0.536036 

Wigner-Weisskopf approximation II 
(see text) 

Pm.. Ic;:! I~ Norm. 

98.7 
8.70 
3.72 
2.06 
1.39 

0.159127 
0.159126 
0.159153 
0.159155 
0.159154 

0.987218 
0.912854 
0.836559 
0.705799 
0.647142 
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= v~,i{: [iI+(:) +iI-(:) -il+(~) 
-il-(~) + ! (v -,i)]} [see Eq. (11)] 

= ;: + : V~,i [iI+(:) +iI-(:) 

-H+(~)-il-(~)] . 
Therefore, expression (A2) equals 

Now, 
A A 

4ih (,i) = H -(,i fa) - H +(,i fa) , 

and so the second term of the above expression vanishes. 
Similarly, the first term reduces just to K';' (,i ), as we wished 
to show. 
APPENDIX B: CALCULATION OF THE INVERSE 
MAPPING OPERATOR BY SOLVING THE INTEGRAL 
EQUATION 

The inversion of the operator n + can also be effected by 
solving a singular integral equation. If one is given 
[n +(CooK.)].(,i) as a function y. (,i ), say, then from Eq. (21) 
we see that it is necessary to solve for Co and K.(,i ) the equa­
tion 

K.(,i )[1 + }ih (,i) ] + 2~ (,i W /2 

H +(,i fa) 'lrH +(,i fa) 

X fll roo dp, (h (p,))1/2K.( p,) 

Jo p, -,i 

= y.(,i ) + (2.)I12(h (,i ))1/2 A Co. (BI) 
'Ira H+(,i/a) 

Following Muskhelishvili, we define the function 

I Loo (h (p,W /2K.( p,) 
X(S)=-. dp, . 

2m 0 p, - s 
X is holomorphic for all S not on the positive real axis and 
tends to zero as Is 1-00 with arg S #0. As S tends to a real 
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I 
value,i from above or below we get the limiting values 

X±(,i)=~fll roo dp,(h(p,))1/2K.(p,) 
2m Jo p, -,i 

± !(h (,i W /2K.(,i ) . (B2) 

Thus Eq. (BI) can be written as 

[X+(,i)-X-(,il1[1 + A2ih (,i) ] 
H+(,i/a) 

+ A2ih(,i) [X+(,i)+X-(,i)] 
H+(,i/a) 

= (h (,i W/2y.(,i ) + (2.)112 ACoh (,i ) . 
'Ira H +(,i fa) 

Since 
A A 

4ih (,i) = H -(,i fa) - H +(,i /a), 

this simplifies to 

X+(,i) X-(,i) 
A A 

H+(,i/a) H-(,i/a) 

(h (,i ))1/2y.(,i ) 
= A 

H-(,i/a) 
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XIS) ( 2 )112 ico 
HIS/a) + 1Ta 4HIS/a) 

which is holomorphic in S except on the positive real axis, 
has a discontinuity, for positive A., of 

(h (A. ))1/2y.(A. )lH -(A. fa) . 

The above statement is also true for the function 

1 i'" (h (A. W/2
y.(A. ) - dA. , 

21Ti 0 H -(A. /a)(A. - s) 
and so the difference between the two functions, being holo­
morphic everywhere, must be an entire function. If this en­
tire function is called PIS), we have 

X IS) = HIS /a)p IS) - (2/1Ta)1/2(icol4) 

+ HIS/a) ('" dA. A (h (A. W/2
y.(A. ) . (B3) 

21Ti Jo H -(A. /a)(A. - s) 
Therequirementthatas Is I~oo,arg S ;ofO,XIS)-oalsoim­
plies that PIS) = 0 and also that 

Co = - (~)1/2 i'" dA. (h ~ W12
y.(A.) . 

1Ta 0 H -(A. fa) 

This is Eq. (22). But we also have from Eqs. (B2) and (B3) that 
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K.(A. ) = 1 1/2 [X + (A. ) - X -(A.)] 
(h (A. )) 

A A 

_ [H +(A. fa) - H -(A. /a)) 1 
- (h (A. ))1/2 21Ti 

i '" (h (J~))1/2y.( JL) 
X f}J dJL -:A~-----

o H-(JL/a)(JL -A.) 

+ [H +(~) + H -(~)] 1. A y.(A. ) , 
a a 2 H-(A./a) 

and this simplifies to Eq. (23). 
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